
Exploring  RF
Conducted By David Newkirk, WJ1Z

Senior Assistant Technical Editor
e-mail: dnewkirk@arrl.org

Table 1
ARRL Radio Designer  Netlist for an Optimized BIP
BLK
  BIP 1 2 0 A=0.98 RE=?1? F=?1GHZ? T=?0.01NS?
  + CE=?0.1PF? CI=?1PF? RC=?1000? RO=?0.1? CO=?1PF?
  + RB1=?1? RC1=?1E-6? RB2=?0.1? CBE=?10PF?
  + CBC=?0.1PF?
  + CCE=?100E-6PF?
  + LB=?1E-6NH? LC=?100E-6NH? LE=?0.1NH?
  OPTBIP:2POR 1 2 0
END
BLK
  TWO 1 2 0 MRF581
  REALBIP:2POR 1 2 0
END
FREQ
  300MHZ 500MHZ 1000MHZ 1500MHZ
END
OPT
  OPTBIP S=REALBIP
  TERM=0.01
END
DATA
  MRF581:S
 * MOTCL  MOTOROLA  MRF581 Vce=10V  Ic=100mA
   300MHZ .66 -172 8.46 93 .05 49 .3 -134
   500MHZ .68 174 5.06 82 .07 56 .25 -147
  1000MHZ .68 157 2.64 65 .12 64 .23 -172
  1500MHZ .72 139 1.86 52 .17 63 .27 -177
END

As we saw in May 1995 QST’s Exploring RF, modeling a
transistor’s behavior merely by shoving its measured S, Y or Z
parameters into ARRL Radio Designer’s two-port black-box
element (TWO) is a neat thing to be able to do because it’s so
simple. All you do is link valid, transistor-flavored two-port
data—a considerable body of which ships with each copy of ARRL
Radio Designer in the form of manufacturer-supplied databank
files, and more of which are ongoingly available from transistor
manufacturers—into a TWO, and the black box acts like the
transistor represented by the data.

Well, almost. Modeling transistors with the black-box-and-
data approach involves a few limitations. For one thing, if you
don’t have S, Y or Z-parameter data for the transistor you want to
model, you can’t model it with a black-box element. Because
manufacturers tend make data available only for relatively recent
transistors intended for RF use, many garden-variety transistors
don’t show up in databank form. In other words, don’t get your
hopes up about finding manufacturer-supplied S-parameter data
for, say, a 2N3904.

Even if you can find data for your device of interest, it may not
be usable at your frequency of interest. For example, the ARD
databank file MOTOROLA.FLP includes S-parameter data for an
MRF581 operating at a collector current of 100 mA and with
10 V between its collector and emitter—

 300MHZ .66 -172 8.46 93 .05 49 .3 -134
 500MHZ .68 174 5.06 82 .07 56 .25 -147
1000MHZ .68 157 2.64 65 .12 64 .23 -172
1500MHZ .72 139 1.86 52 .17 63 .27 -177

—but only for 300, 500, 1000 and 1500 MHz. That none of these
frequencies corresponds to a ham band is no problem: If a data set
includes parameters for at least three frequencies, ARRL Radio
Designer can interpolate parameter values for frequencies between
them. All you need to do is specify the additional frequencies in
your FREQ block.

A major limitation of databank data is that it cannot be reliably
extrapolated— that is, used as a basis for educated guesses about
device performance outside a data set’s frequency span. It so
happens, for instance, that many bipolar junction transistors
intended for CATV service are just what the doctor ordered for
strong, low-noise, linear amplifiers at HF. A broadband HF
amplifier using a push-pull pair of MRF581s standing at 100 mA
each would be a fine thing to model with ARD—but the lowest
frequency for which Motorola supplies MRF581 S parameters is
300 MHz! What’s a modeler to do?

Use ARRL Radio Designer’s BIP—bipolar junction transistor—
model, that’s what! As I wrote in the previous (May 1995)
Exploring RF, however, a person just can’t be expected to flesh
out an ARRL Radio Designer BIP element—or an ARD FET for
that matter, because it’s just about as complex—by poring through
transistor databooks and making educated guesses. The numbers
we need to model transistors accurately just plain don’t live in
those books. Unless we’re intimately involved with engineering
and manufacturing transistors, we probably can’t even begin to
guesstimate appropriate starting values for a real transistor’s tiny
internal Rs, Cs and Ls—factors that are nonetheless crucial in
modeling transistor behavior from the shortwaves on up.

The great news is that we don’t have to guess at these parameter
values. If we have valid S, Y or Z-parameter data for a given
transistor, we can use ARRL Radio Designer’s optimizer to adjust
a BIP’s (or FET’s) parameters so its behavior matches the data. The
result is a realistic, databank-data-derived transistor model that can
be used outside the frequency limits of the data used to generate it!

Transistor Modeling with ARRL Radio Designer,
Part 2: Optimization Produces Realistic Transistor Simulations

Data + Optimization = Realistic BIP

Doing this with ARRL Radio Designer is easier done than said.
All we need is a netlist that includes:

• a BLK block containing the BIP element we want the optimizer to
adjust

• a BLK block containing a TWO element that ARD’s optimizer can
use as a standard of comparison in adjusting the BIP

• a FREQ block that specifies only the frequencies represented in
our TWO’s S (or Y or Z) parameter data

• an OPT block that tells ARD’s optimizer to compare the
performance of the BIP’s BLK to the performance of the TWO’s
BLK and tweak the BIP’s parameters so their performances
closely match; and

• a DATA block containing the S (or Y or Z) parameter data for the
actual transistor we want our BIP to simulate.

Table 1 shows a ready-to-optimize netlist based on the MRF581
data presented a few paragraphs ago. Let’s examine some of its
finer points block by block.

The first block—

BLK
   BIP 1 2 0 A=0.98 RE=?1? F=?1GHZ? T=?0.01NS?
   + CE=?0.1PF? CI=?1PF? RC=?1000? RO=?0.1? CO=?1PF?
   + RB1=?1? RC1=?1E-6? RB2=?0.1? CBE=?10PF?
   + CBC=?0.1PF?
   + CCE=?100E-6PF?
   + LB=?1E-6NH? LC=?100E-6NH? LE=?0.1NH?
   OPTBIP:2POR 1 2 0
END

July 1995 79From July 1995 QST © 1995 ARRL

mailto:dnewkirk@arrl.org


—contains the BIP we’ll adjust for equivalence with databank
data. All of its parameters are optimizable—question marks delimit
optimizable values—except A (the BIP’s alpha). (We must keep
the optimizer’s mitts off of alpha because it immediately attempts
to raise alpha to a value greater than 1—impossible for a real
transistor—and halts itself with a suitably pithy error message.
[Try putting question marks around the A entry’s 0.98 value when
you optimize this netlist, and you’ll see what I mean.])

Using the example of page 15-10 of The ARRL Radio Designer
Manual as a guide, I’ve preloaded all of the BIP’s optimizable
parameters with nonzero values (zero-value parameters instantly
choke the optimizer by violating the rules of floating-point math)
at realistic orders of magnitude. Preloading at realistic orders of
magnitude speeds optimization. Preloading values at wildly
inappropriate orders of magnitude (10 farads for CE and 1 megohm
for RB1, for instance) may simulate a transistor that’s essentially
broken from the gitgo, forcing the optimizer to dig itself out of
such a deep hole that success may be impossible.

The + signs tell ARD to ignore hard carriage returns within the
BIP specification. This lets us specify a BIP’s many parameters
without extending one long netlist line far off the edge of our
screen.

We code our optimizable BIP into a circuit all by itself. For
convenience, I’ve given this circuit the name OPTBIP because it
contains the BIP we’re going to optimize. (Any syntax-valid name
is fine as long as we use the same one here and in the “circuit to
optimize” part of our OPT block’s first command line.)

The second block—

BLK
   TWO 1 2 0 MRF581
   REALBIP:2POR 1 2 0
END

—contains the TWO element to which ARD’s optimizer will
compare the performance of the optimizable BIP in our OPTBIP
circuit.

We code our referent TWO into a circuit all by itself. For
convenience, I’ve given this circuit the name REALBIP because
it’s our means of injecting real bipolar-transistor performance, in
the form of databank data, into this optimization. (There’s nothing
sacred about the name OPTBIP; any syntax-valid string is fine as
long as we use the same name in the “goal” part of our OPT block’s
first command line.)

The MRF581 at the end of our TWO’s netlist line is a label that
lets us link databank data (contained in the DATA block and
introduced by the same label) with this TWO. (The label could be
any syntax-valid string; MRF581 is appropriate because we happen
to be modeling one this time around.)

The third block—

FREQ
  300MHZ 500MHZ 1000MHZ 1500MHZ
END

—tells ARRL Radio Designer the frequencies at which we want to
model (and optimize) the behavior of OPTBIP and REALBIP. This
block’s four frequencies mirror those of the MRF581 databank
data.

The fourth block, the optimization block—

OPT
 OPTBIP S=REALBIP
 TERM=0.01
END

—tells ARD’s optimizer what to do. The first command line—

  OPTBIP S=REALBIP

—specifies our optimization goal, telling ARD to make the S
parameters of the circuit called OPTBIP equivalent to those of the
circuit called REALBIP. (I’ve kept this goal specification simple
by not specifying weighting, through which we can tell ARD how
much each of the optimizable circuit’s S parameters [for a two-
port network, S11, S21, S12 and S22] contributes to the optimizer’s

error function. All four weights therefore default to 1.)
The next line—

 TERM=0.01

—tells ARD to terminate optimization when the optimizer’s error
function falls to 0.01. (If we see that the process has reached the
point of diminishing returns before TERM has been reached, we can
always abort the optimization and accept whatever results we
have.)

This OPT block doesn’t specify optimization frequencies, so
the optimizer uses the frequencies specified in the FREQ block.

Finally, the DATA block—

DATA
  MRF581:S
* MOTCL   MOTOROLA  MRF581 Vce=10V   Ic =100mA
   300MHZ .66 -172 8.46 93 .05 49 .3 -134
   500MHZ .68 174 5.06 82 .07 56 .25 -147
  1000MHZ .68 157 2.64 65 .12 64 .23 -172
  1500MHZ .72 139 1.86 52 .17 63 .27 -177
END

—contains S-parameter data for a TWO element labeled MRF581—
the TWO in the REALBIP block. This is the data to which the
optimizer ultimately compares the optimizable BIP’s performance
during optimization.

Running It
Now comes the fun part. With the Table 1 netlist loaded into

ARRL Radio Designer, click ARD’s Optim  button or press Shift+F10 .
ARD analyzes the netlist and then pops its Optimization and
Optimization Data dialog boxes. In the Optimization dialog, enter
100 as the number of iterations, change the optimization type to
Gradient, clear the Display check box (a good habit to get into
because turning off Display greatly speeds computations if you
have any graphs onscreen), click Optimize (or press Alt+O ), and
you’re off!

In just a few iterations, the optimizer pushes the error function
below 0.2 and reports that the gradient has become too small for
the process to continue. True, 0.2 is considerably higher than the
TERM value we specified (0.01), but perhaps OPTBIP’s performance
already resembles that of REALBIP closely enough for whatever
modeling we want to do. Take a look at Figures 1 and 2 and judge
for yourself. It looks to me like OPTBIP’s performance already
falls comfortably within the sample-to-sample variation we’d
expect in a handful of off-the-shelf MRF581s.

Getting Closer with Single-Frequency Modeling
We’ve just done a pretty good job of making an ARD BIP

exhibit the gain and I/O-reflection behavior of a real transistor—
over the frequency range (300 to 1500 MHz) covered by that
transistor’s databank data. Because the optimized BIP owes its
performance to (among other things) the realistic internal
resistance, capacitance and inductance values written into it by
the optimizer, it’s frequency-transportable in a way the REALBIP
TWO’s databank data isn’t. We can now quite confidently use the
optimized BIP at, say, 30 MHz—far below the frequency
represented in the data set we used to optimize it!

If we want to use our optimized BIP only at frequencies below
the data set’s lowest frequency, we can improve our results by
making the optimizer concentrate all of its number-crunching
power at the lowest frequency in the data set. To do this, we just
comment out the FREQ block’s 500MHZ, 1000MHZ and 1500MHZ
entries by inserting a semicolon between 300MHZ and 500MHZ,
and add a leading asterisk to the corresponding lines in the DATA
block’s MRF581 data set.

Table 2 shows the results of doing this with our MRF581 data.
The performance of OPTBIP and REALBIP now match much more
closely at 300 MHz (error function ≈ 0.03) than we were able to
achieve with the optimizer working to equalize their behaviors
over the 300 to 1500-MHz range. Now we can get to work
modeling that push-pull MRF581 amplifier at 14 MHz!

80



Figure 1—Optimized for a performance match with the measured
S parameters of a real MRF581 transistor (REALBIP traces), the
performance of an ARRL Radio Designer bipolar-junction
transistor model (OPTBIP traces) mirrors the real thing to within a
decibel. These graphs compare the magnitude components of
the real and simulated transistors’ S parameters; Figure 2
compares the phase components of both transistors’ S param-
eters. (What’s an S parameter, anyway? See Exploring RF for
May 1995.)

Figure 2—The phase performance of a real MRF581 transistor
(REALBIP traces) and an ARD transistor model optimized to act
like it (OPTBIP traces) coincides closely. The steep transitions in
the PS11 and PS21 traces—from –180° to +180°—are artifacts of
graphing these quantities rectangularly (–180° and +180° are
actually the same point) with only four data points, so the PS11
and PS21 performance of REALBIP and OPTBIP track more closely
than the wide horizontal gulf between the transition lines
indicates to the eye.

What About Optimizing an ARD FET?
Now that I’ve shown you how to optimize a BIP on the basis of

S parameters, you’re ready to try a FET. ARRL Radio Designer’s
Example 4, a simple JFET preamp, contains a FET element that’s
already optimized on the basis of the measured Y parameters of a
2N4416. Your job? Copy the Example 4 netlist into a new file and
optimize an unoptimized FET element using the Y parameters in
EXAMPLE4.CKT’s DATA block.

Transistor Modeling with ARD, Part 3
Optimization is one of the two biggest smile-producing features

ARRL Radio Designer brings to affordable RF CAD, and accurate
noise modeling is the other. This month, I’ve shown how you can
crank a transistor’s S, Y or Z parameters through ARD’s optimizer
to make an ARD BIP or FET exhibit the same parameters, but space
hasn’t allowed me to touch on the complex issue of modeling
noise with TWOs, BIPs and FETs. That important transistor-
modeling concern deserves special treatment, and it’s coming
right up—in September QST’s Exploring RF.

Free Electronic Goodies
An expanded version of the Table 1 netlist is available (as the

file EXRF9507.CKT) from ARRL HQ’s Internet info server (send
e-mail to info@arrl.org  with a message text consisting of just the
word HELP). A ZIP file containing EXRF9507.CKT and its
accompanying ARRL Radio Designer report file (EXRF9507.RP2)
is available from the HQ BBS (203-594-0306) as EXRF9507.ZIP,
and via FTP (as exrf9507.zip) from the pub/hamradio/arrl directory

Table 2
300-MHz S Parameters of OPTBIP and REALBIP (OPTBIP
Optimized at 300 MHz)

MS11 PS11 MS21 PS21 MS12 PS12 MS22 PS22
(dB) (°) (dB) (°) (dB) (°) (dB) (°)

REALBIP –3.61 –172.0 18.55 93.0 –26.02 49.0 –10.46 –134.0
OPTBIP –3.23 –167.9 17.98 98.2 –26.31 53.6 –10.23 –132.9

at oak.oakland.edu .
ARRLCAD, an e-mail reflector (mailing list) through which

you can now share your questions, answers, ideas and views about
ARRL Radio Designer and other Amateur-Radio-related circuit
and antenna design and simulation tools with other users, is up,
running and growing. To subscribe to ARRLCAD, send an e-mail
message to

listproc@tapr.org

with text that reads

subscribe arrlcad FirstName LastName

—in which FirstName and LastName mean exactly that. (I
subscribed with the message subscribe arrlcad david
newkirk , for example.) The reflector software will confirm your
subscription with a informational welcome message. Subscribing
to and participating in ARRLCAD costs nothing at all.

July 1995 81

http://www.arrl.org/ard/files/exrf9507.zip
mailto:listproc@tapr.org

