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vereinigt werden. Dann verwandelt sich unsere Frage in das Kronecker-
sche Problem, die Wurzeln aller aufldsbaren Gleichungen zu finden.

Bis jetzt gingen wir von den Gleichungen aus und fragten nach
den Wurzeln. Wir kisnnten jetzt umgelkehrt von Punktaggregaten (a, z .z,)
ausgehen, fiir sic in der mannigfachsten Weise einen wmz?ﬁ_m:srmmim
formulieren und sie danach in Klassen einteilen. Das witrde dann zn
vielen wichtigen und interessanten Fragestellungen nach der Beschatfen-
heit der zugehorigen Gleichungen fithren. Darauf kann indes nieht meh
eingegangen werden.

So haben wir denn eine groe Anzahl Parallelen, denen noch viele
andere wnzureihen wiiren, aufygedeckt und inshesondere gesehen . um

es nochmals zu sagen —, wie die fundamentalen Begriffshildungen der
Niederen Arvithmetik, der Hohoren Arithmetik und der Funktionentheorie
nur verschiedene Ausdrucksformen eines und desselben Schrittes geistiger
Freiheit sind, mit G. Cantor zu reden Angesichts dieser Tatsache scheint

es sehr merkwiirdio

g, dal z B. Kronecker das Irrationale gar nicht

gelbten lassen wollte, er, der dach mit Einfiihrung der IFunktionale
(Ideale) denselben Schritt nur auf anderem Gebicte gemacht hat! Auch
ldunen wir die {tibliche Trennung von Analysis und Arvithmetik wicht
anerkenuen; ist doch der .LT;E#S?:mmmm.w der sie verursachen soll,
eine nnmittelbare Konsequenz der Binfihrung des Irrationalen!

Je weiter dic Wissenschaft fortschreitet, je ariBer ihr Umfang
wird, desto mehr ist eine einheitliche Autfussung der verschiedenen
Disziplinen erwiinscht und vonnéten. Nicht cine Avfhiiufung von Tat-
sachen, eine Sammlune von Siitzen, sondern die Gewinnung eines ein-
heitlichen mathematischen Welthildes scheint mir das Hauptziel fiir den
einzeloen wie fiir die Wissenschaft im allgemeinen. Vielleicht vermogen

die vorstehenden >:&:_:.::mwz: einen bescheidenen Beitrag hierzu zu
hefern.
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Da ich bisher nicht dazu gekommen bin, meine Untersuchungen
iiher Interpolation, iiber die ich anf der Karlsruher Naturforscherver-
sammlung im Jahre 1911 kurz berichtet habe, im Zusammenhang dar-
zustellen, und da ich anch in der niichsten Zeit wahrscheinlich nicht
dazu kommen werde, so will ich wenigstens aus meinen damals ohne

Beweis mitgeteilten Ergebnissen vier Siitze beweisen, deren Formulie-
rung sehr allgemesin und deren Beweis verhiiltnismiBig einfach ist; ich
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tue dies auch, weil damit eine Frage beantwortet wird, wie sie ihnlich
neuerdings auch von anderer Seite aufgeworfen worden ist.!)

Es handelt sich aum folgendes: f(t) sei eine stetige Funktion der
reellen Veriinderlichen ¢ und hesitze die Periode 27, BY S
seien (2n 4 1) verschiedene Zahlen des Intervalls i:0 <tE<2m By
existiert dann ein und nur ein trigonometrisches Polynom nter Ord-
nung: J, (f(), das fiir t =¢" (i = L2, .. .n+41) den Wert (") an-
nimmt:

sin t— &;u sin P -oe8in b=
O 2 2 2
)
AHV nN;A\AADv = \,C..H v ) ) __ 4, ity ___ ) Taony _qmy 'T cee
B g Y g
sin g T 8in TgT o rresin Ty
R e N ey L
o SIn 9 gIn wl.m -« 81N 9
+ \.Qwi;L m e Py g
mm= EETE Y 1 n:.: 2t 1 2 ...mmz ea+i ]
2 . 2 9
_ +aeost 4 a” cosnt 4+ b sint 4. . . + bPsinnt
=y ) st » COSNE X + D, SInnt.

Es selen nun zu jedem ganzzahligen positiven » de rartige 2n - 1
Interpolationsstellen #™ gegeben, deren Gesamtmenge (== 1,2, ..
t=1,2...2n 4 1) ich mit M bezeichnen will; die Trage ist dann die;

Kann die Menge M der Inlerpolationsstellen so gewdhlt werden, daf
fiir jede stetige Funktion f() wnd gleichmépig fir alle t (des Intervalls
1:0<¢ < 2m) die Beziehung
@) @) = lim J,(118)
gilt, mit anderen Worten, daf die Leihe JUO) + | f(t) — S ]+
[, 1 (fO) — o (F0Y] 4 - - gleichmiiflig gegen f(8) lonvergiert?

Diese Frage wird durch dic folgenden Ausfilirungen mit Nein be-
antwortet. Dies war von vornherein zu erwarten. Ans Untersnchungen
des Ierrn Runge?) folgt nimlich, daB siintliche reguliir analytische
und mit der Periode 2z behaftete Funkbionen /(6) der reellen Ver-
dnderlichen ¢ sich nur dann in der Form (2) darstellen lassen, wenn
sich die Interpolationsstellen £7 infinitir gleichmiifig auf das Intervall
¢ verteilen, d. h. wenn die Aunzahl w, () der Interpolationsstellen #™

P
die in einem belicbigen Teilintervall ¢ von ; :z.ﬁo?Eo_.‘oﬁmﬁ.::m

. o (I
@) m_n:wwzlfH T2z
1) 8. Dunham Jackson, Rend. del Circolo mat di Palevmo Bd. 87 (1914).
2) Ztschr. £ Math. u, Phys. Bd. 47 (1901) S. 229, _ Theorie und Praxis der
Reihen (Leipzig 1904) 8. 137,
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erfilllen. Dieses Verteilungsgesetz wird aber in uniibertrefflicher Weise
dadurch befriedigt, daB man die £ (i=1,2...2n + 1) #quidistant,

o
P (n) (n) b
also ), =" + on T

kannt!), daB selbst bei dieser Wahl von M die trigonometrische Inter-
polation bei stetigen Funktionen f(f) noch divergieren und ungleich-

i=1,2,...2n) annimmt. Nun ist aber be-

miiBig konvergieren kann. Bel anderer Wahl der Interpolationsstellen
sind solche Mdglichkeiten also erst recht zu erwarten.

Selbstverstindlich sind diese valmm::mg von einem strengen
Beweise noch weit entfernt. Ilin solcher soll in den folgenden Zeilen
gegeben werden; die Irgelmisse des Herrn Runge werden dabei nicht
henutzt.

Mit K bezeichne ich die Gesamtheit der Funktionen f(?), die stetig-

mit der Periode 2z behaftet und dem Betrage nach < 1 sind. Es gibt
dann zu jedem n eine endliche Zahl 4, > 0 derart, daB

() J(F0) £ 4,

bleibt fitr alle f(¢) von K und fiir jedes & A, ist offenbar der Maxi-
malwert der folgenden IFunktion von t:

TS S b1 : b=t
posing e sin — , _, sin oo o
,

M

| i
i g o PN g ) vT T xT o - 1) —
M . : ! 2 P
sin VLo L gip ! 2+l VoL gin ntt T Vin
2 2 2 2

Ieh behaupte nun: Damit fiir jede stetige und periodische Funk-
tion f(£) gleichmiBig die Bewsiehung

2) () = lim J,(£0)
gilt, ist notwendig und hinreichend, daB
(d) lim 4, 4= oo

ist. Darnach wird gezeigt, dal die als notwendig erkannte Bedingung
(6) von keiner Interpolationsmenge M befriedigt wird.
ITeh beweise zuniichst ganz kurz, daB die Bedingung (5) hinreichend

ist, wiewohl das fiir das Folgende unerheblich ist. ks sei also unter
der Voraussetzung eines hinreichend grofen n einerseits

(6) A, < G,
andererseits werde f(f) auf Grund eines bekannten Satzes?) in der Form
(M f(t) = g,(&) +7,(8)

1) Vgl Paber, Math. Ann. 69 (1910) S. 417.
2) 8. z.B.Lebesgue, Lecons sur les séries trigonométriques (Paris 1906) S. 89,

1

e
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angesetzt, wo 9,(f) ein trigonometrisches Polynom nten Grades he-
deutet und

(8 fr () <e

ist fiir alle £ Dann ist

S J (1) = J,(¢,0) + J,0,8),
(10) J(@.0) = 9,0,

(11) () <& G,

also

(12) () — ()] < £(G 1),
w7 bow,

Um die Notwendigkeit der Bedingung (5) erkennen, nehme
man an, dafl
(13) lim.1, = oo
sei, und dal trotzdem fiir jede stetige und die Periode 2x besitzende
Funktion f() im ganzen Intervall i gleichmiibig die Gleichung
(2) i = lim J (f)
gelte; es wird sich evgeben, daB diese heiden Voraussetzungen (2) und
(13) unvertriiglich sind. Ist | /(). < §, dagegen J, (f() fiir £ = ¢’ gleich
»A,, so kann man auf Grund des schon bei (7) benutzten bekannten
Satzes f(¢) niherungsweise durch ein trigonometrisches Polynom mten
Grades g, (f) ersetzen, das dem Betrage nach <1, fiir das aber an der

-«

Stelle £=1" dus Interpolationspolynom J (¢, () einen Wert > -, liefert.

AH#V ~\i A,Q)EQL =

«d,

h mit a > 1.

‘Ich denke mir sodann solche trigonometrische Polynome T, (D)
vom Grade m, (i = 1,2.. .}, welche simtlich dem Betrage nach < 1
sind und fiir welche es Zahlen n, < m, gibt derart, daB das Maxi-
mum von

(14)

wird mit
(15) lim 4, = oo

iz« !

Dies ist nach dem Vorhergehenden alles moglich, und es kénnen die
n, und m; noch folgenden weiteren Bedingungen unterworfen werden:

(16) n, > m_q,
(17 A, >4

"y
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Wegen (15) und (17) konvergiert die Reihe

(18) 10 = 2 9, (0

gleichmiiBig im Intervalle 7, und es ist

i—1 %
T (FO)=T | 2F 9, o)+ Ty o)+ 2 om0

. 1 1 1
=2 w0 VAT S e, ).
TV 2 (wegen 16) (y; mom_maﬁmn i+1
‘Waht von ¢
wegen (14))
Das erste der drei Glieder auf der rechten Seite von (19) bleibt
als Teilsumme einer gleichmiBig konvergenten Reihe unterhalb einer
endlichen Grenze; ebenso das letzte; denn wegen (17) ist

a0

M{w iz

1 1
+£+$+i

also

8\.

Weil aber das mittlere Glied a«\\_z. auf der rechten Seite von (19)

ins Unendliche wiichst, kann o, A\Qv nicht gleichmiBig im Intervall i

gegen f(f) konvergieren, womit die Unmiglichkeit des gleic rﬁ._rm.md
Bestehens von (2) und (12) dargetan ist.

Es bleibt nach diesen Vorbereitungen nur noch zu zeigen, daB boi

Jeder Menge M der Fﬁm%o_maozmmwo:m: lim 4, = oo ausfillt; es ist so-

. = oo
gar lim 4, --

n=

Um dies einzusehen, bemerke man, daB es trigonometrische Poly-
nome

(20) o, () = alw, + a,eost 4 a, cosmt 4 bysint - - + b sinmt

gibt, die zwar selbst fiir alle ¢ dem Betrage nach <1 sind, jedoch,
nach den Gliedern a, cosnt, b sinnt abgebrochen, Polynome

21) ¢, ()= ) +acost + - Fa,cosnt L b sint+--- b, sinnt

liefern, welche Werte von der GriBenordnung lgn annehmen; m lift

——a
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sich von vornherein so wiihlen, daB » eine vorgegebene Zahl sein darf.
Bricht man z B. die unendliche trigonometrische Reihe!)

a, s.. ) . 1 1 1
(22) v(t) = 9 +Ma.‘8m vl mit @, = Aﬂlh_wﬂ s, T+ a1 wev

c:w_vp_\ﬂ

die im Intervalle (— =, ) gleich }sin ™=, [ ist, nach den Gliedern
mit cosmi, sinomt ab, so erhilt man, falls nur m groB genug gewiihlt
ist, derartige Polynome ¢, (¢):

e

1 1 Y 1 1
Amov %s,Qv 7 w\:ﬂf 1 + HN__Aa: + 149y o 2041 — vgm vt

nebst s:mmr:_.?dz

AMHV a\&Sva wxiTH + MAMSITHITSﬁ + Cﬁl*lmlifv cos 1i.

AuBer den Interpolationsstellen ¢ (¢ == 1,2 ... 25 -+ 1) hetrachte
man noch die Stellen « 4 £, wo « irgendeine reelle Zahl ist; daB
diese ncuen Interpolationsstellen nicht siimtlich im Intervalle ¢ liegen,
ist unerheblich, man kann die hinausfallenden Stellen durch kongruente
Werte des Intervalls ersetzen. Dann bilde man mit diesen Stellen und
mit @, (¢) die Interpolationspolynome nter Ordnnng J“(p, () fiir jede
Zahl « des Intervalls O <o <7 2x; JY bedeutet selbstverstindlich das
niimliche wie das hisherige Zcichen J,. Man kanu, wie ohne weiteres
einlenchtet, J*(p, (1)) auch dadurch :E.mwm:o: daB man in dem Inter-
polationspolynome J, (¢, ¢t + ), das sich %:.or Anwendung der Ope-
ration J, auf die Funktion ¢, (¢ + «) ergibt, hinterher die Variable ¢
durch ¢ — « ersetzt:

Awwv nN:A/Qﬁ. vaaln_ = 4 EA ..*l Qvu t=1—w”®
Ieh beweise, daB
2m
(24) o S T2 0 A =, (0
]

ist (vgl. (20), (21) oder (20"), (21"). Setzt man niimlich ¢ ()=, (&)-Fo,(),
80 ist ohne weiteres klar, dall unabhiingig von «: JO(p ) =y (f) ist;
die Behauptung (24) besagt also so viel wie:

(o, ) A —
]

1) 8. Faber, Math. Ann. 69 (1910), S. 409.



198 Grora Fasrn:

Nun ist aber

m.a m o mun or
\ 2o, = D a, [T (cosvi)ia + b, [T (sin vt) de
n+1 0 0
und es ist leicht einzusehen, daB allgemein fiir ganzzahlige % > 0
an
.\&xoom m+Wde =0,
(24" 0
| Te(sin o + Baf) dec = 0
0
ist. Denn irgendein Wert ¢ sowie f + :H«» werden zur Bildung der

beiden Integrale (24") in durchaus symmetrischer Weise benutzt; die
linken Seiten von (24), die nach Definition trigonometrische Polynome

von ¢t hichstens nter Ordnung sind, miifiten somit die Periode :wﬂ.\.
besitzen, was nur moglich ist, wenn sie identisch gleich Null sind. Um
ganz klar zn sein, will ich die letzten Schliisse noch ausfiihrlicher be-
griinden: Bezeichnet man Je+ (£t -— o)) kwz mit F(a, 7, ) und Jr(Ft)
mit (e, t), so folgen ohne weiteres aus der Definition des Zeichens
Ji die Identititen

2ha) e + 27, 6) = Fle, 1)
sowie )
(25D) e, t — 1) = I'(a, 7, t)

Ist nun aber f(¢) periodiseh mit der Periode 7, also it — ) =r,
mithin (e, 7,8) == J2 7 (fit — 7)) = J5T(f{t)) == F(a 4 7, 1), so folgt aus
(20bb) weiter

(26) Fla,t — )= P« +1,1)

und indem man unter Beachtung von {20a) nach « zwischen den Grenzen
0 und 2z integriert, ergibt sich fiir das Polynom J2(f(#) die hehauptete

und J(f(&) nicht

d

TR . . T Qo
Periodizitit mit der Periode 7. Wiire nun 7 = -

n-Fk

identisch = 0, so lieBe sich dieses trigonometrische Polynom xtr Ord-

nung in eine nach Vielfachen des Winkels (n + k)¢ fortschreitende

Fouriersche Reihe entwickeln, was einen Widerspruch mit der Lin-
deutigkeit der Fourier-Iintwickelung ergibt.

Nun nimmt man fiir ¢ (), ¢, () beispielsweise die Funltionen (207),

(21"} und schlieBt aus (24) weiter, daB fiir mindestens einen Wert von «
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und fiir ¢t =0 das Interpolationspolynom J/“(¢p,®) von der GroBen-
ordnung lgn wird; dann folgt aber (vgl. (23) oder auch die Identitiit (251),
die hier in der Form F(0,t — «) = I'(0, &, ¢’) zu benutzen ist), daB
das Interpolationspolynom J, (¢, (¢ + «) an der Stelle /= — « von der
GriBenordnung lgn wird. Damit ist gezeigt, dafl die vorhin eingefiihrten
Zahlen A, mindestens von der Gréfenordnung lgn sind, wie auch die
Menge M der Interpolationsstellen gewiihit ist, und zugleich ist der
Satz bewiesen, der das erste und niichste Ziel der vorliegenden Arbeit
bildet und den ich noch einmal so formuliere:

s gibt keine Menge M von Zuhlen 8”(n=1,2,..;1=1,2,. . .2n4-1),
welche dic Figenschaft besiife, daf fiir jede beliebige stetiyge aund mit der
Periode 2x behaftete Tunktion [(2) die {rigonometrischen Polynome n'er
Ordnung, die an den 2n + 1 Stellen 7 die nimlbichen Werte wice f(t)
annehmen, mit wachsendem n gleichmdfig gegen f(8) loneeryierten.

Darnach gibt es also immer solche f(1), [iir welche die zur Menge
I gehdrigen Interpolationspolynome J (@) entweder divergieren oder
ungleichmiifig konvergieren. lis ist mir nicht gelungen, ohne weitere
Voraussetznngen tiber die Menge M zu entscheiden, ob sich bei geeig-
neter Wahl der lunktion f(#) je nach Belieben Divergenz oder ungleich-
miifige Konvergenz der Interpolationsformeln erreichen lit. Man konute
zur Fntscheidung dicser I'rage versuchen, aus Gleichung (24) mehr zun
entnehmen, als daB gerade nur fir ein Wertepaar «, t' Ji (¢, () von
der GroBenordnung lgn wird; avch wiire daran zu denken, das Runge-

sche Verteilungsgesets heranzuzichen.
Tiir praktische wic auch fiir die meisten theovetischen Zwecke ist
dieser unerledigte Punkt von keiner Bedeuntung; denn ungleichmibig

konvergente lintwickelungen sind im allgemeinen ebenso unbranchbar

wie divergente,

Indem ich mich also in dieser Hinsicht mit der ohigen Forma-
licrung begniige, will ich nach einer anderen Richtung hin das erhaliene
Ergebnis vervollstindigen.

Statt der Menge 3 von Interpolationsstellen sei nunmehr eine Folge
von trigonometrischen Polynomen y,, ,(£), 2,(£) ... gegeben, und zwar
sei 3, eine Konstante, x,,_,(f) und g, (¢) seien vom Grade »:

(201

o, wy
Yoy () ="", F a7 Veost - 4@ Veosvi

AR sing - 40 2 Vsingd,

v

a

)
+ afeost 4 - a7 cos vt

4 pEYsing e 4 B st

1
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Die Frage ist die: Gidt es eine solche Folge S von Polynomen y,(f)
der Avt, daf jede stetige und dic Periode 2 besitzende Funltion 0]

sich in eine (im Intervalle i) gleichmiif3iy konvergenté Reihe f QV.HMP&,. ®

. . oy . o e . .. 0
mit eindeutig bestimmicn Koeffizienten a, enbwickeln 1ipe?

U dicse Frage durch die nachstehende Beweisfilrung zu ver-
neinen, muf ich itber die Funktionen %:(t) noch folgende Zusatzhypo-
these machen, die wohl an sich tiberflitssig sein diirfte, anf deren Be-
nutzung beim Beweise zu verzichten mir jedoch nicht gelungen ist:
Die Koeffizienten ay, «,, aq, ... sollen in stetiger Weise von der darau-
stellenden Tunktion (1) abliingen. Damit ist folgendes gemeint: Wenn
zwei Funktionen £, (¢), £,(¢), Dei denen wie auch im folgenden bei £;(¥)
usw. Stetigkeit und die Periode 2x vorausgesetzt werden, fiir alle ¢ die

Ungleichung | £, (6 - 12! < e erfiillen, so bleibt die Differenz ihrer Ent-

wickelungskoeffizienten a, ¢ dem Betrage nach kleiner als eine von &
und 2 abhiingige endliche Zahl 5, und es ist lim %, = 0; oder anders

=0
ausgedriickt: der Koeffizient @, einer Funktion f(), die nach irgend-
einem Gesctze abgeiindert wnd dadurch fiir alle ¢ beliebig klein
wird bei diesem Verfahren auch beliebig klein; oder mit ebenfalls fiqui-
valenter Formuliernng: das Reihenglied [a,y, ()| bleibt fiir alle ¢ unter
emer ondlichen Grenze G, falls | f(h] fiir alle ¢ kleiner als 1 ist. Noch
eine vierte [assung der Zusatzhypothese sei gestattet: Wiihrend aus der
blofien Kindeutigkeit der Entwickelung schon folgt, daB.der Koeffizient a,,
der Funktion f{1) = f,(t) + £,(£) gleich o -+ a ist, folgt offenbar erst
auf Grund der Zusatzhypothese, daB die gleichmiiBig konvergente un-
endliche Reihe f(6) =1,(6) + f,(¢) 4 --- einen Koeffizienten a, besitzt,
der gleich @'+ a;” 4. ist; andverseits ergibt sich die Zusatzhypothese
aus diesem Reihensatz; denn ist” die Zusatzhypothese nicht erfiillt, so
1
?
vergierenden I"unktionen £,(f) die Gleichung lim a'? =0 nicht zu be-

imx
friedigen; dann wiirde die Reihe @4 a4 ... nicht konvergieren,
konnte also nicht gleich dem mnach Voraussetzung existierenden end-
lichen Koeffizienten «, sein. Man sieht daraus, daB die Zusatzhypothese
von den g-Entwickelungen etwas ziemlich Selbstverstindliches verlangt;
jedenfalls ist sie bei allen bekannten Entwickelungen, die fiir gewisse
Funktionsklassen, z B. die stetig differenzierbaren miglich sind, erfiillt;

bei solchen bekannten Entwickelungen LBt sich sogar immer g, in
i

der Form \.\.Qvaaﬁzm darstellen; wo \.“SLE& existiert, so daB die
8 b

wird,

brauchen die Koeffizienten ¢ der mit gleichmiiBig gecen Null kon-
I3 D D O’D

2n

(28)
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stetige Abhiingigkeit der Koeffizienten @, von der zu entwickelnden
Funktion f(¢) in die Angen fillt.

Ohne Benutzung der Zusatzhypothese heweise ich zuniichst: die
Polynome y,(f) miissen (sofern nur die ganz speziellen Funktionen cos v,
sinvt (v =1,2..) sich in der obigen Weise eindentiy durch sie aus-
driicken lassen sollen), die Eigenschaft besitzen, daB simtliche Deter-

(2v—-1) (24)}
[£43 oy

minanten D = von Null verschieden sind; mit anderen

ey r I
Worten: es darf niemals «?” cosvf 4 2
Faktor = &?* " Vcoswt + 2" Vsinvt sein (v = 1,2...). Wiire niimlich
¥ ¥ )
zunfichst fiir v =1: «Peost + ¥sint = C(a}Veost + pVsint), so wiirde
dies so viel heifien wie y,(¢) = Uy, () + ¢, und da ja 4, eine Konstante

sinr? bis anf einen konstanten

ist, hiitte man entgegen der vorausgesetzten Lindeutigkeit der Darstellung
eine Entwickelung der Null: 0 = C"y 4+ Cy,(t) — y,(£) mit nicht durch-
weg verschwindenden Koeffizienten. Wenn nun angenommen wird, daf
D, 40 ist fiir ¥=1,2. .3, so folgt aus den gemachten Voraussetzungen
auch D, == 0. Denn fir » <n ergiht sich auns (27):

peE” _peren (- einem in cost, - cos(v — 1)4;

cosvt = D, X 1) — D, e Q: sint, - - - sin{v — 1)¢ linearen Ausdruck,
— 2 o= + einem in cos{, -+ cos(v — D)4

sin vt = b“ Zari (B + ;,U,W x?QL sint, --- sin(» — 1)¢ Jinearen Ausdruck.

Auf den rechten Seiten von (28) kann man darnach cos(v - 1)¢,
sin(v — 1)¢; cos(v — 2)¢, sin(v —- 2)¢; . .. nacheinander durch y,, (1),
Yor—s(8); Xav—s(8), Xe,_s(#); ... ersetzen, so daB sich schlieBlich cosvt,
sinv¢ und mithin alle trigonometrischen Polynome »'® Grades fiiv
als endliche Ausdriicke der Form a 7,4 a,1,(8) + -+ ay, 1y, (¢) ergeben.

p . St St
Wiire nun «**¥cosnt -+ 7" Psinnt = ('(«®**Veosnl + 24 Vsinng),

» n
so wiive x4 (f)

v<n

%onsr (t) + einem trigonometrischen Polynom ntor
Ordnung also nach dem soeben Bemerkten

0= 1,400 Clonyr(O) + g, 20, () + oy 220y () A+ - -+ + 2o 20 ()5
man hiitte also wieder eine Darstellung der Null mit nicht durchweg
verschwindenden Koeffizienten.

Wir haben also cinstweilen das Frgebnis: Wenn die Folge S der
Punktionen g,(¢) so heschaffen ist, dafi sich jede stetige IMunktion ein-
deutig in cine Reihe ayy,(f) -+ a, 7, (£) + -+ entwickeln liBt, so sind die
Determinanten D, siimtlich von Null verschicden und die IPunktionen
cosnt, sinnt und ebenso alle trigonometrischen Polynome hichstens
a'* Ordnung lassen endliche Entwickelungen der Form

. T2 (8) + @y (8) + -+ g, g, (8)

zu.
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Lautet die y-Entwickelung von f(£): a,2,(¢) + a5, (£) + -+, so be-
zeichne wn: die abgebrochene Teilreihe agyy(f) 4+ a g, () + -+ + ay, 19 (D)
kurz mit 7 (f()); die Frage, die zur Losung steht, kann dann auch so
gestellt émam:“ Kénnen m_m H:?<mo_r,@_szmm?cwso:ou 1:(t) so gewiihlt

werden, dab gleichmiiBiy in ¢ fiir jede stetige Funktion f(f) mit der
Periode 2

(29) lim 7', (f() = f(t)

gilt? o

Ich betrachte wieder die Klasse A derjenigen stetigen und peri-
odisechen Funktionen f(#), die dem Betrage nach <1 sind, und bezeichne
mit ¢, die obere Grenze der Werte von |7 (f()] in 4, falls f(2) der
Klasse K angehdrt; diese Zahlen € entsprechen den Zahlen 4 von
5. 194; und es ist anf Grund der Zusatzhypothese einleuchtend, daB fiir
keinen Wert von n €, = oo wird.

Man beweist: Die notwendige und hinreichende Bedingung dafiir,
daB fiir alle stetigen Iunktionen f(f) mit der Periode 27 gleichmiiBig
in ¢ die Beziehung (20) gilt, ist

(30)

lim (), = oo
Der Beweis ist genau der niimliche wie der 8. 194—196 gefiihrte;
als ¢/, fiv A, wnd 7T (f1) fiir J (f() zu

n

ps ist fast nichts zu iindern
schreiben,

Nuchdem dies festgestellt ist,
dall es unmiglich ist, die Polynome y,(#) so zu wiihlen, daB lim (! 24 oo

bleibt nur noch {ibrig zu beweisen,
wird, "

Um dies zu zeigen, definiere ich villig entsprechend den Interpo-
lationspolynomen Ji'(f()) folgendermallen gewisse Polynome I'“(f)):
Wenn 7 (fit + ) = G, (1) gesetzt wird, so sel 7(f(9)) so viel wie

G (t-— a); ist f{#) ein trigonometrisches Polynom hdchstens ntn Gra-
27

des, dann ist offenbar T (fif) == f{f), also auch c_a \\5\31: = f(6);
. T
cos(n 4 k)t mit :.:Esmw::m_: k>0,

ist aber f({)=sinin + L) oder =

so ergibtsich ans genau den gleichen Uberlegungen wieS.198: \NS, (H=0.

Und anch der Rest des Beweises, daB lim (! = oo ist,

n==

ihrt wie der entsprechende fiir lim 4, = oo.

yo==

Damit haben wir den zweiten Safz gewonnen:

2:.& genau 80

getl

Lis gibe keine Folye von trigonometrischen Polynomen o, 1, (8), 12(H) oo,
wo g, eine Konstante ist wnd y,, (1), sowie y, (1) vom v Grade sind,

31

B L,(Fw)=1"(z{)
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mit der Iigenschaft, daf3 sich jede stetige und die Periode 2n besitzende
Tunktion f(t) in cine gleichmdfig Lonvergente Reihe

o+ a0 () + agxe(f) + -

wit eindeutig bestimmien und in stetiger Weise von f(£) abhingigen Koef
zienten «, entwickeln lieflc.

An Stelle der fiir alle reellen ¢ definierten periodischen Ifunktionen
7(t) betrachte ich nunmehr in einem endlichen Intervalle s stetige Ifunk-
tionen F'(x) der reellen Veriinderlichen z; als Intervall s withle ich bei-
spielshalber immer die Strecke (— 1, + 1).

Unter afaf) ... 20 (n=1,2,..) verstehe ich (224 1) ver
schiedene der GroBe nach, beginnend mit der kleinsten, geordnete Zahlen
dieses Intervalls; die Gesamtheit der Zahlen ol (n=1,2, ;=1
...n 4+ 1) bezeichne ich mit f7;
Interpolationsformel die Polynome #'® Grades, die fiir

Werte I'(z{) annehmen (¢ = T OF

ki
ich bilde mittels der Lagrangeschen

a = 2l die

(x — &msv ces ?, — a: :v (
() V+| .+. r A_&S v. 1 (n}

3+~v A ES

Aams @ — o

Die Frage ist dann die: Kann die Menge 1) der Interpolations-
stellen ™ ein fir allemal so gewdldt werden, daf fiir jede stetige Funk-
tion F(x) dic Interpolationspolynome L, (1'(x)) mil wachsendem 1 glewch-
méifiy gegen I'(z) konvergieren?

Der Giedankengang, durch den diese IFrage verneint wird,
Die aufgestellte

ist ganz
iihnlich dem beim Beweise des ersten Satzes benutzten.

Frage erweist sich als gleichwertig mit der andern: ist fiir eine Meny
17 von lInterpolationsstelien
{321 lim D, & oo,

n=c0

wenn nnter beim ersten Satze) das Maximum

innerhalb s der Funktion

(entsprechend A,

o (@ — &?J (e — :mv_. D !
(B3) | Ay @ — o) e |
! A.»GH mbn x, + L

wird wieder dnreh Kon-

DaB aber lim [}, =

struktion von DPolynomen @, () bewiesen (entsprechend der S. 196 mit
@, (t) bereichneten), die zwar selbst dem Betrage nach <1 sind, fiir
die aber bei passender Wahl von n das Interpolationspolynom £, (@, @)
an mindestens einer Stelle des Intervalls s von der GriBenordnung lun

verstanden wird. oo ist,

wird; es stellt sich heraus, dal zn jeder noch so grofen Zahl » zuge-
horige Polynome @, () existieren,
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Einer niheren Ausfiibrung bedarf nur der Existenzbeweis fiir diese
Polynome @, (2). Es sei zuniichst D (z) irgendein Polynom mten Grades,
das dem Betrage nach < 1 ist; ich mache in @(x) und in dem Inter-
polationspolynome L,(@@) die Substitution g — d,cost, und zwar gei

d,= |, falls {0 | > @ ist und d, = o), falls <] 2k st
das auf der Strecke g liegende und mdglicherweise mit s zusammen-

fallende Intervall — ld,| <z <+ [d,1, das seinerseits wieder alle Inter-
polationsstellen (i =1,2... 0 enthilt, wird so auf jedes der Inter-
valle lo <t < (1 4 1) ahgobhildet (l=0, +1, +2,..); das Polynom
®(x) geht dureh die obige Substitution in ein trigonometrisches Poly-
nom 7' Grades ¢ (#) liber, das nur cos-Glieder enthiilt, wihrend dag
?ag.wo_maoumﬁo;boa L,(@@), fir das ich kurz A(x) schreibe, in ein
cos-Polynom nten Grades A(£) iibergeht.

s sind nun zwei Fille 2y unterscheiden, je nachdem [ 2] F= fac )
oder a(0 i — [#9 " ist; im ersten Falle entspricht die Stelle z keiner
der Zablen 2 und es finden sich im Intervalle 4 O0=Z1<22) 2041
Stellen (" (; — L...2n+ 1), weleche den Interpolationsstellen ™ ent-
sprechen und auch ihrerseits Interpolationsstellen genannt werden sollen;
cine davon ist Y = () die anderen liegen symmetrisch zur Stelle
t =a. Das Polynom A(t) stimmt an den Stellen {0 mit g (f) iiberein,
ist also nach der eingefiilirten Bezeichnungsweise J(@®); im zweiten
Falle |2 < @l | entsprechen den Zahlen 2™ nur 2w Stellen #m
des Intervalles 4, darunter 1 =0, ¢ — 7; die (27 — 2) andern liegen
symmetrisch zur Stelle £ = . Die Aufgabe, ein trigonometrisches Po-
Lynom w%" Orvdnung zu finden, das an diesen 21, Stellen ) die niim-
lichen Werte annimmt wie ®(¢), liBt unendlich viele Lisangen zu;
eine davon ist A(t), die anderen sind in der Form

Al) + A sin t (d, cos t — ) (d, cos t — gy ... (d, cos t — aim)

enthalten. Da ¢ (f) im vorliegenden Falle eine gerade Funktion von ¢
ist, liegt es nahe, das ?nﬁ.vo?:o:mvo;:oE 80 zu bestimmen, daB es
auch eine gerade Funktion wird, wodurch man eindeutig auf A(?) kommt.
Im folgenden aber wird es udtig sein, zu einem beliebigen trigono-
metrischen olynom myter Ordnung % (¢), das nun auch sin-Glieder ent-
halten darf, eindentig ein Polynom u(f) ntr Grades zu finden, das an
Jenen 25 Stellen ¢ mit B (t) ithereinstimmt; dies geschieht mittels der
Zusatzbedingung, daB & (0) = v'(0) sein soll, wodurch die Konstante A
eindeutig bestimmt ist und man zugleich in Qvo~,m_.:m$5~::um mit der
soeben in dem Spezialfalle @(t), 2(t) getroffenen Fortsetzung bleibt.
Nachdem so fiir jedes trigonometrische Polynom ¢(t) in jedem der
beiden Fille die Bedeutung von J(9@) festgelegt ist, wird J*(g() in

—
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Gvﬁ.&ummEE_En mit der 3. 197 gegebenen Definition folgendermaBen
erklirt: Ergibt die Operation J,, angewandt auf das Polynom Pt + o)
das Polynom »'* Ordnung %(2), so ist J*(p®) = k(f — «). .

Es sei nun im folgenden ¢(¢) stets gleich dem frither eingefiihrten
cos-Polynom ¢, (f) (20°). Ich setze

"

) = s_‘ %, coB v (t — &) + JN.»_. sinw (- «)
(34a) P, (1) M N_

= Lkcos(t— o)) +I(sin¢t— )
nnd

(34b)  Jx (g, ) HM_. 7, cos v(t — «) +M d, sinv(t — a)
0 N

= gr(cos({ — ) - ke (sin(f — ).
ist offenbar
Dann ist offen  (cos §) — P, (e - 0) + Pule —¢)

() [ (sin ¢) = T Il

9 H
2

also bleiben £ (cos #) und I (sin f) gleichzeitig mit @, (f) dem Betrage
nach < 1. Auch ist

(86a) Jyi [k (cos & — )] = g= (cos ¢ — o))
“(361) Jel(sin (¢ — @)] = R (sin (¢ — &);

denn wegen der Symmetric in der Verteilung der ?.?_.vo?ﬁc:u_mnm_:w:
muf} auf der rechten Seite von (3Ga) eine gerade, aul der rechten Seite
von (36h) eine ungerade Funktion von t — « stehen; A,.?. aber WMMWN
(34a) dic Summe dieser Funktionen gleich der rechten ﬂo_? vou (34D,
sein mul, konnen es nur die in (36a), (36b) angegebenen b ::\_SE,.N.E: sein,

Da die zu ¢, () zugehdrige Wunktion w,(¢) (val. (217) ?:..\‘]1 0
gleich flgn wird, wo >0 von n unabhiingig ist, und da, wie be-
wiesen wurde, .

= \ Sy, ) de =y, (1)
NN‘

2
0

ist, muB fiir mindestens einen Wert « J(pit)) an der Stelle ¢ =0

t

groBer oder gleich Blgn werden; d. . mit Benuntzung von (34b):
(37) gy (eos &) — he (sin ) > B lgu.

Ich behaupte, daB « gleichzeitig so gewihlt werden kann, daB
(38) g (cos @) = D 1gn

ausfillt.
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Um mich an dieser Stelle nicht zu sehr aufzuhalten, beweise ich
) nachtriglich. Da wegen der Bedeutung des Symbols J (vgl (23))
231::3 (86Ga) identisch ist mit .

(39) J, (k (cos 1)) = g (cos ?),

besitzen wir nunmehr in k& (cos ¢} c¢in reines Cos- -Polynom, das selbst
dem was@q@ nach <1 ist, aus dem aber durch die trigonometrische
Interpolation an den rfg:m: £ ein anderes Cos-Polynom 9% (cos ) ent-
stelit, das auf Grund von (38) von der GroBenordnung lg % wird. Setzt

man wieder d, cos t = g, so ao.oz k (cos #) in ein Polynom @ (@) =1k A&av
g3

iiber, das auf der Strecke |z | <
B;r&m der Lagrangeschen H:»Swo_i_o:mmo:u& zu einem E:S_E_v jener
Strecke Werte von der GroBenordnung lg n annehmenden Polynome

N\N:.G;NQNA

Strecke :\,_H&; mit der Strecke s: [z]| <1 zusammenfillt, so kann
man doch annehmen, duB @ (z) auch auf dieser erweiterten Strecke

dem Betrage nach <1 ist, das aber

v Veranlassung gibt. Wenn nicht von vornherein die

der Bedingung | @(2)| < 1 geniiat; wiire das niimlich nicht von vorn-
herein der Iall, so kénnte man auf den DPunkten der Strecke s, die
auBerhalb der Strecke |z < d, liegen, d(2) irgendwie als stetige und
dem Betrage nach unterhalb 1 bleibende Funktion definieren; diese er-
weiterte Funktion @(z), die nicht mehr notwendig ein Polynom ist,
kann dann hinterher mit solcher Genauigkeit durch ein Nihe erungs-
polynom @ (z) ersetzt werden, daB sowohl | @(x)| <1 als auch 7, (D))
von der GréBenordnung lg »n wird.

Damit ist gezeigt, daB die S. 201 eingefithrten Zahlen D die Be-
dingung lim D, = oo erfiillen, und es bleibt nur noch der Nachweis
von (38) nachzutragen; dieser ist im Grunde das einzige, was beim
Beweise unseres dritten Satzes gegeniiber dem des ersten neu hinzu-
kommt. .

Nach (86a) und (35) ist
(40) g (eos (t — ) = J«[k (cos ({ — )]
- Jo ?E;uﬁssﬁuﬁ + ?g

n 3

also wegen des distributiven Charakters von .

(41} g« (cos it — w) = 1 +;M M.\ Jr(cos vl + cos v (—t + 2 ),

1
wo die Koeffizienten der Funktion (20") wieder kurz mit a, bezeichnet
sind. I'erner ist

= Tma
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(42a) Jx(cosvi+cosy(—t42)=(1+cos2v ) Ji{cosvi)+sin2v e (sinvi)

und falls v < n:
(42b) = (1 + cos 2v«) cos vt + sin 2ve sin vi;

also fiir v <m:

27
,Mu,a. J« (eos vt -+ cos v (— 1 4+ 2@) de« = cos vi.
b

(43)

iir » > n ist dagegen

Y1

(44) w&.\.\: Aoo_m vi+cosv(—t+ 2a) du=0,

weil (vergleiche dic rechte Seite von (42a)) sowohl (wie 8. 198 be-

wiesen wurde)
27

{45) [T (eos wt)dw = 0,

0

als auch, wie man in ganz &hnlicher Weise beweist:

2n
(46a) \ J« (cos vE) cos 2vade =0
.
1
und
.
{(46D) \ JE (cos v) sin 2vede = 0
:
1st.
Unm beispielsweise den Beweis fiir (46a) durchzufiihren, setze man
2 . . . . N
"™ _ 1, sowie im AnschluB an die Bezeichnungsweise von 8. 198:
v

Je(cos vi)cos 2va = I« 1), JeV(cos vt — 1) cos 2p(a 4 1) = I'(a, 7, {);

dann folgt genau wie dort aus (23

Flayt — 1) = Fe, 1, 0) = Fie + 1,0,

’

also indem man « 4 t = « setzt und die Gleichung

Fla+42mt) = F(at)

beachtet,
2n
\NJ a, t) de I.\NAQ t-—1)dda,
2
d. h. das durch \Nu?, t)da dargestellte trigonometrische Polynom n'e"

.0

. . . 27 T .
Grades von f besitzt die Periode ~ - (» > n), was unmiglich ist, wenn

v
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es sich nicht identisch anf Null reduziert; damit sind die Gleichungen
(46) bewiesen.

Setzt man die erhaltenen Werte (43), (44) auf der rechten Seite
von (41) ein, so ergibt sich

(47) Mﬁ\bn (cos (¢ — e de — w_ + Lw,(b) (5. 217)
[J

Bs gibt also mindestens einen Wert von e, fiir den g (cos (— w) = # Ign

=32

(38) wird. Das war aber einzig noch zu beweisen, um die Richtigkeit
des folgenden dritten Satzes darzutun:

1is gibt keine im  Intervalle s — (= 1,4 1) gelegene Menge I von
Interpolationsstellen & (n — L2..si=12... n+ 1) von der Art, daf
Jede in s stetige Funtion D(z) sich gleichmifig i s als Grenswert der-
Jenigen. Polynome n'*» Grades darstellen liefe, die fiir x =z die niim-
lichen Werle annchmen wie D (2).

Fast von selbst ergibt sich auf Grund des Vorhergehenden endlich
der Beweis des folgenden vierten Satzes:

Iis gibt Leine Folge von Polynomen Py(x), P,(z), ... P (x)... vom
Grade 0,1,...v .. mit der Figenschaft, dap jede im Intervalle s — (L4101
stetige Funktion & (x) sich in eine in s gleichmifig konvergente Reihe

Pl = ay Iy(2) + 0, Py(@) + - 4 a, Py (@) +- -

mit eindeutly bestimmien wnd in stetiger Weise von @(x) abhéngigen
Koeffizienten entawicleln lief3e.

Da der Beweis des vierten Satzes im einzelnen nur ans Wieder-
holungen schon gemachter Schliisse besteht, skizziere jch nur seine
Etappen.

Man betrachtet wieder dic Klasse K derjenigen Funktionen D(z),
die in s stetic und dem Betrage nach < 1 sind, und bezeichnet mit I
den grften Wert, den die mach (n + 1) Gliedern abgebrochene Ent-
wicklung einer solchen Funktion D(z) in eine P-Reihe, iiberhaupt an-
nchmen kann; eine solche abgebrochene P-Reihe bezeichne ich kurz

mit U,(D@):
(48) U,(dx) = a, Py+a P(z)+ - + a, P (x).

Man sieht, daB alle I, endlich sind, und daf der vierte Sutz gleich-
wertig ist mit der Behanptung

lim I, = oo,

n =00
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Es wird dann gereigt, daB sogar lim F, = oo ist. Die Funktionen

P, (cos t) bilden zusammen mit den Funktionen sin »# ein Funktionen-
system g,(f) von der S.201 hetrachteten Art:

:?Qv = P, (cos ?) (r=0,1,2..)
(50) TRJLS = sin »¢ (r=1,2,..).

Dann lassen sich zu jeder stetigen und die Poriode 2w besitzenden
Funktion 4(f), in eindeutiger Weise die Koeffizienten Uoy @y -, by, b, .
der Entwicklung

0

(h1) (6 ZM a,l’ (cost) .*-;IV‘LA, b, sin vt
t

[

nach der Vorschrift bilden, daB die 1, die Fourierkoeffizienten von

Y — (=1

sein sollen, withrend die ¢, mit den Koeffizienten der Ent-
2

wicklung 4(x) ZM, a, P, (z) identiseh sein sollen, wo (z) diejenige
0

in § stetige Funktion von z bedeutet, welche vermége der Substitution

O+ ¥(=b
2

Z = cos £ ans hervorgeht.

Man setze insbesondere fiir (¢) das trigonometrische Polynom
9,,(f) (20") und betrachte die Polynome 7(gp, (1); deren S. 202 ge-

a
gebene Delinition stimmt oifenbar mit der folgenden iiberein:

Lautet die eindeutic vorhandene endliche Iintwicklung von i, ()
nach Funktion y, (¢ — &), wo die % dic obige Bedeutung (50) haben:

\

m

A@Nv Sa. _\NJ ” \:d ﬂ ._N Nw - ﬂ\ | va +Nﬂ_ N\“« Nm _rw_ A\ '; h«v‘
< 7
so 1st

k3

< ¢ XT3 —_ 24, « — _ 1:.._4 @: ” t— .
A@.? \: AQS«&V |l.\r_ @y ¥z 1 A\ Q.J 1* l_v1 r A2y 1 Qv

0

Da wieder
2

H.
L A7 \x —— \
o | Titarda = o0

0

(21)

ist, so existiert mindestens ein «, fiir das

k4 n
- Y AN N~
(54) N_‘ @i gy, (— @) + 2 Vitay (= @) 2 Blan
0 1
Jahresbericht d. Doutschen Mathom.-Versinignng. XXITT. 1. Abt. Heft 7/8 14
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wird, wo § von » unabhiingig ist. Und genau so, wie zuvor die Glei-
chung (38) bewiesen wurde, beweist man jetzt, daB bei passender Wahl
von « der erste Summand der linken Seite von (b4), nimlich

n

N‘_a 1y, (— &) fiir sich allein > m lg n

1]

wird. Geht man wieder von der Verinderlichen ¢ zur Veriinderlichen

oM n
. N\ N 5 , . =
2 guriick, so hat man dann in W ar P () und W as P (z) »wei Po
0

¢
lynome @(z) und @, (z), die in der Bezichung @, (z) = U, (P@@) zu-
cinander stehen, und von denen das erste, #(z), in s dem Betrage nach

3 P
<1 bleibt, withrend @, (x) fiir 2 — cos @ groBer oder gleich | lgn
wird, womit J£ als mindestens von der GriBenordnung lg » nachge-

) T

wiesen ist.

Beweise zu Sitzen von Brunn und Minkowski iiber die
Minimaleigenschait des Kreises.

Von WinntLy Brascenkr in Prag.
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Minkowski hat fiir zwei im Fndlichen gelegene konvexe Be-
reiche in der Bbene eine Invariante B[ erkliizt, die er den gemischten
Ilicheninhalt dev beiden Berciche nennt. Diese Grofie hiingt von den
beiden Bereichen in symmetrischer Weise b und bleibt ungeiindert,
wenn man die Bereiche unabhiingiy voneinander parallel verschiebt.
I*allen sie zusammen, so geht A7 in den gewdhnlichen Flicheninhalt
iiher; ist einer der Bereiche ein Einleitskreis, so bedeutet 1 den halben
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Umfang des andern. Zwischen den Flicheninhalten Iy, Iy zweier Be-
reiche und ihrer gemischten Fliiche besteht die *_::359_3? Gbiﬁowzz:
ME-F, 1 >0,

und das Gleichheitszeichen gilt nur dann, wenn die Bereiche ihnlich gind
und éhnlich liegen. Nimmt man fiir das eine Gebiet einen Kreis, so erhil
man eine speziellere Ungleichung, deren Inhalt der Satz von der Minjmal-
eigenschaft des Kreises ist. Die allgemeine Ungleichung 1iBt auch eine
viumliche Dentung zu. Diese ergibt den wichtigen Satz von 11, Brunn
ither die I'licheninhalte paralleler Querschnitte eines konvexen Kérpers.!)

Der Beweis, den Minkowski in seiner scharlsinnigen Abhandlung
»Volumen wnd Oberfliche, fuBend anf einem Gedanken von I, Brou n,
fiir seine Ungleichung gegeben hat?), ist nieht leicht zu idberblicken.
Teh méchte miv daher hier erlauben, einen andern, mehr gecometrischen
Beweis fiir diese ::mLoEr:::. und damit fiir die Minimaleigensehaft
des Kreises und fiir den Satz von Brunn mitzuteilen, cinen Beweis, der
nur villig elementare Hilfsmittel verwendet und EoZ ganz, ;:_i_fiiﬁ
ist. leh heginne damit, anf Grund ciner symmetrischen formel fiiy die
/1erseitstliiche dic ::ALEQ:EQ ruerst {ir den cinfachsten Fall, niimlich
ftir zwei gleichgerichtete Vierseite hersuleiten. Damit ist dann cigent-
lich die Hauptschwierigkeit schon iiberwunden. Auf diesen einfachen
Sonderfall kann man niimlich den allgemeinen Satz zuriickfihren, Zuers
folgt dic Gultigkeit des Satmes fiir zwei gleichgerichiete 12-Seite und
damit durch einen (irenzithergang anch fiiv beliehig krummlinig be-
grenzte konvexe Dereiche.

Aut diese clementare Bewecismethode hin ich dureh die Abhand-
lungen von J. Hteiner gefiibrt worden, in denen dic sehinen Beweis-

ansiitze fiir das E‘.cs?:: 7_:1:_4_::,..;._m::@ Problem enthalten sind ) Hs
wird der Versuch wnternommen, eine Briicke zu sehlagen von den
Steinersehen ldeen zum Gedankenkreis Minkowskis.

SchilieBlich gebe ich noeh einen andern kurzen Beweis fiir die fun-
damentale Ungleichung, und zwar mit Tlilfe der trigonometrischen Rei-
hen ihnlich einem von A, Hurwitz fiir die Minimaleigenschaft des
Kyeises gefiihrten Beweised) Dabei ist hier jede einsehriinkende Vorans-

1) 1. Brunn, Ovale und Lifliichen, Dissertation, inchen 1887, Wine An-
wenduny dieses Batzes anf die Absehitbzung vor Doppeliniegralen habe ieh kiivs-
Heh angegeben. C. R, {158, p. 778, Paris 16. 5. 1914,

Mathematische Anunulen, Bd. 57 (1403) o
1011), Bd. 2
{("ber Maximum und Minimum bei den Frgaren .. Crelles Journal, Bd. 21
(1842) oder Gesammelte Werke, Bd. 2 (Bevlin 1882).

4) Sur quelques applications géomdtriques des siries de Fourier, Aunales de

I'école normale supérieure, (3) t. 19 (1902, p. 85
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