Zbl.No: 790.05008
Autor: Erdös, Paul; Richmond, L.B.
Title: On graphical partitions. (In English)
Source: Combinatorica 13, No.1, 57-63 (1993).
Review: For even n, let p(n) denote the number of partitions of n and G(n) denote the number of graphical partitions of n. A partition \pi = (\lambda1,\lambda2,...,\lambdam) is graphical if there exists a graph with degree sequence \pi. The authors discuss progress and possible lines in enquiry on the questions of whether or not limn > ooG(n)/p(n) approaches 0, and prove two inequalities:
Reviewer: D.M.Bressoud (University Park)
Classif.: * 05A17 Partitions of integres (combinatorics) 11B83 Special sequences of integers and polynomials 05C99 Graph theory
Keywords: graphical partitions