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Abstract

A class of third-order boundary value problem with advanced arguments and
Stieltjes integral boundary conditions is discussed. Some existence criteria of at
least three positive solutions are established. The main tool used is a fixed point
theorem due to Avery and Peterson.

1 Introduction

Third-order differential equations arise in a variety of different areas of applied mathe-
matics and physics, e.g., in the deflection of a curved beam having a constant or varying
cross section, a three-layer beam, electromagnetic waves or gravity driven flows and so
on [6].
Recently, third-order boundary value problems (BVPs for short) with integral bound-

ary conditions, which cover third-order multi-point BVPs as special cases, have at-
tracted much attention from many authors, see [1, 3, 4, 5, 9, 10, 11] and the references
therein. In particular, in 2012, Jankowski [9] studied the existence of multiple positive
solutions to the following BVP{

u′′′(t) + h(t)f(t, u(α(t))) = 0, t ∈ (0, 1),
u(0) = u′′(0) = 0, u(1) = βu(η) + λ[u],

(1)

where λ denoted a linear functional on C[0, 1] given by

λ[u] =

∫ 1

0

u(t)dΛ(t) (2)

involving a Stieltjes integral with a suitable function Λ of bounded variation. The
measure dΛ could be a signed one. The situation with a signed measure dΛ was first
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discussed in [12, 13] for second-order differential equations; it was also discussed in
[7, 8] for second-order impulsive differential equations.
Among the boundary conditions in (1), only u(1) is related to a Stieltjes integral. A

natural question is that whether we can obtain similar results when u(0) is also related
to a Stieltjes integral. To answer this question, in this paper, we are concerned with the
following third-order BVP with advanced arguments and Stieltjes integral boundary
conditions {

u′′′(t) + f(t, u(α(t))) = 0, t ∈ (0, 1),
u(0) = γu(η) + λ[u], u′′(0) = 0, u(1) = βu(η) + λ[u].

(3)

Throughout this paper, we always assume that α : [0, 1] → [0, 1] is continuous and
α(t) ≥ t for t ∈ [0, 1], 0 < η < 1, 0 ≤ γ < β < 1, Λ is a suitable function of bounded
variation and λ[u] is defined as in (2). It is important to indicate that it is not assumed
that λ[u] is positive to all positive u.
In order to obtain our main results, we need the following concepts and Avery and

Peterson fixed point theorem [2].
Let E be a real Banach space and K be a cone in E.
A map Θ is said to be a nonnegative continuous convex functional on K if Θ : K →

[0,∞) is continuous and

Θ(tu+ (1− t)v) ≤ tΘ(u) + (1− t)Θ(v)

for all u, v ∈ K and t ∈ [0, 1].
Similarly, A map Φ is said to be a nonnegative continuous concave functional on K

if Φ : K → [0,∞) is continuous and

Φ(tu+ (1− t)v) ≥ tΦ(u) + (1− t)Φ(v)

for all u, v ∈ K and t ∈ [0, 1].
Let ϕ andΘ be nonnegative continuous convex functionals onK, Φ be a nonnegative

continuous concave functional on K and Ψ be a nonnegative continuous functional on
K. For positive numbers a, b, c, d, we define the following sets:

K(ϕ, d) = {u ∈ K : ϕ(u) < d},

K(ϕ,Φ, b, d) = {u ∈ K : b ≤ Φ(u), ϕ(u) ≤ d},
K(ϕ,Θ,Φ, b, c, d) = {u ∈ K : b ≤ Φ(u), Θ(u) ≤ c, ϕ(u) ≤ d}

and
R(ϕ,Ψ, a, d) = {u ∈ K : a ≤ Ψ(u), ϕ(u) ≤ d}.

THEOREM 1 (Avery and Peterson fixed point theorem). Let E be a real Banach
space andK be a cone in E. Let ϕ and Θ be nonnegative continuous convex functionals
on K, Φ be a nonnegative continuous concave functional on K, and Ψ be a nonnegative
continuous functional on K satisfying Ψ(ku) ≤ kΨ(u) for 0 ≤ k ≤ 1, such that for some
positive numbers M and d,

Φ(u) ≤ Ψ(u) and ‖u‖ ≤Mϕ(u)
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for all u ∈ K(ϕ, d). Suppose S : K(ϕ, d)→ K(ϕ, d) is completely continuous and there
exist positive numbers a, b, c with a < b, such that

(C1) {u ∈ K(ϕ,Θ,Φ, b, c, d) : Φ(u) > b} 6= φ and Φ(Su) > b for u ∈ K(ϕ,Θ,Φ, b, c, d);

(C2) Φ(Su) > b for u ∈ K(ϕ,Φ, b, d) with Θ(Su) > c; and

(C3) θ /∈ R(ϕ,Ψ, a, d) and Ψ(Su) < a for u ∈ R(ϕ,Ψ, a, d) with Ψ(u) = a.

Then S has at least three fixed points u1, u2, u3 ∈ K(ϕ, d), such that

b < Φ(u1),

a < Ψ(u2) with Φ(u2) < b

and
Ψ(u3) < a.

2 Main Results

Let ∆ = 1− γ − (β − γ)η. Then ∆ > 0.

LEMMA 1. For any y ∈ C[0, 1], the BVP{
u′′′(t) = −y(t), t ∈ (0, 1),
u(0) = γu(η) + λ[u], u′′(0) = 0, u(1) = βu(η) + λ[u]

(4)

has the unique solution

u(t) =
1− (β − γ)η + (β − γ)t

∆
λ[u] +

γ + (β − γ)t

∆

∫ 1

0

k(η, s)y(s)ds

+

∫ 1

0

k(t, s)y(s)ds

for t ∈ [0, 1] where

k(t, s) =
1

2

{
(1− t)(t− s2), 0 ≤ s ≤ t ≤ 1,
t(1− s)2, 0 ≤ t ≤ s ≤ 1.

PROOF. By integrating the differential equation in (4) three times from 0 to t and
using the boundary condition u′′(0) = 0, we get

u(t) = u(0) + u′(0)t− 1

2

∫ t

0

(t− s)2y(s)ds, t ∈ [0, 1]. (5)

So,

u′(0) = u(1)− u(0) +
1

2

∫ 1

0

(1− s)2y(s)ds. (6)
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In view of (5), (6) and the boundary conditions u(0) = γu(η) + λ[u] and u(1) =
βu(η) + λ[u], we have

u(t) = [γ + (β − γ)t]u(η) + λ[u] +

∫ 1

0

k(t, s)y(s)ds, t ∈ [0, 1]. (7)

So,

u(η) =
1

∆
λ[u] +

1

∆

∫ 1

0

k(η, s)y(s)ds. (8)

Substituting (8) into (7), we get

u(t) =
1− (β − γ)η + (β − γ)t

∆
λ[u] +

γ + (β − γ)t

∆

∫ 1

0

k(η, s)y(s)ds

+

∫ 1

0

k(t, s)y(s)ds

for t ∈ [0, 1].

LEMMA 2 [9]. 0 ≤ k(t, s) ≤ 1
2 (1 + s)(1− s)2 for (t, s) ∈ [0, 1]× [0, 1].

Throughout, we assume that the following conditions are fulfilled:

(H1) f ∈ C([0, 1]× [0,+∞), [0,+∞));

(H2) ∫ 1

0

dΛ(t) ≥ 0,

∫ 1

0

tdΛ(t) ≥ 0, κ(s) =

∫ 1

0

k(t, s)dΛ(t) ≥ 0, s ∈ [0, 1].

For convenience, we denote

ρ = [1− (β − γ)η]

∫ 1

0

dΛ(t) + (β − γ)

∫ 1

0

tdΛ(t)

and

ρ′ = γ

∫ 1

0

dΛ(t) + (β − γ)

∫ 1

0

tdΛ(t).

Obviously, ρ, ρ′ ≥ 0. In the remainder of this paper, we always assume that ρ < ∆.
Let C[0, 1] be equipped with the maximum norm. Then C[0, 1] is a Banach space.

Define

K =

{
u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1], min

t∈[η,1]
u(t) ≥ Γ‖u‖, λ[u] ≥ 0

}
,

where

Γ = min

{
β(1− η)

1− βη ,
βη

1− γ(1− η)

}
.

Then K is a cone in C[0, 1].
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Now, we define operators T and S on K by

(Tu)(t) =
1− (β − γ)η + (β − γ)t

∆
λ[u] + (Fu)(t), t ∈ [0, 1]

and

(Su)(t) =
1− (β − γ)η + (β − γ)t

∆− ρ λ[Fu] + (Fu)(t), t ∈ [0, 1],

where

(Fu)(t) =
γ + (β − γ)t

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds+

∫ 1

0

k(t, s)f(s, u(α(s)))ds

for t ∈ [0, 1].

LEMMA 3. T, S : K → K.

PROOF. Let u ∈ K. Then it is easy to verify that

(Tu)′′(t) = −
∫ t

0

f(s, u(α(s)))ds ≤ 0, t ∈ [0, 1],

which shows that Tu is concave down on [0, 1]. In view of

(Fu)(0) =
γ

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds ≥ 0

and

(Fu)(1) =
β

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds ≥ 0,

we have

(Tu)(0) =
1− (β − γ)η

∆
λ[u] + (Fu)(0) ≥ 0

and

(Tu)(1) =
1 + (β − γ)(1− η)

∆
λ[u] + (Fu)(1) ≥ 0.

So, (Tu)(t) ≥ 0, t ∈ [0, 1].
Now, we prove that min

t∈[η,1]
(Tu)(t) ≥ Γ‖Tu‖. To do it we consider two cases:

Case 1. Let (Tu)(η) ≤ (Tu)(1). Then min
t∈[η,1]

(Tu)(t) = (Tu)(η) and there exists

t̄ ∈ [η, 1] such that ‖Tu‖ = (Tu)(t̄). Moreover,

(Tu)(t̄)− (Tu)(0)

t̄− 0
≤ (Tu)(η)− (Tu)(0)

η − 0
.

So,

‖Tu‖ ≤ 1

η
(Tu)(η)− 1− η

η
(Tu)(0),



Sun et. al 165

which together with
(Tu)(0) = γ(Tu)(η) + λ[u] (9)

implies that

‖Tu‖ ≤ 1− γ(1− η)

η
(Tu)(η),

i.e.,

min
t∈[η,1]

(Tu)(t) ≥ η

1− γ(1− η)
‖Tu‖. (10)

Case 2. Let (Tu)(η) > (Tu)(1) and ‖Tu‖ = (Tu)(t̄). Note that in this case
min
t∈[η,1]

(Tu)(t) = (Tu)(1).

If t̄ ∈ [0, η], then

(Tu)(1)− (Tu)(t̄)

1− t̄ ≥ (Tu)(1)− (Tu)(η)

1− η .

So,

‖Tu‖ ≤ 1

1− η (Tu)(η)− η

1− η (Tu)(1),

which together with

(Tu)(η) =
1

β

(
(Tu)(1)− λ[u]

)
(11)

implies that

‖Tu‖ ≤ 1− βη
β(1− η)

(Tu)(1),

i.e.,

min
t∈[η,1]

(Tu)(t) ≥ β(1− η)

1− βη ‖Tu‖. (12)

If t̄ ∈ (η, 1), then

(Tu)(t̄)− (Tu)(η)

t̄− η ≤ (Tu)(η)− (Tu)(0)

η − 0
.

So,

‖Tu‖ ≤ 1

η
(Tu)(η)− 1− η

η
(Tu)(0),

which together with (9) and (11) implies that

‖Tu‖ ≤ 1− γ(1− η)

βη
(Tu)(1),

i.e.,

min
t∈[η,1]

(Tu)(t) ≥ βη

1− γ(1− η)
‖Tu‖. (13)
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It follows from (10), (12) and (13) that

min
t∈[η,1]

(Tu)(t) ≥ Γ‖Tu‖.

Finally, we need to show that λ[Tu] ≥ 0. In view of

λ[Fu] =

∫ 1

0

γ + (β − γ)t

∆

∫ 1

0

k(η, s)f(s, u(α(s)))dsdΛ(t)

+

∫ 1

0

∫ 1

0

k(t, s)f(s, u(α(s)))dsdΛ(t)

=
ρ′

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds+

∫ 1

0

κ(s)f(s, u(α(s)))ds

≥ 0,

we have
λ[Tu] =

ρ

∆
λ[u] + λ[Fu] ≥ 0.

This shows that T : K → K. Similarly, we can prove that S : K → K.

LEMMA 4. The operators T and S have the same fixed points in K.

PROOF. Suppose that u ∈ K is a fixed point of S. Then

λ[u] =

∫ 1

0

(
1− (β − γ)η + (β − γ)t

∆− ρ λ[Fu] + (Fu)(t)

)
dΛ(t)

=
∆

∆− ρλ[Fu],

which shows that

λ[Fu] =
∆− ρ

∆
λ[u].

So,

u(t) = (Su)(t)

=
1− (β − γ)η + (β − γ)t

∆− ρ λ[Fu] + (Fu)(t)

=
1− (β − γ)η + (β − γ)t

∆
λ[u] + (Fu)(t)

= (Tu)(t), t ∈ [0, 1],

which indicates that u is a fixed point of T . Suppose that u ∈ K is a fixed point of T .
Then

λ[u] =

∫ 1

0

(
1− (β − γ)η + (β − γ)t

∆
λ[u] + (Fu)(t)

)
dΛ(t)

=
ρ

∆
λ[u] + λ[Fu],
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which shows that

λ[u] =
∆

∆− ρλ[Fu].

So,

u(t) = (Tu)(t)

=
1− (β − γ)η + (β − γ)t

∆
λ[u] + (Fu)(t)

=
1− (β − γ)η + (β − γ)t

∆− ρ λ[Fu] + (Fu)(t)

= (Su)(t), t ∈ [0, 1],

which indicates that u is a fixed point of S.

LEMMA 5. T, S : K → K is completely continuous.

PROOF. First, by LEMMA 3, we know that T (K) ⊂ K. Next, we show that T is
compact. Let D ⊂ K be a bounded set. Then there existsM1 > 0 such that ‖u‖ ≤M1

for any u ∈ D. Since Λ is a function of bounded variation, there exists M2 > 0 such
that v∆′ =

∑n
i=1 |Λ(ti) − Λ(ti−1)| ≤ M2 for any partition ∆

′
: 0 = t0 < t1 < · · · <

tn−1 < tn = 1. Let

M3 = sup{f(t, u) : (t, u) ∈ [0, 1]× [0,M1]}.

Then for any u ∈ D,

‖Tu‖ = max
t∈[0,1]

(Tu)(t)

≤ 1 + (β − γ)(1− η)

∆
λ[u] +

β

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds

+
1

2

∫ 1

0

(1 + s)(1− s)2f(s, u(α(s)))ds

≤ 1 + (β − γ)(1− η)

∆
M1M2 +

βM3

∆

∫ 1

0

k(η, s)ds+
5

24
M3,

which shows that T (D) is uniformly bounded.
On the other hand, for any ε > 0, since k(t, s) is uniformly continuous on [0, 1] ×

[0, 1], there exists δ1(ε) > 0 such that for any t1, t2 ∈ [0, 1] with |t1 − t2| < δ1(ε),

|k(t1, s)− k(t2, s)| <
ε

3M3
, s ∈ [0, 1].

Let δ = min
{
δ1(ε), ε∆

3(β−γ)M1M2
, ε∆

3(β−γ)M3

∫ 1
0
k(η,s)ds

}
. Then for any u ∈ D, t1, t2 ∈
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[0, 1] with |t1 − t2| < δ, we have

|(Tu)(t1)− (Tu)(t2)|

=
∣∣∣ (β − γ)(t1 − t2)

∆
λ[u] +

(β − γ)(t1 − t2)

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds

+

∫ 1

0

(k(t1, s)− k(t2, s))f(s, u(α(s)))ds
∣∣∣

≤ (β − γ)|t1 − t2|
∆

λ[u] +
(β − γ)|t1 − t2|

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds

+

∫ 1

0

|k(t1, s)− k(t2, s)|f(s, u(α(s)))ds

≤ (β − γ)|t1 − t2|M1M2

∆
+

(β − γ)|t1 − t2|M3

∆

∫ 1

0

k(η, s)ds

+M3

∫ 1

0

∣∣k(t1, s)− k(t2, s)
∣∣ds

< ε,

which shows that T (D) is equicontinuous. It follows from Arzela-Ascoli theorem that
T (D) is relatively compact. Thus, we have shown that T is a compact operator.

Finally, we prove that T is continuous. Suppose that un, u ∈ K and limn→∞ un = u.
Then there exists M4 > 0 such that ‖u‖ ≤M4 and ‖un‖ ≤M4 (n = 1, 2, · · · ). For any
ε > 0, since f(s, x) is uniformly continuous on [0, 1] × [0,M4], there exists δ > 0 such
that for any x1, x2 ∈ [0,M4] with |x1 − x2| < δ,

|f(s, x1)− f(s, x2)| < ε
2β
∆

∫ 1

0
k(η, s)ds+ 5

12

, s ∈ [0, 1]. (14)

At the same time, since limn→∞ un = u, there exists positive integer N such that for
any n > N ,

‖un − u‖ < min

{
δ,

ε∆

2[1 + (β − γ)(1− η)]|Λ(1)− Λ(0)|

}
. (15)
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It follows from (14) and (15) that for any n > N ,

‖Tun − Tu‖
= max

t∈[0,1]
|(Tun)(t)− (Tu)(t)|

≤ 1 + (β − γ)(1− η)

∆
|λ[un]− λ[u]|+ β

∆

∫ 1

0

k(η, s)|f(s, un(α(s)))− f(s, u(α(s)))|ds

+
1

2

∫ 1

0

(1 + s)(1− s)2|f(s, un(α(s)))− f(s, u(α(s)))|ds

≤ 1 + (β − γ)(1− η)

∆
‖un − u‖|Λ(1)− Λ(0)|

+

∫ 1

0

( β
∆
k(η, s) +

1

2
(1 + s)(1− s)2

)
|f(s, un(α(s)))− f(s, u(α(s)))|ds

< ε,

which indicates that T is continuous. Therefore, T : K → K is completely continuous.
Similarly, we can prove that S : K → K is also completely continuous.

For convenience, we denote

D1 =
ρ′

∆

∫ 1

0

k(η, s)ds+

∫ 1

0

κ(s)ds, D2 =
β

∆

∫ 1

0

k(η, s)ds+
5

24
,

D3 =
ρ′

∆

∫ 1

η

k(η, s)ds+

∫ 1

η

κ(s)ds and D4 =
1

∆

∫ 1

η

k(η, s)ds.

Let

µ >
1 + (β − γ)(1− η)

∆− ρ D1 +D2 and 0 < L < β
( D3

∆− ρ +D4

)
.

THEOREM 2. Assume that there exist positive constants a, b and d with a < b <
b
Γ ≤ d such that

(A1) f(t, u) ≤ d
µ for (t, u) ∈ [0, 1]× [0, d],

(A2) f(t, u) ≥ b
L for (t, u) ∈ [η, 1]× [b, bΓ ], and

(A3) f(t, u) ≤ a
µ for (t, u) ∈ [0, 1]× [0, a].

Then the BVP (3) has at least three positive solutions u1, u2, u3 satisfying ‖ui‖ ≤
d (i = 1, 2, 3) and

min
t∈[η,1]

u1(t) > b, ‖u2‖ > a with min
t∈[η,1]

u2(t) < b, ‖u3‖ < a.

PROOF. For u ∈ K, we define

Φ(u) = min
t∈[η,1]

u(t) and ϕ(u) = Θ(u) = Ψ(u) = ‖u‖.
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Then it is easy to know that Φ is a nonnegative continuous concave functional on K
and ϕ, Θ and Ψ are nonnegative continuous convex functionals on K. In order to apply
Theorem 1 to prove our main results, we use the operator S and take c = b/Γ.
We first assert that S : K(ϕ, d)→ K(ϕ, d). Indeed, if u ∈ K(ϕ, d), then 0 ≤ u(t) ≤

d, t ∈ [0, 1], which together with (A1) implies that

λ[Fu] =
ρ′

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds+

∫ 1

0

κ(s)f(s, u(α(s)))ds

≤ D1d

µ
(16)

and

‖Fu‖

= max
t∈[0,1]

(
γ + (β − γ)t

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds+

∫ 1

0

k(t, s)f(s, u(α(s)))ds

)
≤ β

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds+
1

2

∫ 1

0

(1 + s)(1− s)2f(s, u(α(s)))ds

≤ D2d

µ
. (17)

In view of (16) and (17), we have

ϕ(Su) = ‖Su‖ ≤ 1 + (β − γ)(1− η)

∆− ρ λ[Fu]+‖Fu‖ ≤
(

1 + (β − γ)(1− η)

∆− ρ D1 +D2

)
d

µ
≤ d.

This indicates that S : K(ϕ, d)→ K(ϕ, d).
Next, we assert that {u ∈ K(ϕ,Θ,Φ, b, c, d) : Φ(u) > b} 6= φ and Φ(Su) > b for

u ∈ K(ϕ,Θ,Φ, b, c, d). In fact, the constant function b+c
2 ∈ {u ∈ K(ϕ,Θ,Φ, b, c, d) :

Φ(u) > b}. Moreover, for u ∈ K(ϕ,Θ,Φ, b, c, d), we know that b ≤ u(α(t)) ≤ c for
t ∈ [η, 1], which together with (A2) implies that

λ[Fu] =
ρ′

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds+

∫ 1

0

κ(s)f(s, u(α(s)))ds

≥ ρ′

∆

∫ 1

η

k(η, s)f(s, u(α(s)))ds+

∫ 1

η

κ(s)f(s, u(α(s)))ds

≥ D3b

L
(18)

and

(Fu)(η) =
1

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds

≥ 1

∆

∫ 1

η

k(η, s)f(s, u(α(s)))ds

≥ D4b

L
. (19)
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In view of (18) and (19), we see that

Φ(Su) = min
t∈[η,1]

(Su)(t)

= min
(

(Su)(η), (Su)(1)
)

= min
(

(Su)(η), β(Su)(η) +
∆

∆− ρλ[Fu]
)

≥ β(Su)(η)

= β
( 1

∆− ρλ[Fu] + (Fu)(η)
)

≥ β
( D3

∆− ρ +D4

) b
L

> b,

as required.

Thirdly, we assert that Φ(Su) > b for u ∈ K(ϕ,Φ, b, d) with Θ(Su) > c. To see
this, we suppose u ∈ K(ϕ,Φ, b, d) and Θ(Su) = ‖Su‖ > c. Then

Φ(Su) = min
t∈[η,1]

(Su)(t) ≥ Γ‖Su‖ > Γc = b.

Finally, we assert that θ /∈ R(ϕ,Ψ, a, d) and Ψ(Su) < a for u ∈ R(ϕ,Ψ, a, d) with
Ψ(u) = a. Indeed, it follows from Ψ(θ) = 0 < a that θ /∈ R(ϕ,Ψ, a, d). Moreover,
for u ∈ R(ϕ,Ψ, a, d) and Ψ(u) = a, we know that 0 ≤ u(t) ≤ a for t ∈ [0, 1], which
together with (A3) implies that

λ[Fu] =
ρ′

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds+

∫ 1

0

κ(s)f(s, u(α(s)))ds

≤ D1a

µ
(20)

and

‖Fu‖

= max
t∈[0,1]

(
γ + (β − γ)t

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds+

∫ 1

0

k(t, s)f(s, u(α(s)))ds

)
≤ β

∆

∫ 1

0

k(η, s)f(s, u(α(s)))ds+
1

2

∫ 1

0

(1 + s)(1− s)2f(s, u(α(s)))ds

≤ D2a

µ
. (21)
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In view of (20) and (21), we have

Ψ(Su) = ‖Su‖

≤ 1 + (β − γ)(1− η)

∆− ρ λ[Fu] + ‖Fu‖

≤
(

1 + (β − γ)(1− η)

∆− ρ D1 +D2

)
a

µ
< a,

as required.
To sum up, all the hypotheses of Theorem 1 are satisfied. Hence, the BVP (3) has

at least three positive solutions u1, u2, u3 satisfying ‖ui‖ ≤ d (i = 1, 2, 3) and

min
t∈[η,1]

u1(t) > b, ‖u2‖ > a with min
t∈[η,1]

u2(t) < b, ‖u3‖ < a.
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