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Semilinear Geometric Optics
for Generalized Solutions

Y .-G. Wang and M. Oberguggenberger

Abstract. This paper is devoted to the study of nonlinear geometric optics in Colombeau
algebras of generalized functions in the case of Cauchy problems for semilinear hyperbolic
systems in one space variable. Extending classical results, we establish a generalized variant of
nonlinear geometric optics. As an application, a nonlinear superposition principle is obtained
when distributional initial data are perturbed by rapid oscillations.
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1. Introduction

Consider the following model problem
u®(0,x) = a®(x) forz € R .

where A(t,z) is a smooth m X m matrix such that the operator L = 0y + A(t, z)0, is

strictly hyperbolic with respect to ¢, u€ = (u§,...,u5)T, and f(¢,x,u) is smooth with

f(t,x,0) = 0. Assume the initial data a®(z) admit an asymptotic expansion

po(z)

a®(x) = a,(m, ) + o(1)

with a(z, ) almost periodic in the variable 6. The method of geometric optics estab-
lishes an asymptotic expansion for the solution

b(t,z)
9

us(t,z) = U(t,m; ) +0(1)
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where U (t, x; 0) is almost periodic in 6, and the oscillation phases q;(t, x) of U need to be
determined. In the nonlinear case, there are resonance phenomena and thus the three
basic problems:

- existence of u®
- determination of U(t, x;0) as well as ¢(t, x)
- proof of asymptotics

require an elaborate theory. For classical solutions, both the formal derivation of the
nonlinear equation satisfied by the function U(t, z;0) as well as the justification of the
asymptotic analysis have been treated in the recent literature in detail (see Joly, Métivier
and Rauch [7], and Majda and Rosales [9]).

On the other hand, generalized solutions to problem (1.1) can be constructed when
the initial data are distributions. In some cases, these can be described as weak limits
of approximate solutions (delta waves, see Rauch and Reed [16], and [14, 15]). An
appropriate general framework for studying nonlinear equations with distributional data
is provided by the algebras of generalized functions developed by Colombeau [3 - 5].
Existence and uniqueness results for solutions in these algebras are known ([12, 13]; see
also Rosinger [17, 18] for a general theory).

The purpose of this paper is to develop a theory of nonlinear geometric optics for
problem (1.1) in Colombeau algebras of generalized functions. In this way distributional
data perturbed by rapid oscillations can be studied. The present investigation of the
model problem (1.1) is a contribution towards a nonlinear asymptotic theory in the
Colombeau setting.

The paper is arranged as follows: In Section 2 we recall basic notions on function
spaces as well as the theory of Colombeau algebras and introduce convergence and
asymptotic expansions in these algebras. In Section 3 we establish the general theory of
semilinear geometric optics in Colombeau algebras in the case of the Cauchy problem
for one space dimensional first order hyperbolic systems. We apply our theory to initial
data having a delta function part and obtain a superposition principle in nonlinear
geometric optics analogous to the non-oscillatory case considered in [14, 15] and in
Rauch and Reed [16]. The notion of asymptotics in the Colombeau algebra requires
estimates in the representing sequences for all derivatives. For completeness, these
estimates, as far as not appearing in the literature, are presented in an appendix.

What concerns geometric optics for nonclassical solutions, we mention that bounded
variation solutions in conservative hyperbolic systems have been studied by DiPerna and
Majda [6] and Schochet [19], and oscillatory shock waves have been studied by [21, 22]
and Williams [23].
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2. Spaces of functions and generalized functions

In this section we first collect a number of classical notions which we need. Then we recall
various basic constructions of differential algebras containing the space of distributions
and introduce convergence structures and asymptotic expansions.

Let €2 be an open subset or the closure of an open subset of R™. For the purpose of
geometric optics, it will be convenient to introduce the e-dependent norm

[ollke,ic = el sup [0%0(x) (2.1)

aj<k  TEK

where K is a relatively compact subset of 2,k € N and v € C*°(Q).

Definition 2.1. We say that a net (u®).59 C C°°(Q2) has the classical asymptotic
expansion
u®(x) = ug(z) + o(1)
(uf € C>*(Q)) if, for all K cC Q and all k € N, |[u® — uf||x,e, xk — 0 as e = 0.
Recall that the space of almost periodic functions on a finite-dimensional real vector
space V is the Banach subspace of L°°(V) generated by the exponentials ¢80 with

0 € V and A € V*, the dual space of V (see Katznelson [8]). Denote by CJ(V) the
subspace of real-valued almost periodic functions on V.

Notation 2.2. With 2 and V' as above, we denote by
00 - — %0 .9
Co(2:V)=C"(Q2:CyH(V))
the space of continuous functions from € into C (V). For k € N, the space
k .
Cy(2:V)

is the subspace of C) (€2 : V) of those functions whose derivatives (with respect to z € Q
and § € V) up to order k belong to C)(Q2: V). Let

CX(Q: V) =NgoCh(Q2: V).

What concerns Colombeau algebras of generalized functions [3 - 5], we employ the
following definitions. Let I = (0,1] the semi-open unit interval. The set of all nets
(ty)ner of smooth functions u, € C*°(Q2) forms a differential algebra £[Q2] under com-
ponentwise multiplication and partial differentiation. The subalgebra £y,[€2] is defined
by those elements (u,),er of £[Q2] which grow only moderately as  — 0, i.e. satisfy the

property: for all K CC Q and a € N™ there exists p > 0 such that

sup sup n?|0%u,(z)| < oco. (2.2)
nel teK

The differential ideal N (€2) of Ep[€Y] is composed of those (u,),er with the property
that, for all K cC Q, a« € N™ and ¢ > 0,

sup sup n ?|0%u,(z)| < oo. (2.3)
nel xe K
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The Colombeau algebra G(2) is defined to be the factor algebra £p/[Q/N(Q).

If Q is an open subset of R™, the space of distributions D’(€2) can be imbedded into
Em[Q] and G(Q2) as follows. Take ¢ € S(R™) with all moments vanishing, i.e.

[o(z)dr =1
[2Po(z)dx =0 VpeN,p>1

and define the mollifier ¢, by ¢, (z) = %(p(%) The assignment
viw— (w*p)per (2.4)

defines an imbedding of £'(2) into Ep/[2]. By using a locally finite smooth partition of
unity, this can be extended to an imbedding of D’(€2). Taking the equivalence class of
the expression on the right-hand side of (2.4) produces an imbedding of £'(£2) and then
of D'(Q) into G(Q2).

For detailed explanations of this construction we refer to the literature, for example
[1, 3 - 5, 12]. Here we just recall some further properties of Ep[€2] and G(€2) needed
in our study of nonlinear hyperbolic problems. First, if f : CV¥ — C is a smooth
map all whose derivatives are polynomially bounded, and (u,),er € (Ep[2])V, then
(f(uy))ner belongs to Ear[€2] as well. Thus polynomially bounded nonlinear maps are
defined on Ep[2]. Next, the elements of £3/[Q] have restrictions to open subsets of
as well as to coordinate hyperplanes. Thus if (u,),er is a member of £x/[[0,00) x R],
then (uy,|{t = 0}),er is an element of £x/[R]. All this is easily seen to be true of G(£2)
as well. Tt follows that initial value problems like (1.1) can be formulated in the setting
of £y and of G.

The notion of association identifies elements of £3/[Q?], Q an open subset of R",
if they behave equivalently in the sense of distributions: we say that v = (uy)ner,
v = (vy)ner € Em[Q] are associated, u ~ v, if

lim (u, — vy) =0 in D'(Q).

n—0

In the case u is associated with +(w) for a distribution w € D'(2), we say that u admits
w as associated distribution.

We shall have need of almost periodic generalized functions as well. V' denotes again
a finite-dimensional vector space. Let s ,[Q2 X V] be the subalgebra of £/[Q2 x V]
whose elements (u, (2, 6)),ecr are almost periodic in § € V. Let N,(Q x V') be the ideal
in Ep,[Q2 x V] characterized by the property in (2.3). We define the factor algebra
Gp(QAX V) =Ep,p[Q x V]/NL(Q x V). Tt is easy to see that G,(Q2 x V) is a subalgebra
of G(A x V).

We now turn to the central question of this section, the notion of an asymptotic
expansion in Colombeau algebras. Topologies on G(€2) have been studied in Biagioni
[1], Biagioni and Colombeau [2], Nedeljkov, Pilipovi¢ and Scarpalézos [11]. However,
topology on G(Q) is a delicate matter: the so-called sharp topology turns G(€2) into
a Hausdorff topological ring, but induces the discrete topology on the space of distri-
butions. On the other hand, weaker topologies for which the imbedding of D'(Q) is
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continuous may fail to have the Hausdorff property. Here we proceed by introducing
a sequential convergence structure on &y[€2] which is adapted to property (2.2). It
reduces to weak convergence on the subspace D’(€2) and will be the basis for defin-
ing asymptotic expansions (see Mikusinski and Boehme [10] for a general discussion of
sequential convergence).

Definition 2.3. A sequence (u™),eNC Ep[Q] is said to converge to u € Ex/[Q], if
the following property holds: for all K CC €2 and a € N” there exists p > 0 such that

sup sup n” |0 (u:}‘ (%) — uy(z))| —0 as n — 00. (2.5)
nel teK
This determines a Hausdorff sequential convergence structure on Ey,[€?] for which
addition, multiplication, and differentiation are sequentially continuous. Further, the
imbedding ¢ : D'(Q2) — Em[] is sequentially continuous (the essential ingredient to
see this is the characterization of distributional convergence by means of the represen-
tation theorem in Schwartz [20: Chapter III, §6, Theorem XXIII]). The definition of
an asymptotic expansion is straightforward in this setting (with norms as defined at
the beginning of this section) and extends Definition 2.1 from smooth to generalized
functions:

Definition 2.4. We say that an e-net (u%).>0 C Em[?] has the asymptotic expan-
siomn
u® = ug + o(1)

if for all K cC €2 and k£ € N there exists p > 0 such that

sup 0 |luy — ug ke x — 0 as € — 0. (2.6)
nel
We remark that the corresponding convergence structure on the factor algebra G(£2)
is no longer Hausdorff. But the Hausdorff property is essential for asymptotics. In
order to retain it we will consequently formulate and prove our results on asymptotic
expansions in the algebra £p/[€2]. Stronger uniqueness assertions in the factor algebra
G(€2), when appropriate, will be stated separately.

3. Geometric optics for generalized data

Before stating our results on semilinear geometric optics in Colombeau algebras, we need
to recall various facts from the classical, smooth case. For the subsequent definitions
and notions we follow Joly, Métivier and Rauch [7].

Without loss of generality, we suppose in the Cauchy problem (1.1) that
A(t,w) = A(t.2) = diag [ (6,2), ., At 2)] (3.1)

is diagonal with Ay (¢,2) < ... < A (¢, z), f(t, x,u) is independent of (¢, x), and to avoid
technicalities, we will always assume that

(HP) f(u) and all its derivatives are polynomially bounded in wu, f(u) is globally
Lipschitz in w and f(0) = 0.
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Denote by w = [z_, 2] an interval on the z—axis and by 2 C R3 a determinacy domain
of w for the Cauchy problem (1.1)

Xy = 0p + M (t,2)0,
the k-th propagation field, k € {1,...,m}, and
t — it x) = (t,y(t;t', )

the integral curve of X}, passing through the point (¢',z) € Q at t = ¢'.

Choose Ty > 0 sufficiently small, such that the curves I'y(#;0,z) are defined for
t €0, Tol,x € [x—, 4], and v (T0;0,2-) < v1(Tp; 0, 24). Then, we can choose Q as

Q= {(tJ)GRi‘OStSTO and vm(t;ﬂ,mf)§m§71(t;0,m+)}- (3.2)

Set Qr = QN {t < T} forany 0 < T < Tj. Let Ti(x) > 0 be such that for x € [z_, ]
the characteristic curve ¢ — T'y(¢;0,z) remains in Q for ¢ in the maximal interval
[0, T (x)] C [0, Tp).

We assume that the initial oscillation phase ¢g(x) in (1.2) is a scalar function with
non-degeneracy, ¢q(z) # 0 for for all z € w. For all k € {1,...,m}, ¢x(t, z) is the
unique solution to the Cauchy problem

X = O + Myt 2)npy = 0 } | (3.3)

We suppose that the space of phases

® = span {¢1(t,2),..., ¢m(t, )} in C™(Q)

satisfies the following transversality condition:

(TC) forall ¢ € @, if Xp¢p =0, then ¢ is transverse to X meaning that, for all z € w,
Xkd(-,ve(+,0,2)) # 0 almost everywhere on [0, T (z)].

In order to formulate the equations for the leading profile of u®, we need to define
the averaging operators E (k= 1,...,m) on the space of almost periodic functions.

Denote by R = {a € R™| Y.7", aj¢p; = 0} the resonances in &, ¥ = {# € R™ :
(ar,0) = 0 for all & € R} the orthogonal complement of R in R™, and Ej the extension
of the following action on the space of almost periodic functions on W:

o = {09 o Rad 01
0 otherwise

where ®, = {ao € R™: aj = 0 for all j # k}. It is not difficult to see that this averaging
operator can be equivalently defined by an integral formula as

(Epu)(0) = lim T—4im(¥s) / u(0 4 @) de (3.5)
JTq

T— oo
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for any almost periodic function u(f) on W, where ¥y, = {# € ¥ : 6, = 0}, @ is a cube
in Uy of measure one, and dy is the Lebesgue measure on Wy,

The following result on nonlinear geometric optics for classical solutions with asymp-
totic estimates in terms of the L>°-norm has been proven in [7: Theorem 2.8.1]. However,
for the generalized asymptotic expansion in the Colombeau algebra, similar estimates
on all derivatives are needed. We formulate these higher order estimates, together with
the known classical assertions, in the proposition below; the proof of the additional
estimates is deferred to the Appendix. We will denote by P, (-) a polynomial, by ||u® ||
and ||U||r the norm of u® and U in L (Q7) and L*°(Qr x ¥), respectively, and by || - ||
the norm in L>°(w). Hypotheses (HP) and (TC) are assumed to hold throughout.

Proposition 3.1. Assume the initial data o € C*(w) admit an asymptotic ex-

pansion
¢o(z)
€

a®(z) = a(m, ) +0(1) (3.6)
in the sense of Definition 2.1, where a(z,0) € C;°(w : R). Then:
(1) There is a unique solution u® € C*°(Q2) to problem (1.1), and the estimate

106yl < e (J0al + Pa (32 106yl ) ) (37)
1BI<|e]
holds for any o € N* with C' = C(||V f|| Lo, [|Allwr.())-
(2) There exist Uy € C°(Q2:R) (k=1,...,m) such that

uy,(t,x) = Uy (t, x;
€

) +ol1) (3.8)

in the sense of Definition 2.1.

(3) The Uy ’s are the unique solutions to the problem

XU, =E U
eV = Bifu(U) (k=1,...,m). (3.9)
Uk (0, x5 0x) = ay(z, Ok)
Moreover, the estimate
1062301 < e (oofall+ 2o X 10003000)) a0

Bl<|al
holds for any multi-index (o, ) with the same C' as above.
Proof. See Appendix i

With these preparations, we are now in the position to formulate and prove our
central result on geometric optics for Colombeau generalized solutions to the semilinear
hyperbolic problem (1.1). As noted in Section 2, we consider problem (1.1) in the
algebra £,,[€2] what concerns the asymptotics. Uniqueness of solutions to the systems of
differential equations (1.1) and (3.9) actually holds even in the factor algebra G(€2). The
initial data a®(x) will belong to the algebra £ps{w] and admit an asymptotic expansion
in the sense of Definition 2.4 with profiles a(z, 6y) € Enrp[w X R]. For clarity, we adopt
here and in the sequel the boldface notation for elements of the algebras £y or G.
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Theorem 3.2. Suppose given initial data a°(z) = (ap(7))yer C Em(w] with profiles
a(.’E, 90) = (an(m, 90))?761 € gM,p[w x R] satisfying

po(z)

€

as(z) = a(T ) +o(1)

in the sense of (2.6). Then:

(1) There are unique solutions u®(t,z) € Ep[Q] and U(t,x:0) € Epp[2 x U] to
problems (1.1) and (3.9), respectively, and they admit the asymptotic expansion
(Zsl(t-/m) ¢m(t,$)

ue(t,m):U(t,m; - ,...,T>+o(1) (3.11)

in the sense of (2.6).

(2) The solutions u® and U to problems (1.1) and (3.9) are unique in G(Q) and
Gp(Q2 x W), respectively.

Proof. For fixed n > 0, Proposition 3.1 provides smooth, classical solutions ug
and U, with initial data a; and a,), respectively. To show that these 7-nets of classical
solutions determine a generalized solution, estimates (2.2) have to be established. These
estimates follow from (3.7) and (3.10), thus u® = (uj)yer € Eu[Q] and U = (Uy)per €
Em p[Q x W] provide solutions to problems (1.1) and (3.9), respectively. Uniqueness of

u® in G(Q2) can be found in [12] under assumption (HP).
From the hypotheses on the initial data a® we have that there is p > 0 such that

— 0 when € — 0.

sup sup n?
nel zew

")

ap(z) — ay (T

To prove the asymptotic expansion in (3.11) we follow first [7] for the zero order
estimate. By checking each step of the simultaneous Picard iteration given in [7: Section
5] and using the global Lipschitz property of f, it is not difficult to see that for the
solutions u® and U we have

(fr hitz) qsm(t’m))‘ 0 (3.12)

sup sup 0P |ugy(t,r) — U, :
€ €

n€l (t,z)eQ
when € — 0.

To obtain the corresponding estimates in (3.12) for the derivatives of u (£, z), we act
with differential operators e'77 9797 on the equations and proceed exactly as in the proof
of Proposition 3.1 in the Appendix. Thus, we conclude that the asymptotic property
(3.11) holds.

It remains to establish the uniqueness of U in G, (2 x V). Suppose that UM and
U®) are two solutions to problem (3.9) in G, (2 x ¥), which means that there are N in
Np(© x ¥) and b in N,(w x ¥) such that

X (U - UP) = By (f(UD) - f(UD)) + N,
(U(l) _ U(Z))(O, 7;0) = b(z,0)
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which implies that U = UM — U®) gatisfies

XUy, = Ex(Vf(V)U) + Ny } (3.13)

U(0,z;0) = b(z,0)

where V.= oU® 4 (1 — 0)U® for some o € (0,1). By integrating (3.13) along
characteristic lines and using the global Lipschitz property of f, we can easily obtain
that the difference U belongs to the null ideal NV, (Q2x W), thus UM = U®) in G, (Qx V) B

We now turn to an application of this result to delta waves. Theorem 3.2 applies, in
particular, for initial data distributions, viewed as members of the Colombeau algebra
Evr|w] by means of the imbedding ¢. The corresponding solutions u® with profiles U are
Colombeau generalized functions. However, it has been observed in the non-oscillatory
case that for distributions with discrete support and certain nonlinear functions f the
generalized solution admits an associated distribution, which in turn is split into a sum
of a regular and a singular part (see, e.g., [14, 15] and Rauch and Reed [16]). Our goal is
to establish a similar result for the solution u® and its profile U, and further to conclude
that the regular part in the associated distribution of u® takes the corresponding term
of U as its leading profile.

For simplicity, we study the particular case where the leading term in the initial
data consists of a measure with discrete support (that is, a sum of delta functions at
different points). In this case, the smooth function f(¢,x,u) in (1.1) is required to be
sublinear in u, that is,

o m )
|u]—o0 "U,|
uniformly in (¢, ) € K for any relatively compact subset K of €.

Let

n

nle) = 3 il — &)

Jj=1
be a measure with discrete support {&1g,..., &k} C w, 0 = (1, ..., tm). The corre-
sponding element of £y/[w] is given by
v = (k* @y )ner-

Further, let a(z,6p) € C;°(w : R) C Emplw x R] be smooth and almost periodic with
respect to 6y € R. Consider the Cauchy problem

Lu® = f(u®)
(3.14)

u®(0,z) = wu(x) + a(m, qﬁoim))

From Theorem 3.2, we know that this problem has a unique generalized solution u® =
(ug)per € Em[]. In addition, the solution admits the asymptotic expansion

)= Ut D) dmltin)
ut(t ) = U (s 20 B o) 515)
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in the sense of Definition 2.4, where the leading profile U = (U,))yer € Emp[Q X V] is
the unique generalized solution to the problem

XUy = Ei fr(U)
U (0,2,0;) = vpr () + an(z,60;) [

We will show that in this case both u® and U admit an associated distribution, both
splitting in a singular and a regular part. To describe these, we introduce the distribu-
tional solution w to the linear system
Lw=0
(3.17)

w(0,z) = p(x)
and the smooth solution v® € C*(Q2) of the nonlinear problem
Lo = f(v®)

(3.16)

do(z) : (3.18)
=)
According to the classical result in Proposition 3.1, v® has the classical asymptotic
expansion

v5(0,2) = a (x,

s = V(b AT bnlt7)
v(t,w)—V(t,m, Pt EERY . >+0(1)

where the leading term V' is the classical smooth solution of the problem
XV = Ex fr(V)
Vi (0, z,01) = ax(z, O)

The relation among these various classical and generalized parts is described by the
following result:

(3.19)

Proposition 3.3. Suppose f is sublinear and satisfies assumption (HP). Let p,a,
u®, U,v*, V and w be as described above. Then:

(1) For each e > 0, u® admits v° + w as associated distribution.
(2) U admits V + w as associated distribution.

Proof. Assertion (1) is a standard result on delta waves and can be found in [15]
or in Rauch and Reed [16].

Let w,, be the smooth solution to problem (3.17), but with regularized initial data
wy(0,2) = p* op(x). Using equations (3.17) and (3.19) we know that, for any n € I
and k€ {1,...,m}, Wi, = Uy — Vi — wy,y satisfies

(0 + A (t,2)0:) Wiy = Ex (f&(Uy) — f(V + wy) + Q)
ka(O,m,Hk) =0

where Q = fr(V +wy) — fr(V). The L} (£2)-norm of the term @ is seen to go to zero
when 7 — 0 by using the sublinear property of f, the convergence w, — 0 for almost

all (t,z) € Q, and the Lebesgue dominated convergence theorem.

(3.20)

Integrating equations (3.20) along characteristic lines and using the global Lipschitz
property of f, we obtain that the L}, .(2)-norm of W, goes to zero when n — 0. Finally,

loc
it is clear that w, — w in the sense of distributions as n — 0. This establishes assertion

(2)n
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Remark 3.4. This result can be generalized in various directions. First, one may
take f sublinear of order s € (0,1] as in [15]. Second, depending on this order of
sublinearity s, the initial data g may contain derivatives of delta functions as well, as
in [15] and [16]. Third, the oscillatory term a(-) need not be smooth. It would suffice
that a(z,09) € L;S,(w, C)(R)); then an additional regularization is required, but the
result remains true.

4. Appendix: Proof of Proposition 3.1

The local existence of solutions u® and U to problems (1.1) and (3.9) and the zero-order
asymptotic expansion (3.8) in the L>-norm have been established in [7: Theorem 2.8.1].
It remains to prove the additional estimates (3.7) and (3.10) as well as the estimates on
the derivatives needed for the asymptotic expansion (3.8) according to Definition 2.1.

(1) At first, we consider estimates (3.7). From (1.1), the solution u® can be expressed
as

t
uj(t,z) = ag (ve(0;t,2)) + / fie(u(s,v(s;t,3)))ds
Jo
which gives rise to

t
luille < [lail] +C/0 [u®[] ds (A.1)

by using the global Lipschitz property of f(u) and f(0) = 0. Tt immediately follows
from (A.1) that ||u®|7 < e®T|la%]|. Acting the operator 92 on problem (1.1), we get

L(0%u®) = V f(uf) - 05u® — 0, AL, x)05u® + F({0%u }o<q<p) (A.2)
0Pu(0,z) = 0Pa®(x) '

which implies

t t p—1
ool <ozl + [ ozcllas+ [ P(Xlomel)as 4z
Jo Jo =0

because in (A.2), F(-) is polynomially bounded. By using the Gronwall inequality in
(A.3), estimate (3.7) for terms dPu® with any p > 0 follows. The estimates of 9] 9Pu®
are easily obtained by using the equations for 4® and induction on ¢ > 0.

(2) Next we consider estimates (3.10). The solutions Uy of (3.9) can be expressed

as
f

Uk (t, z;0%) = ar (v(0; ¢, ), O +/ Erfi(U) (s, vk(s:t, 2); 0x)ds
0
which implies estimate (3.10) for the term ||U||z by using the boundedness of the oper-
ator Ex and condition (HP). The estimates for the general terms ||8a m)ﬁgUHT can be
established in the same way as those for u® by acting 939, on problem (3.9).

inally, we study the asymptotic properties of €'*'07% \u®(f, x) for any |a| > 0.
3) Finall tudy th toti ties of 19 u(t, z) f 0
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(a) Acting €0, on problem (1.1), we obtain that v® = £d,u® solves the problem
Xpvp = Ve (u)v® — 0. A (t, x)vg,

KUk = YV fi(uf) k(E, 2) v, (A.4)
v (0, z) = edyaf (x)

where the initial data satisfy ed,a%(z) — ¢((2) g, a(z, ¢“—(T)) = 0(1) in L*>(w). Applying

1

the result of [7: Theorem 2.8.1] in problem (A.4), we obtain

vE(z) — Vi (t,m; “5’“(;"”)) — o(1) (A.5)

in L°°(€Q2) where the functions Vj, satisfy

XV = Ex(V(U)V) = 0u M (t, 7) Vi } _ (A.6)

Vk(O, €T, gk) = (256 (.T)agk ag (:L‘, gk)

On the other hand, by acting the operators 0, ¢ (t, x)0s, on problem (3.9), we get
that Vi(t,x;0k) = O0rxdr(t, x)0s, Uk(t, x;0k) solve problem (A.6) by using [7: Lemma
4.3.1] and Xy ¢y = 0. Thus, by invoking the uniqueness of solutions to (A.6), we know
that (A.5) can be rewritten as

t,x
(€0u)i (1.2) — D00 (10105, U (1. P )Y — o) (A7)
in L>(Q).
(b) From the equations for u® we have ed;uj = € fi(u®) — Ag(e0zyu;) which implies
t,x
(€01 (1, 2) — D1, )2, Ui (1,2 LD ) = o)

in L>°(€2) by using (A.7) and Xi¢r = 0 again.

(c) Acting €d,, on problem (A.4), it follows that 2°(¢,z) = (£0,)?u(t, x) solves the
problem

sz; _ (Vka(us),Ue’ ,Us) + ka(ue) L 26T)\k21§ - Eai)\k’l)lec } (A 8)

25(0,2) = (€0,)%a5, ()

where v = ed,uf, and the initial data satisfy (¢9,)%a®(x) — (qﬁ{,(m))Qagoa(z‘, ¢°—(m)) =

€

o(1) in L>°(w). Applying the result of [7: Theorem 2.8.1] again in problem (A.8), we

obtain
€

zp(t,x) — Z (t, x

in 1°°(€Q2) where the functions 7, satisfy

) — o(1) (A.9)

XnZie = B (V2 fO)V.V) + V fi(U)Z) = 205\ 21 } (4.10)

Zi(0, 33 0y) = (¢())* 0 ak(x, Ok)
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by using (A.5).

On the other hand, by acting the operators d,¢0g, on problem (A.6) and using
[7: Lemma 4.3.1] and XkQSk =0 again, we get that Zk(t,x, Qk) = (6T¢Sk)26§k Uk(t,x, Qk)
solves problem (A.10). Thus, (A.9) can be rewritten as

(E@m)Qui(t,x) — (3m¢k(t,x))23gkUk (t,m; @) = o(1) (A.11)

in L>(Q) for any k € {1,...,m}.

(d) Acting €20, on the equations for u®, it follows

202 us (t, 1) = —e*Mp(t, 2)02us (t, 2) + o(1)

= 6,¢k3T¢k6§k U (t7 x; M) 4 0(1)

9

(A.12)

in L>(Q) by using (A.11) and Xy ¢ = 0.

(e) Acting £20; on the equations for u®, it follows
202 € o 2 2 €
e“0yus(t, r) = —e* A (¢, )05, uf (¢, x) + o(1)

— @003, U (1. 2 o)

in L>°(€2) by using (A.12) and X¢r = 0 again.

Summarizing the above results from (a) to (e), we obtain the asymptotic property
(3.9) in the norm || - ||2.¢ x for any K CC Q. Successively, we can prove (3.9) in the
norm || - |[g.e x for any K CC Q and k> 3 1

Acknowledgement. Both authors acknowledge support by the Erwin Schrodinger
International Institute for Mathematical Physics, Vienna. The first author would like
to express his gratitude to the Institut fir Technische Mathematik, Geometrie und
Bauinformatik, Universitat Innsbruck for the hospitality. His work is also partially
supported by a Lise Meitner postdoctoral fellowship of the Austrian Science Foundation,
the NSFC and the Shanghai Qimingxing Foundation.

References

[1] Biagioni, H. A.: A Nonlinear Theory of Generalized Functions. Lect. Notes Math. 1401
(1990).

[2] Biagioni, H. A. and J. F. Colombeau: New generalized functions and C™ functions with
values in generalized complexr numbers. J. London Math. Soc. 33 (1986), 169 — 179.

[3] Colombeau, J. F.: New Generalized Functions and Multiplication of Distributions (North-
Holland Math. Studies: Vol. 84). Amsterdam: North-Holland 1984.

[4] Colombeau, J. F.: Elementary Introduction to New Generalized Functions (North-Holland
Math. Studies: Vol. 113). Amsterdam: North-Holland 1985.

[5] Colombeau, J. F.: Multiplication of Distributions. Lect. Notes Math. 1532 (1992).



J4«40 T.-G4. vvang ana Ivi. UDerguggenbeErger

[6] DiPerna, R. and A. Majda: The validity of nonlinear geometric optics for weak solutions
of conservation laws. Commun. Math. Phys. 98 (1985), 313  347.

[7] Joly, J. L., Métivier, G. and J. Rauch: Resonant one dimensional nonlinear geometric
optics. J. Funct. Anal. 114 (1993), 106 — 231.

[8] Katznelson, Y.: Introduction to Harmonic Analysis. New York: Dover 1976.

[9] Majda, A. and R. Rosales: Resonantly interacting weakly nonlinear hyperbolic waves. Part
I: A single space variable. Stud. Appl. Math. 71 (1984), 149 179.

[10] Mikusinski, J. and T. K. Boehme: Operational Calculus, Vol T1. Warszawa: Polish Sci.
Pub. 1987.

[11] Nedeljkov, M., Pilipovié¢, S. and D. Scarpalézos: The Linear Theory of Colombeau Gen-
eralized Functions (Pitman Res. Notes in Math.: Vol. 385). Harlow: Longman 1998.

[12] Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differ-
ential Equations (Pitman Res. Notes in Math.: Vol. 259). Harlow: Longman 1992.

[13] Oberguggenberger, M.: Generalized solutions to semilinear hyperbolic systems. Monatsh.
Math. 103 (1987), 133  144.

[14] Oberguggenberger, M.: Weak limits of solutions to semilinear hyperbolic systems. Math.
Ann. 274 (1986), 599 — 607.

[15] Oberguggenberger, M. and Y. G. Wang: Delta waves for semilinear hyperbolic Cauchy
problems. Math. Nachr. 166 (1994), 317 327.

[16] Rauch, J. and M. C. Reed: Nonlinear superposition and absorption of delta waves in one
space dimension. J. Funct. Anal. 73 (1987), 152 — 178.

[17] Rosinger, E. E.: Generalized Solutions of Nonlinear Partial Differential Equations (North-
Holland Math. Studies: Vol. 144). Amsterdam: North-Holland 1987.

[18] Rosinger, E. E.: Nonlinear Partial Differential Equations. An Algebraic View of Gener-
alized Solutions (North-Holland Math. Studies: Vol. 164). Amsterdam: North-Holland
1990.

[19] Schochet, S.: Resonant nonlinear geometric optics for weak solutions of conservation laws.
J. Diff. Eqs. 113 (1994), 473  504.

[20] Schwartz, L.: Théorie des Distributions. Paris: Hermann 1966.

[21] Wang, Y. G.: Nonlinear geometric optics for shock waves. Part 1. Scalar case and Part
IT: System case. Z. Anal. Anw. 16 (1997), 607 — 619 and 857 — 918.

[22] Wang, Y. G.: Nonlinear geometric optics for two shock waves. Comm. Part. Diff. Egs.
23 (1998), 1621 1692.

[23] Williams, M.: Highly oscillatory multidimensional shocks. Comm. Pure Appl. Math. 52
(1999), 129 — 192.

Received 20.01.2000



