


Tunnel-less VPN's with Group Encrypted Transport (GET) VPN



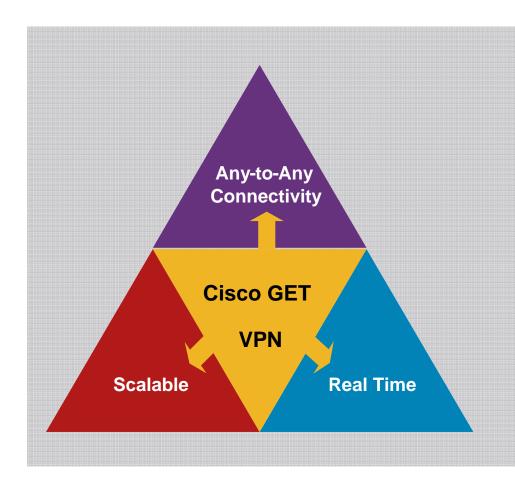
Siva Natarajan Product Manager, Security Technology Group GET VPN Now!

Presenter: Donovan Williams, Product Manager, Security Technology Group

# **Agenda**

- Problem Statement
- Solution
- Benefits
- Main Use Cases
- Higher Level View: How does it work?
- Platform support and useful links

## **Problem Statement**


- Today's Enterprise WAN technologies force a trade-off between QoS-enabled branch interconnectivity and transport security
  - Networked applications such as voice, video and web-based applications drive the need for instantaneous, branch interconnected, QoS-enabled WANs
  - Distributed nature of network applications result in increased demands for scalable branch to branch interconnectivity
  - Increased network security risks and regulatory compliance have driven the need for WAN transport security
  - Need for balanced control of security management between enterprises and service providers
- Service providers want to deliver security services on top of WANs such as MPLS without compromising their SLAs

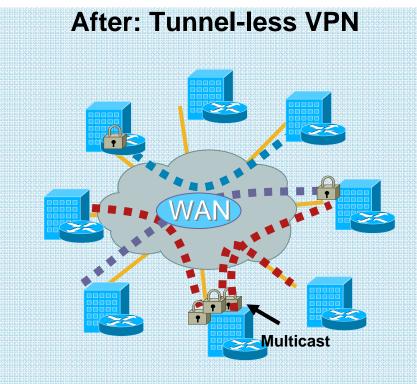
## **Agenda**

- Problem Statement
- Solution & Benefits
- Main Use Cases
- Higher Level View: How does it work?
- Platform support and useful links

# Cisco Group Encrypted Transport (GET) VPN – Solution for Tunnel-less VPNs

Cisco GET VPN delivers a revolutionary solution for tunnel-less, anyto-any branch confidential communications




- Large-scale any-to-any encrypted communications
- Native routing without tunnel overlay
- Optimal for QoS and Multicast support - improves application performance
- Transport agnostic private LAN/WAN, FR/AATM, IP, MPLS
- Offers flexible span of control among subscribers and providers
- Available on Cisco Integrated Services Routers; Cisco 7200 and Cisco 7301 with Cisco IOS 12.4(11)T

## **Tunnel-less VPN - A New Security Model**

## Any-to-Any encryption: Before and After GET VPN

# Before: IPsec P2P Tunnels

- Scalability—an issue (N^2 problem)
- Overlay routing
- Any-to-any instant connectivity can't be done to scale
- Limited advanced QoS
- Multicast replication inefficient



- Scalable architecture for any-to-any connectivity and encryption
- No overlays native routing
- Any-to-any instant connectivity
- Advanced QoS
- Efficient Multicast replication

6

## **Benefits of Cisco GET VPN**

| Previous Limitations                                                                                                       | New Feature and Benefits                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multicast traffic encryption through IPsec tunnels:  - Not scalable - Difficult to troubleshoot                            | Encryption supported for Native Multicast and Unicast traffic with GDOI  - Allows higher scalability - Simplifies Troubleshooting - Extensible standards-based framework                                   |
| Overlay VPN Network  - Overlay Routing  - Sub-optimal Multicast replication  - Lack of Advanced QoS                        | <ul> <li>No Overlay</li> <li>Leverages Core network for Multicast replication via IP Header preservation</li> <li>Optimal Routing introduced in VPN</li> <li>Advanced QoS for encrypted traffic</li> </ul> |
| <ul> <li>Full Mesh Connectivity</li> <li>– Hub and Spoke primary support</li> <li>– Spoke to Spoke not scalable</li> </ul> | <ul> <li>Any to Any Instant Enterprise Connectivity</li> <li>Leverages core for instant communication</li> <li>Optimal for Voice over VPN deployments</li> </ul>                                           |

# **Agenda**

- Problem Statement
- Solution & Benefits
- Main Use Cases
- Higher Level View: How does it work?
- Platform support and useful links

## **Customer Deployment Scenarios**

Customers for Group Encrypted Transport fall into two categories:

Enterprises (Enterprises Purchasing Private WAN (e.g. MPLS) Connectivity from SP but wanting to manage GET themselves)

- Meet security policy or regulatory requirements
- Provides data privacy via crypto while maintaining any-to-any connectivity and QoS
- Streamlines multicast across crypto

SP Managed CPE/Security Services (SP selling connectivity, security services to Enterprises, commercial etc). SP manages GET

- Meet security policy or regulatory requirements
- Provides data privacy via crypto while maintaining any-to-any connectivity and QoS
- Streamlines multicast across crypto

Additiona Value

#### For Enterprise IPSec VPNs (over public Internet)

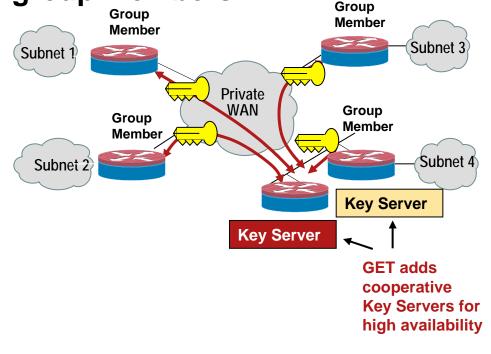
Enhances DMVPN and GRE-based S-S VPNs by:

- Providing manageable, highly scalable meshing capability very cost-effectively
- Simplifies key management in larger deployments

# **Agenda**

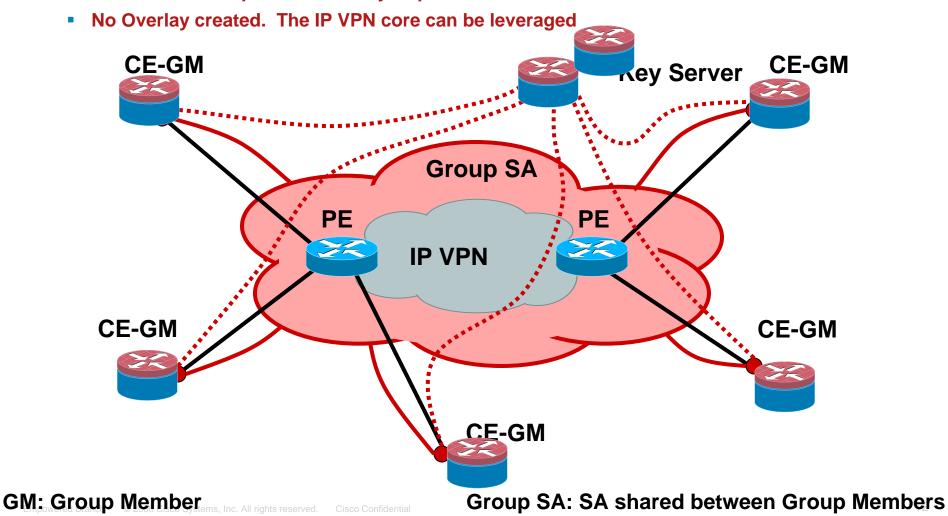
- Problem Statement
- Solution & Benefits
- Main Use Cases
- Higher Level View: How does it work?

wered Branch © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 10


## **How Cisco GET VPN Works**

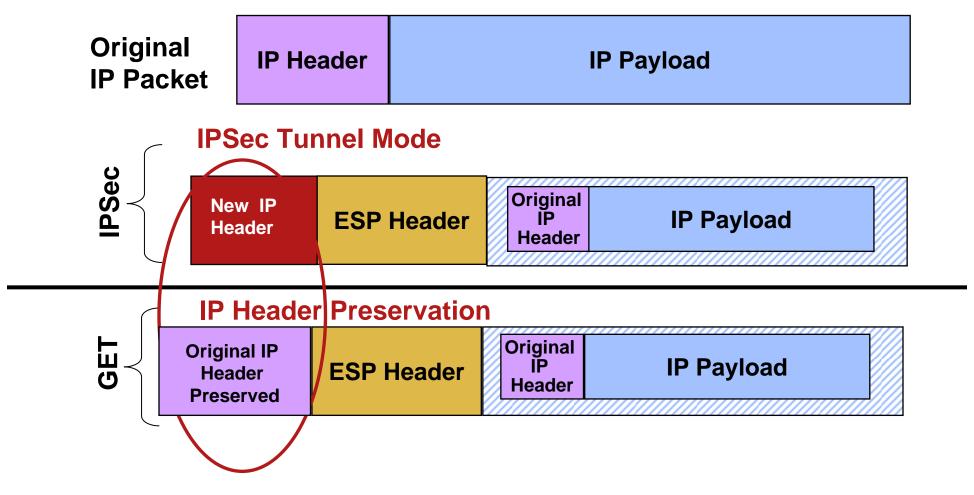
GET simplifies security policy and key distribution by using Group Domain of Interpretation (GDOI)

#### GDOI:


- A key distribution mechanism
- Group Key Model
- Standards-based (RFC 3547)
- GET uses GDOI and adds:
  - Cooperative Key Servers for high availability & geographic distribution
  - Secure Unicast control/data plane via encryption
  - Unicast/Multicast key distribution

Key Server: Authenticates group members, distributes keys and policies; group member provisioning is minimized. Application traffic is encrypted by group members




# Cisco Group Encrypted Transport (GET) VPN – Solution for Tunnel-less VPNs Security

- Crypto Map defines persistent Group SA attachment with any-to-any connectivity.
- Dormant control plane until rekey required

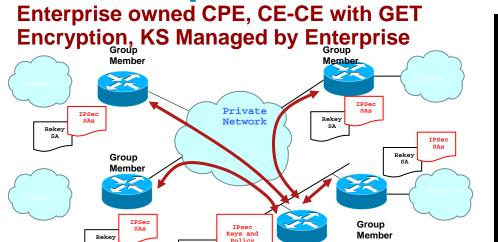


# **How GET VPN Prevents Overlay Routing**

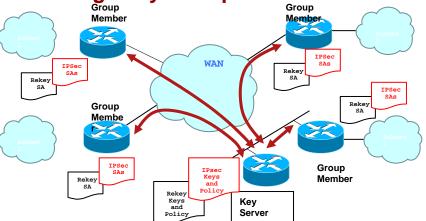
Cisco GET VPN uses IP header preservation to mitigate routing overlay and to preserve QoS and multicast capabilities



13


# Scenarios Overview

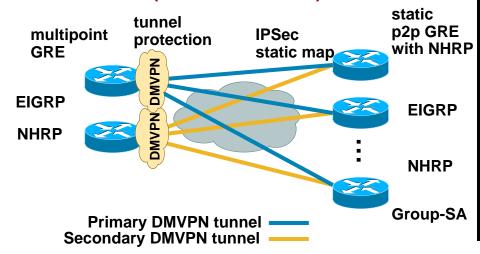



Empowered Branch © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

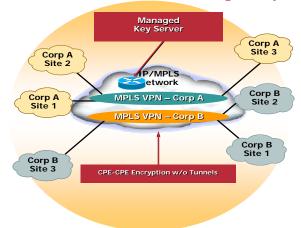
## **Application Scenarios: GET in the**

**Enterprise/SP WAN** 



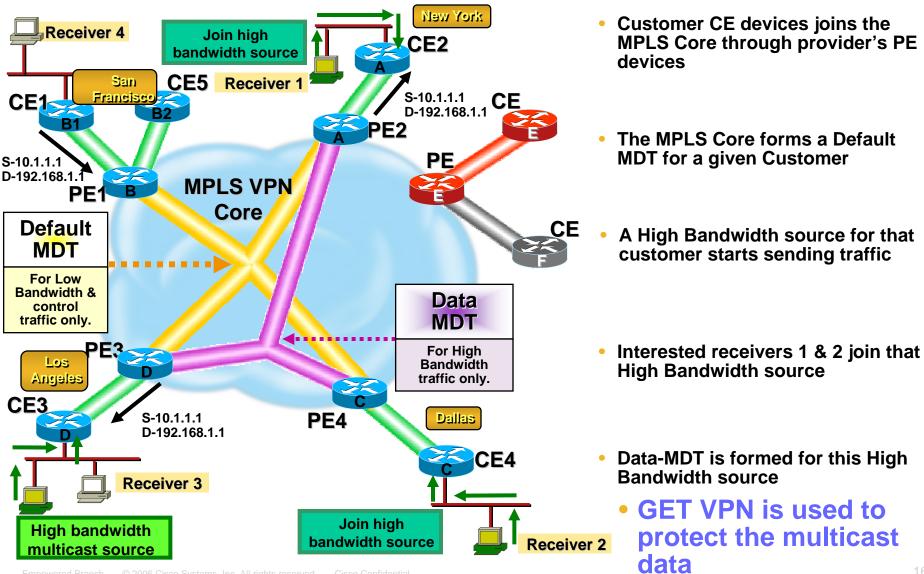

# Managed CPE with GET Encryption, with KS Managed by Enterprise



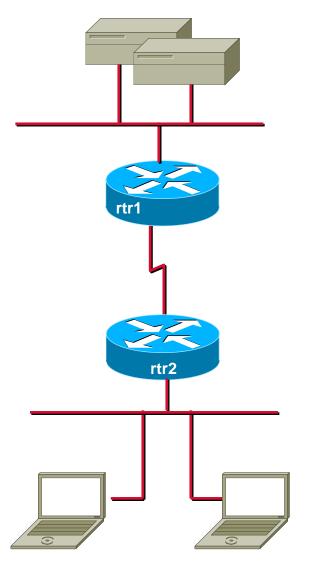

#### DMVPN (mGRE over IPSec) with GET

**Key Server** 

Rekey




#### Hosted GET, with KS Managed by SP




npowered Branch © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 15

## **Application Scenario: Security for Multicast VPN**



# Application Scenario: : Secure PIM Control Traffic with IPSec



# PIM Control Packets can be encrypted

- Session peer is set to 224.0.0.13 (PIM Control Messages)
- Supports Multiple IPSec options

Hash Functions: MD5, SHA1

**Security Protocols: Authentication** 

Header(AH),

Encapsulating Security Payload

(ESP)

**Encryption Algorithms: DES, 3DES,** 

**AES** 

**Recommended IPSec Mode: Transport** 

**Recommended Key method: Manual** 

- IPSec AH is the recommended security protocol in the PIM-SM and PIM-Bidir IETF Drafts
- Initial IOS Release 12.4(6)T



# Platform Support and Useful Links



sentation\_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 18

## **GET VPN IOS Platform Support**

| Platform                  | Group Member | Key Server      |
|---------------------------|--------------|-----------------|
| Software                  | Yes          | Not recommended |
| 850/870                   | Yes          | Not recommended |
| 1800/1841                 | Yes          | Not recommended |
| 2800                      | Yes          | Not recommended |
| 3800 (AIM-II/AIM-III-SSL) | Yes          | Yes             |
| 7200 NPEG1, VAM2+         | Yes          | Yes             |
| 7300 NPEG1, VAM2+         | Yes          | Yes             |
| 7200 NPEG2, VAM2+         | Yes          | Yes             |
| 7300 NPEG2, VAM2+         | Yes          | Yes             |
| 7200 NPEG2, VSA           | No           | No              |
| 7300 NPEG2, VSA           | No           | No              |
| 6500/7600 VPN-SPA         | No           | No              |

Not Committed, but No known issues. Expected to be in pi4

**Shipping in pi3** 



Not Committed, H/W Acceleration. Expected To be fixed in pi1

Not Committed, H/W Acceleration needs to be fixed. No plans

wered Branch © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

## For more information

http://www.cisco.com/go/getvpn/



owered Branch © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 21



Backup



entation\_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential



# Detailed Overview of GET VPN



tation\_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 2

# Group Encrypted Transport Enabled VPN Features

#### Key Management

- –GDOI Registration/Rekey
- -Unicast and/or Multicast Key Distribution
- -Cooperative Key Server for High Availability

#### Policy Management

- Centralized Policy Distribution from PRIMARY Group Controller Key Server
- -Group Member Policy Exception (e.g. local deny)
- -Group Member Policy Merge (concatenate KS policy with GM policy)

#### IPSec Data Plane

- -IPSec Tunnel Mode with IP Address Preservation
- Passive Security Associations for Graceful Roll-out (i.e. Receive Only SA)
- -Pseudo-time Synchronous Anti-Replay Protection

#### Enhanced Debugging (fault isolation)

# What's a group?

- Three or more parties who send and receive the same data transmitted over a network.
- Transmission can be multicast, or unicast (identical data sent to multiple parties).
- Parties can be routers, PCs, telephones, any IP device.
- There are many different examples of group topologies.

## **Secure Groups**

To secure a group you need:

- Data Encryption Protocol
  - IPSec
  - SRTP
- Key Management Protocol
  - Provides keys for data encryption.

# **IPSec Key Management**

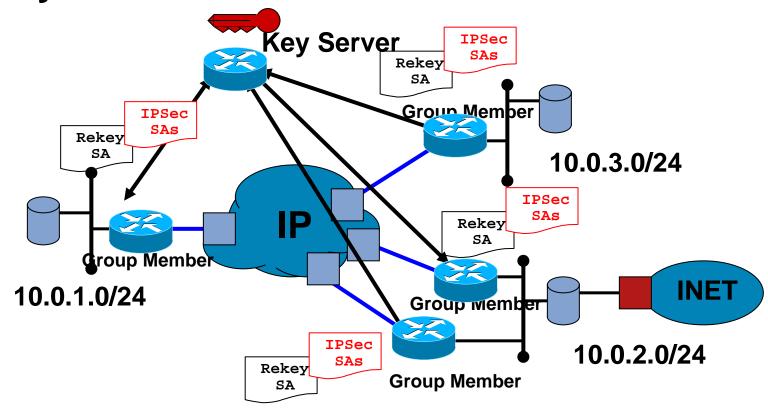
- Pair-wise Key Management
  - IKF
  - KINK
  - Manual IPSec Keys
- Group Key Management
  - Manual IPSec Keys
  - GDOI (Group Domain of Interpretation for ISAKMP)

#### **GDOI** enables Native Multicast encryption

# Relationship of GDOI to IKE: GDOI co-exists with IKE

- IKE Phase 1 is used to provide confidentiality, integrity, and replay protection.
  IKE Phase 1 is UNCHANGED.
- A newly defined phase 2 exchange (called GDOI registration) is run rather than IKE Phase 2.

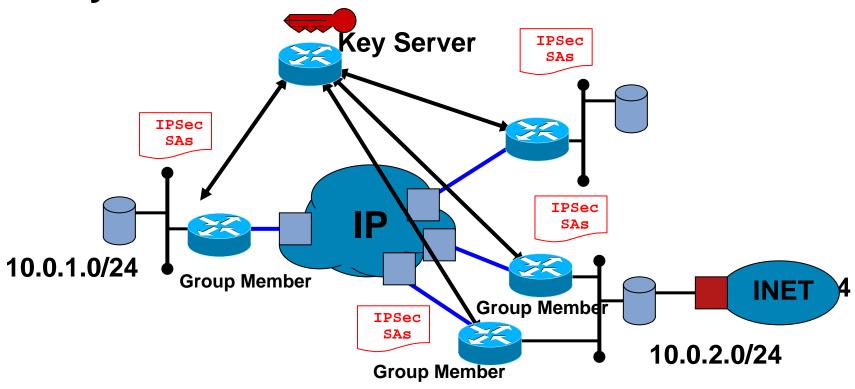
IKE Phase 2 is **UNUSED** and **UNCHANGED**.


- A new DOI number is used to differentiate GDOI exchanges from IKE Phase 2.
   At the end of IKE Phase 1 a state machine looks at the DOI number to determine next exchange.
- A GDOI service must listen on a port other than port 500 (IKE).

## **Quick Comparison of IKEv1, IKEv2 vs. GDOI**

|                        | IKEv1                                     | IKEv2                                              | GDOI                                                   |
|------------------------|-------------------------------------------|----------------------------------------------------|--------------------------------------------------------|
| RFC Documents          | 2407/2408/ 2409                           | RFC 4306                                           | RFC 3547                                               |
| UDP port               | 500, 4500                                 | <b>500,</b> 4500                                   | 848                                                    |
| Phases                 | 2, Ph. 1 (6/3                             | 2, Ph. 1 (4                                        | 2, Ph. 1 (6/3 messages),                               |
|                        | messages), Ph. 2<br>(3 messages)          | messages), Ph. 2 (2 messages)                      | Ph. 2 (4 messages)                                     |
| Authentication<br>Type | Signature, PSK, PKI                       | Signature, PSK,<br>PKI                             | Signature, PSK, PKI                                    |
| SA Negotiation         | Responder selects<br>Initiator's Proposal | Same as IKEV1,<br>proposal structure<br>simplified | Not negotiated, GDOI is used to push keys and policies |
| Identity Hiding        | Yes in MM, No in<br>AM                    | Yes                                                | Yes in MM, No in AM                                    |
| Keep-alives            | No                                        | Yes                                                | No                                                     |
| Anti-DoS               | No                                        | Yes*                                               | Yes*                                                   |
| UDP/NAT                | No                                        | Yes                                                | No                                                     |
| Reliability            | No                                        | Yes                                                | Yes                                                    |
| PFS                    | Yes                                       | Yes                                                | Yes                                                    |
| EAP/CP                 | No                                        | Yes                                                | No                                                     |

## **GDOI** Registration

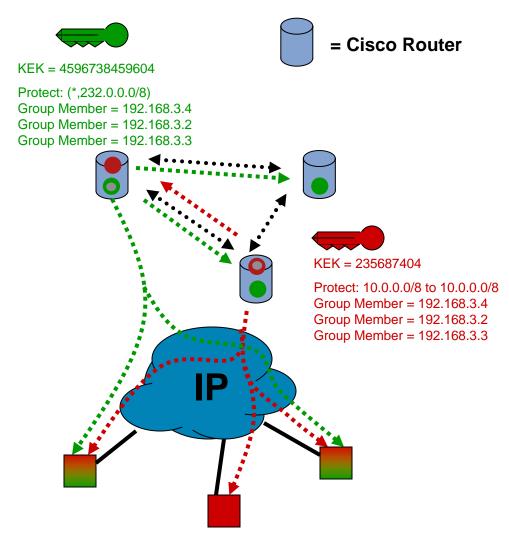

## **Key Distribution**



- Each router registers with the Key Server.
- Key Server authenticates the router, performs an authorization check.
- Key Server downloads the encryption policy and keys to the router

## **GDOI** Rekey

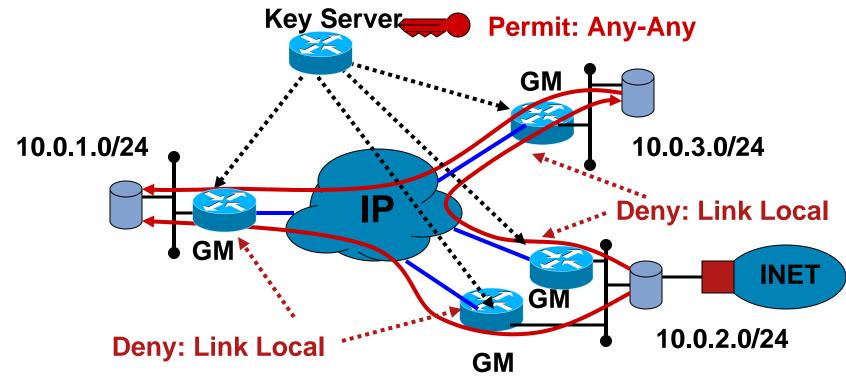
## **Key Distribution**




- The key server generates and pushes new IPsec keys and policy to the routers when necessary
- Re-key messages can also cause group members to be ejected from the group
- Rekeys can be sent either using multicast or unicast

# **Cooperative Key Server Key Distribution**

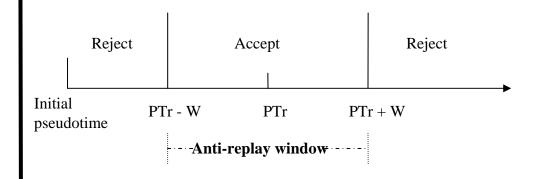
- Primary Key Server Designated Per Group
- Multiple Secondary Key Servers Per Group
- Synchronization of Policy Database for Graceful Failover


Synchronized - Group Policy, Active Group Members, Key Encryption Key, Traffic Encryption Key



wered Branch © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 32

# **Policy Management**


- Local Policy Configured by Group Member
- Global Policy Configured and Distributed by Key Server
- Global Policy Appended to Local Policy



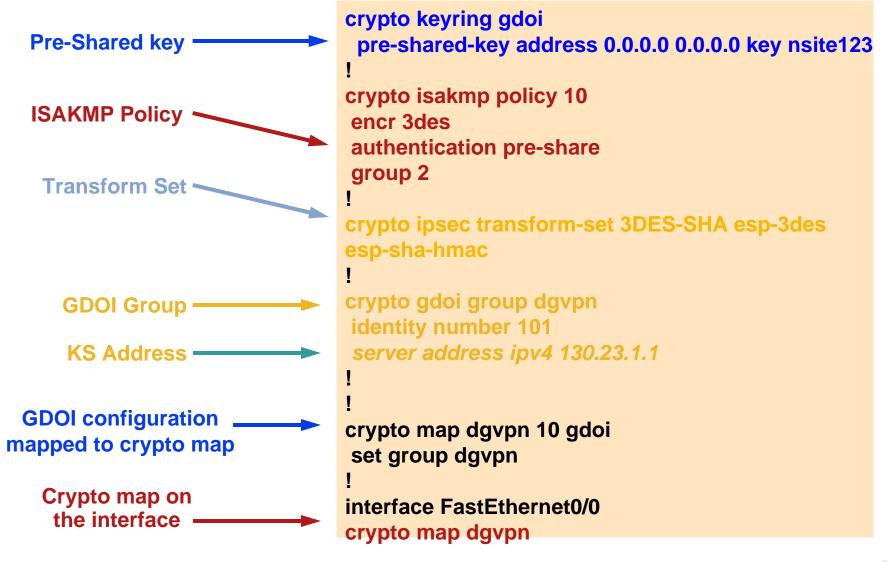
# **Pseudo-Synchronous Anti-Replay**

- Replay Based on Synchronization of Pseudo-time Across Group Members
- Key Server Manages Relative Clock Time (not Universal Clock Time)
- Group Members Periodically Resync Pseudo-time with every Rekey
- No Existing Fields in IPSec
   Header are Viable for Pseudo-time
   (while maintaining IPSec
   compliance)

## **Example**

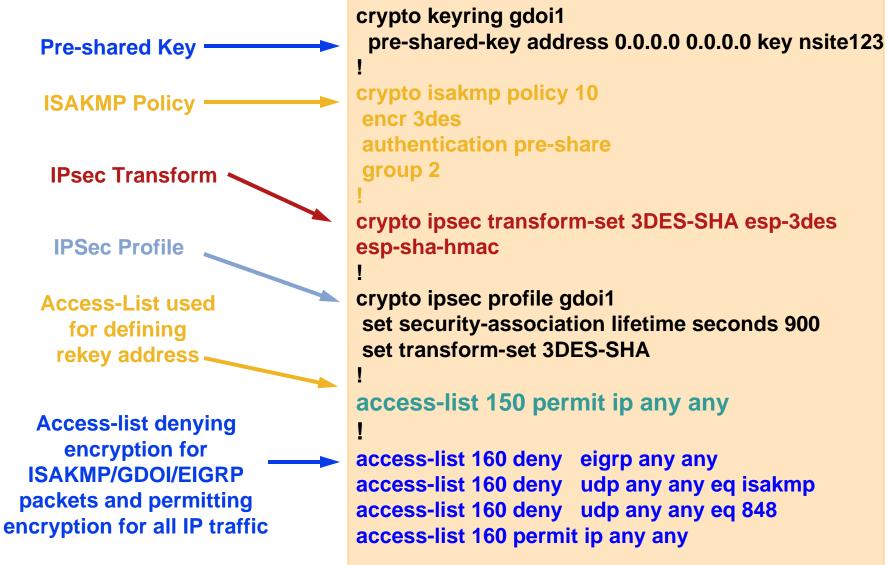


 If Sender's Pseudo Time falls in the below Receiver window, packet accepted else packet is discarded


ered Branch © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 34

## **Fault Isolation**

- Show and Debugging capabilities for Key server show crypto gdoi ks, debug crypto gdoi ks
- Show and Debugging capabilities for Group Member show crypto gdoi gm, debug crypto gdoi gm etc
- Multi-level Debug/Fault Isolation capabilities for various user roles e.g.


debug crypto gdoi error debug crypto gdoi terse debug crypto gdoi customer debug crypto gdoi engineer debug crypto gdoi packet

# **GM Configuration**



ered Branch © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 36

# **GKCS Configuration**



powered Branch © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

# **GKCS Configuration (cont.)**

crypto gdoi group dgvpn1 **GDOI Group ID** identity number 101 **Rekey Address** server local mapping to ACL 150 rekey address ipv4 150 Lifetime for Key rekey lifetime seconds 1800 rekev retransmit 10 number 3 **Encryption Key** rekey authentication mypubkey rsa dgvpn1 **Rekey Retransmission** rekey transport unicast **RSA** Key to authenticate sa ipsec 1 rekeys profile gdoi1 match address ipv4 160 **Unicast Rekey** replay counter window-size 64 address ipv4 130.23.1.1 **Encryption ACL** redundancy Source address for rekeys local priority 10 peer address ipv4 130.1.2.1 **Coop Server Config Coop Server priority Coop Server address** 

# IPSec VPN Features in IOS 12.2(18)SXF2

- Encrypted Multicast over GRE for IPSec VPN SPA
  - IPSec SPA Only, no VPNSM
  - Up to 500 tunnels
  - Limited broadcast sources
  - VRF-Aware IPSec
  - GRE Tunnel Protection (TP)
- Sup32 support for IPSec VPN SPA and VPNSM
- IOS Sup2 Image available