
Zeits
hrift f�ur Analysis und ihre AnwendungenJournal for Analysis and its Appli
ationsVolume 19 (2000), No. 4, 913{926Semilinear Geometri
 Opti
sfor Generalized SolutionsY.-G. Wang and M. Oberguggenberger
Abstra
t. This paper is devoted to the study of nonlinear geometri
 opti
s in Colombeaualgebras of generalized fun
tions in the 
ase of Cau
hy problems for semilinear hyperboli
systems in one spa
e variable. Extending 
lassi
al results, we establish a generalized variant ofnonlinear geometri
 opti
s. As an appli
ation, a nonlinear superposition prin
iple is obtainedwhen distributional initial data are perturbed by rapid os
illations.Keywords: Semilinear hyperboli
 systems, Cau
hy problems, nonlinear geometri
 opti
s, gen-eralized solutions, delta wavesAMS subje
t 
lassi�
ation: 35 L 45, 35B05, 35D 05, 46 F 301. Introdu
tionConsider the following model problem(�t + A(t; x)�x)u" = f(t; x; u")u"(0; x) = a"(x) on R2for x 2 R) (1:1)where A(t; x) is a smooth m �m matrix su
h that the operator L = �t + A(t; x)�x isstri
tly hyperboli
 with respe
t to t, u" = (u"1; : : : ; u"m)T , and f(t; x; u) is smooth withf(t; x; 0) = 0. Assume the initial data a"(x) admit an asymptoti
 expansiona"(x) = a�x; �0(x)" �+ o(1)with a(x; �0) almost periodi
 in the variable �0. The method of geometri
 opti
s estab-lishes an asymptoti
 expansion for the solutionu"(t; x) = U�t; x; ~�(t; x)" �+ o(1)Y.-G. Wang: Shanghai Jiao Tong Univ., Appl. Math., 200030 Shanghai, P.R. Chinaygwang�online.sh.
nM. Oberguggenberger: Univ. Innsbru
k, Te
hn. Math., Geom. und Bauinf., A-6020 Innsbru
k,Austria; mi
hael�mat1.uibk.a
.atISSN 0232-2064 / $ 2.50 

 Heldermann Verlag Berlin



914 Y.-G. Wang and M. Oberguggenbergerwhere U(t; x; �) is almost periodi
 in �, and the os
illation phases ~�(t; x) of U need to bedetermined. In the nonlinear 
ase, there are resonan
e phenomena and thus the threebasi
 problems:- existen
e of u"- determination of U(t; x; �) as well as ~�(t; x)- proof of asymptoti
srequire an elaborate theory. For 
lassi
al solutions, both the formal derivation of thenonlinear equation satis�ed by the fun
tion U(t; x; �) as well as the justi�
ation of theasymptoti
 analysis have been treated in the re
ent literature in detail (see Joly, M�etivierand Rau
h [7℄, and Majda and Rosales [9℄).On the other hand, generalized solutions to problem (1.1) 
an be 
onstru
ted whenthe initial data are distributions. In some 
ases, these 
an be des
ribed as weak limitsof approximate solutions (delta waves, see Rau
h and Reed [16℄, and [14, 15℄). Anappropriate general framework for studying nonlinear equations with distributional datais provided by the algebras of generalized fun
tions developed by Colombeau [3 - 5℄.Existen
e and uniqueness results for solutions in these algebras are known ([12, 13℄; seealso Rosinger [17, 18℄ for a general theory).The purpose of this paper is to develop a theory of nonlinear geometri
 opti
s forproblem (1.1) in Colombeau algebras of generalized fun
tions. In this way distributionaldata perturbed by rapid os
illations 
an be studied. The present investigation of themodel problem (1.1) is a 
ontribution towards a nonlinear asymptoti
 theory in theColombeau setting.The paper is arranged as follows: In Se
tion 2 we re
all basi
 notions on fun
tionspa
es as well as the theory of Colombeau algebras and introdu
e 
onvergen
e andasymptoti
 expansions in these algebras. In Se
tion 3 we establish the general theory ofsemilinear geometri
 opti
s in Colombeau algebras in the 
ase of the Cau
hy problemfor one spa
e dimensional �rst order hyperboli
 systems. We apply our theory to initialdata having a delta fun
tion part and obtain a superposition prin
iple in nonlineargeometri
 opti
s analogous to the non-os
illatory 
ase 
onsidered in [14, 15℄ and inRau
h and Reed [16℄. The notion of asymptoti
s in the Colombeau algebra requiresestimates in the representing sequen
es for all derivatives. For 
ompleteness, theseestimates, as far as not appearing in the literature, are presented in an appendix.What 
on
erns geometri
 opti
s for non
lassi
al solutions, we mention that boundedvariation solutions in 
onservative hyperboli
 systems have been studied by DiPerna andMajda [6℄ and S
ho
het [19℄, and os
illatory sho
k waves have been studied by [21, 22℄and Williams [23℄.
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es of fun
tions and generalized fun
tionsIn this se
tion we �rst 
olle
t a number of 
lassi
al notions whi
h we need. Then we re
allvarious basi
 
onstru
tions of di�erential algebras 
ontaining the spa
e of distributionsand introdu
e 
onvergen
e stru
tures and asymptoti
 expansions.Let 
 be an open subset or the 
losure of an open subset of Rn. For the purpose ofgeometri
 opti
s, it will be 
onvenient to introdu
e the "-dependent normkvkk;";K = Xj�j�k "j�j supx2K j��v(x)j (2:1)where K is a relatively 
ompa
t subset of 
; k 2 N and v 2 C1(
).De�nition 2.1. We say that a net (u")">0 � C1(
) has the 
lassi
al asymptoti
expansion u"(x) = u"0(x) + o(1)(u"0 2 C1(
)) if, for all K �� 
 and all k 2 N, ku" � u"0kk;";K �! 0 as "! 0.Re
all that the spa
e of almost periodi
 fun
tions on a �nite-dimensional real ve
torspa
e V is the Bana
h subspa
e of L1(V ) generated by the exponentials eih�;�i with� 2 V and � 2 V �, the dual spa
e of V (see Katznelson [8℄). Denote by C0p(V ) thesubspa
e of real-valued almost periodi
 fun
tions on V .Notation 2.2. With 
 and V as above, we denote byC0p(
 : V ) = C0(
 : C0p(V ))the spa
e of 
ontinuous fun
tions from 
 into C0p(V ). For k 2 N, the spa
eCkp (
 : V )is the subspa
e of C0p(
 : V ) of those fun
tions whose derivatives (with respe
t to x 2 
and � 2 V ) up to order k belong to C0p(
 : V ). LetC1p (
 : V ) = \k�0Ckp (
 : V ):What 
on
erns Colombeau algebras of generalized fun
tions [3 - 5℄, we employ thefollowing de�nitions. Let I = (0; 1℄ the semi-open unit interval. The set of all nets(u�)�2I of smooth fun
tions u� 2 C1(
) forms a di�erential algebra E [
℄ under 
om-ponentwise multipli
ation and partial di�erentiation. The subalgebra EM [
℄ is de�nedby those elements (u�)�2I of E [
℄ whi
h grow only moderately as � ! 0, i.e. satisfy theproperty: for all K �� 
 and � 2 Nn there exists p � 0 su
h thatsup�2I supx2K �pj��u�(x)j <1: (2:2)The di�erential ideal N (
) of EM [
℄ is 
omposed of those (u�)�2I with the propertythat, for all K �� 
, � 2 Nn and q � 0,sup�2I supx2K ��qj��u�(x)j <1: (2:3)



916 Y.-G. Wang and M. OberguggenbergerThe Colombeau algebra G(
) is de�ned to be the fa
tor algebra EM [
℄=N (
).If 
 is an open subset of Rn, the spa
e of distributions D0(
) 
an be imbedded intoEM [
℄ and G(
) as follows. Take ' 2 S(Rn) with all moments vanishing, i.e.R'(x) dx = 1R xp'(x) dx = 0 8 p 2 N; p � 1and de�ne the molli�er '� by '�(x) = 1�'(x� ). The assignment� : w �! (w � '�)�2I (2:4)de�nes an imbedding of E 0(
) into EM [
℄. By using a lo
ally �nite smooth partition ofunity, this 
an be extended to an imbedding of D0(
). Taking the equivalen
e 
lass ofthe expression on the right-hand side of (2.4) produ
es an imbedding of E 0(
) and thenof D0(
) into G(
).For detailed explanations of this 
onstru
tion we refer to the literature, for example[1, 3 - 5, 12℄. Here we just re
all some further properties of EM [
℄ and G(
) neededin our study of nonlinear hyperboli
 problems. First, if f : CN ! C is a smoothmap all whose derivatives are polynomially bounded, and (u�)�2I 2 (EM [
℄)N , then(f(u�))�2I belongs to EM [
℄ as well. Thus polynomially bounded nonlinear maps arede�ned on EM [
℄. Next, the elements of EM [
℄ have restri
tions to open subsets of 
as well as to 
oordinate hyperplanes. Thus if (u�)�2I is a member of EM [[0;1)� R℄,then (u�jft = 0g)�2I is an element of EM [R℄. All this is easily seen to be true of G(
)as well. It follows that initial value problems like (1.1) 
an be formulated in the settingof EM and of G.The notion of asso
iation identi�es elements of EM [
℄, 
 an open subset of Rn,if they behave equivalently in the sense of distributions: we say that u = (u�)�2I ,v = (v�)�2I 2 EM [
℄ are asso
iated, u � v, iflim�!0(u� � v�) = 0 in D0(
):In the 
ase u is asso
iated with �(w) for a distribution w 2 D0(
), we say that u admitsw as asso
iated distribution.We shall have need of almost periodi
 generalized fun
tions as well. V denotes againa �nite-dimensional ve
tor spa
e. Let EM;p[
 � V ℄ be the subalgebra of EM [
 � V ℄whose elements (u�(x; �))�2I are almost periodi
 in � 2 V . Let Np(
� V ) be the idealin EM;p[
 � V ℄ 
hara
terized by the property in (2.3). We de�ne the fa
tor algebraGp(
� V ) = EM;p[
� V ℄=Np(
� V ). It is easy to see that Gp(
� V ) is a subalgebraof G(
� V ).We now turn to the 
entral question of this se
tion, the notion of an asymptoti
expansion in Colombeau algebras. Topologies on G(
) have been studied in Biagioni[1℄, Biagioni and Colombeau [2℄, Nedeljkov, Pilipovi�
 and S
arpal�ezos [11℄. However,topology on G(
) is a deli
ate matter: the so-
alled sharp topology turns G(
) intoa Hausdor� topologi
al ring, but indu
es the dis
rete topology on the spa
e of distri-butions. On the other hand, weaker topologies for whi
h the imbedding of D0(
) is
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ontinuous may fail to have the Hausdor� property. Here we pro
eed by introdu
inga sequential 
onvergen
e stru
ture on EM [
℄ whi
h is adapted to property (2.2). Itredu
es to weak 
onvergen
e on the subspa
e D0(
) and will be the basis for de�n-ing asymptoti
 expansions (see Mikusi�nski and Boehme [10℄ for a general dis
ussion ofsequential 
onvergen
e).De�nition 2.3. A sequen
e (un)n2N� EM [
℄ is said to 
onverge to u 2 EM [
℄, ifthe following property holds: for all K �� 
 and � 2 Nn there exists p � 0 su
h thatsup�2I supx2K �p�����un� (x)� u�(x)��� �! 0 as n!1: (2:5)This determines a Hausdor� sequential 
onvergen
e stru
ture on EM [
℄ for whi
haddition, multipli
ation, and di�erentiation are sequentially 
ontinuous. Further, theimbedding � : D0(
) ! EM [
℄ is sequentially 
ontinuous (the essential ingredient tosee this is the 
hara
terization of distributional 
onvergen
e by means of the represen-tation theorem in S
hwartz [20: Chapter III, x6, Theorem XXIII℄). The de�nition ofan asymptoti
 expansion is straightforward in this setting (with norms as de�ned atthe beginning of this se
tion) and extends De�nition 2.1 from smooth to generalizedfun
tions:De�nition 2.4. We say that an "-net (u")">0 � EM [
℄ has the asymptoti
 expan-sion u" = u"0 + o(1)if for all K �� 
 and k 2 N there exists p � 0 su
h thatsup�2I �pku"� � u"0;�kk;";K �! 0 as "! 0: (2:6)We remark that the 
orresponding 
onvergen
e stru
ture on the fa
tor algebra G(
)is no longer Hausdor�. But the Hausdor� property is essential for asymptoti
s. Inorder to retain it we will 
onsequently formulate and prove our results on asymptoti
expansions in the algebra EM [
℄. Stronger uniqueness assertions in the fa
tor algebraG(
), when appropriate, will be stated separately.3. Geometri
 opti
s for generalized dataBefore stating our results on semilinear geometri
 opti
s in Colombeau algebras, we needto re
all various fa
ts from the 
lassi
al, smooth 
ase. For the subsequent de�nitionsand notions we follow Joly, M�etivier and Rau
h [7℄.Without loss of generality, we suppose in the Cau
hy problem (1.1) thatA(t; x) = �(t; x) = diag [�1(t; x); : : : ; �m(t; x)℄ (3:1)is diagonal with �1(t; x) < : : : < �m(t; x), f(t; x; u) is independent of (t; x), and to avoidte
hni
alities, we will always assume that(HP) f(u) and all its derivatives are polynomially bounded in u, f(u) is globallyLips
hitz in u and f(0) = 0.



918 Y.-G. Wang and M. OberguggenbergerDenote by ! = [x�; x+℄ an interval on the x�axis and by 
 � R2+ a determina
y domainof ! for the Cau
hy problem (1.1),Xk = �t + �k(t; x)�xthe k-th propagation �eld, k 2 f1; : : : ;mg, andt �! �k(t; t0; x) = (t; 
k(t; t0; x))the integral 
urve of Xk passing through the point (t0; x) 2 
 at t = t0.Choose T0 > 0 suÆ
iently small, su
h that the 
urves �k(t; 0; x) are de�ned fort 2 [0; T0℄; x 2 [x�; x+℄, and 
m(T0; 0; x�) � 
1(T0; 0; x+). Then, we 
an 
hoose 
 as
 = n(t; x) 2 R2+��� 0 � t � T0 and 
m(t; 0; x�) � x � 
1(t; 0; x+)o: (3:2)Set 
T = 
 \ ft � Tg for any 0 < T � T0. Let Tk(x) > 0 be su
h that for x 2 [x�; x+℄the 
hara
teristi
 
urve t ! �k(t; 0; x) remains in 
 for t in the maximal interval[0; Tk(x)℄ � [0; T0℄.We assume that the initial os
illation phase �0(x) in (1.2) is a s
alar fun
tion withnon-degenera
y, �00(x) 6= 0 for for all x 2 !. For all k 2 f1; : : : ;mg, �k(t; x) is theunique solution to the Cau
hy problemXk�k = �t�k + �k(t; x)�x�k = 0�k(0; x) = �0(x)) : (3:3)We suppose that the spa
e of phases� = span��1(t; x); : : : ; �m(t; x)	 in C1(
)satis�es the following transversality 
ondition:(TC) for all � 2 �, if Xk� � 0, then � is transverse to Xk meaning that, for all x 2 !,Xk�(�; 
k(�; 0; x)) 6= 0 almost everywhere on [0; Tk(x)℄.In order to formulate the equations for the leading pro�le of u", we need to de�nethe averaging operators Ek (k = 1; : : : ;m) on the spa
e of almost periodi
 fun
tions.Denote by R = f� 2 Rmj Pmi=1 �i�i � 0g the resonan
es in �, 	 = f� 2 Rm :h�; �i = 0 for all � 2 Rg the orthogonal 
omplement of R in Rm, and Ek the extensionof the following a
tion on the spa
e of almost periodi
 fun
tions on 	:Ek(eih�;�i) = � eih�;�i if � 2 R� ~�k0 otherwise (3:4)where ~�k = f� 2 Rm : �j = 0 for all j 6= kg. It is not diÆ
ult to see that this averagingoperator 
an be equivalently de�ned by an integral formula as(Eku)(�) = limT!1T�dim(	k) ZTQ u(� + ') d' (3:5)



Semilinear Geometri
 Opti
s 919for any almost periodi
 fun
tion u(�) on 	, where 	k = f� 2 	 : �k = 0g, Q is a 
ubein 	k of measure one, and d' is the Lebesgue measure on 	k.The following result on nonlinear geometri
 opti
s for 
lassi
al solutions with asymp-toti
 estimates in terms of the L1-norm has been proven in [7: Theorem 2.8.1℄. However,for the generalized asymptoti
 expansion in the Colombeau algebra, similar estimateson all derivatives are needed. We formulate these higher order estimates, together withthe known 
lassi
al assertions, in the proposition below; the proof of the additionalestimates is deferred to the Appendix. We will denote by P�(�) a polynomial, by ku"kTand kUkT the norm of u" and U in L1(
T ) and L1(
T �	), respe
tively, and by k � kthe norm in L1(!). Hypotheses (HP) and (TC) are assumed to hold throughout.Proposition 3.1. Assume the initial data a" 2 C1(!) admit an asymptoti
 ex-pansion a"(x) = a�x; �0(x)" �+ o(1) (3:6)in the sense of De�nition 2:1, where a(x; �) 2 C1p (! : R). Then:(1) There is a unique solution u" 2 C1(
) to problem (1:1), and the estimatek��(t;x)u"kT � CeCT�k�j�jx a"k+ P�� Xj�j<j�j k��(t;x)u"kT�� (3:7)holds for any � 2 N2 with C = C(krfkL1 ; k�kW 1;1(
)).(2) There exist Uk 2 C1p (
 : R) (k = 1; : : : ;m) su
h thatu"k(t; x) = Uk�t; x; �k(t; x)" �+ o(1) (3:8)in the sense of De�nition 2:1.(3) The Uk's are the unique solutions to the problemXkUk = Ekfk(U)Uk(0; x; �k) = ak(x; �k)) (k = 1; : : : ;m): (3:9)Moreover, the estimatek��(t;x)�
�UkT � CeCT�k�j�jx �j
j�0 ak+ P�;
� Xj�j<j�j k��(t;x)�
�UkT�� (3:10)holds for any multi-index (�; 
) with the same C as above.Proof. See AppendixWith these preparations, we are now in the position to formulate and prove our
entral result on geometri
 opti
s for Colombeau generalized solutions to the semilinearhyperboli
 problem (1.1). As noted in Se
tion 2, we 
onsider problem (1.1) in thealgebra EM [
℄ what 
on
erns the asymptoti
s. Uniqueness of solutions to the systems ofdi�erential equations (1.1) and (3.9) a
tually holds even in the fa
tor algebra G(
). Theinitial data a"(x) will belong to the algebra EM [!℄ and admit an asymptoti
 expansionin the sense of De�nition 2.4 with pro�les a(x; �0) 2 EM;p[!�R℄. For 
larity, we adopthere and in the sequel the boldfa
e notation for elements of the algebras EM or G.



920 Y.-G. Wang and M. OberguggenbergerTheorem 3.2. Suppose given initial data a"(x) = (a"�(x))�2I � EM [!℄ with pro�lesa(x; �0) = (a�(x; �0))�2I 2 EM;p[! � R℄ satisfyinga"(x) = a�x; �0(x)" �+ o(1)in the sense of (2:6). Then:(1) There are unique solutions u"(t; x) 2 EM [
℄ and U(t; x; �) 2 EM;p[
 � 	℄ toproblems (1:1) and (3:9), respe
tively, and they admit the asymptoti
 expansionu"(t; x) = U�t; x; �1(t; x)" ; : : : ; �m(t; x)" �+ o(1) (3:11)in the sense of (2:6).(2) The solutions u" and U to problems (1:1) and (3:9) are unique in G(
) andGp(
�	), respe
tively.Proof. For �xed � > 0, Proposition 3.1 provides smooth, 
lassi
al solutions u"�and U� with initial data a"� and a�, respe
tively. To show that these �-nets of 
lassi
alsolutions determine a generalized solution, estimates (2.2) have to be established. Theseestimates follow from (3.7) and (3.10), thus u" = (u"�)�2I 2 EM [
℄ and U = (U�)�2I 2EM;p[
 �	℄ provide solutions to problems (1.1) and (3.9), respe
tively. Uniqueness ofu" in G(
) 
an be found in [12℄ under assumption (HP).From the hypotheses on the initial data a" we have that there is p � 0 su
h thatsup�2I supx2! �p���a"�(x)� a��x; �0(x)" ���� �! 0 when "! 0:To prove the asymptoti
 expansion in (3.11) we follow �rst [7℄ for the zero orderestimate. By 
he
king ea
h step of the simultaneous Pi
ard iteration given in [7: Se
tion5℄ and using the global Lips
hitz property of f , it is not diÆ
ult to see that for thesolutions u" and U we havesup�2I sup(t;x)2
 �p���u"�(t; x)� U��t; x; �1(t; x)" ; : : : ; �m(t; x)" ���� �! 0 (3:12)when "! 0.To obtain the 
orresponding estimates in (3.12) for the derivatives of u"�(t; x), we a
twith di�erential operators "i+j�it�jx on the equations and pro
eed exa
tly as in the proofof Proposition 3.1 in the Appendix. Thus, we 
on
lude that the asymptoti
 property(3.11) holds.It remains to establish the uniqueness of U in Gp(
 � 	). Suppose that U(1) andU(2) are two solutions to problem (3.9) in Gp(
�	), whi
h means that there are N inNp(
�	) and b in Np(! �	) su
h thatXk(U(1)k �U(2)k ) = Ek�fk(U(1))� fk(U(1))�+Nk(U(1) �U(2))(0; x; �) = b(x; �) )
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s 921whi
h implies that U = U(1) �U(2) satis�esXkUk = Ek(rfk(V)U) +NkU(0; x; �) = b(x; �) ) (3:13)where V = �U(1) + (1 � �)U(2) for some � 2 (0; 1). By integrating (3.13) along
hara
teristi
 lines and using the global Lips
hitz property of f , we 
an easily obtainthat the di�eren
eU belongs to the null idealNp(
�	), thusU(1) = U(2) in Gp(
�	)We now turn to an appli
ation of this result to delta waves. Theorem 3.2 applies, inparti
ular, for initial data distributions, viewed as members of the Colombeau algebraEM [!℄ by means of the imbedding �. The 
orresponding solutions u" with pro�les U areColombeau generalized fun
tions. However, it has been observed in the non-os
illatory
ase that for distributions with dis
rete support and 
ertain nonlinear fun
tions f thegeneralized solution admits an asso
iated distribution, whi
h in turn is split into a sumof a regular and a singular part (see, e.g., [14, 15℄ and Rau
h and Reed [16℄). Our goal isto establish a similar result for the solution u" and its pro�le U, and further to 
on
ludethat the regular part in the asso
iated distribution of u" takes the 
orresponding termof U as its leading pro�le.For simpli
ity, we study the parti
ular 
ase where the leading term in the initialdata 
onsists of a measure with dis
rete support (that is, a sum of delta fun
tions atdi�erent points). In this 
ase, the smooth fun
tion f(t; x; u) in (1.1) is required to besublinear in u, that is, limjuj!1 jf(t; x; u)jjuj = 0uniformly in (t; x) 2 K for any relatively 
ompa
t subset K of 
.Let �k(x) = nXj=1 ajkÆ(x� �jk)be a measure with dis
rete support f�1k; : : : ; �nkg � !; � = (�1; : : : ; �m). The 
orre-sponding element of EM [!℄ is given by�� = (� � '�)�2I :Further, let a(x; �0) 2 C1p (! : R) � EM;p[! � R℄ be smooth and almost periodi
 withrespe
t to �0 2 R. Consider the Cau
hy problemLu" = f(u")u"(0; x) = ��(x) + a�x; �0(x)" �9=; : (3:14)From Theorem 3.2, we know that this problem has a unique generalized solution u" =(u"�)�2I 2 EM [
℄. In addition, the solution admits the asymptoti
 expansionu"(t; x) = U�t; x; �1(t; x)" ; : : : ; �m(t; x)" �+ o(1) (3:15)



922 Y.-G. Wang and M. Oberguggenbergerin the sense of De�nition 2.4, where the leading pro�le U = (U�)�2I 2 EM;p[
 � 	℄ isthe unique generalized solution to the problemXkUk = Ekfk(U)Uk(0; x; �k) = ��k(x) + ak(x; �k)) : (3:16)We will show that in this 
ase both u" and U admit an asso
iated distribution, bothsplitting in a singular and a regular part. To des
ribe these, we introdu
e the distribu-tional solution w to the linear system Lw = 0w(0; x) = �(x)) (3:17)and the smooth solution v" 2 C1(
) of the nonlinear problemLv" = f(v")v"(0; x) = a�x; �0(x)" �9=; : (3:18)A

ording to the 
lassi
al result in Proposition 3.1, v" has the 
lassi
al asymptoti
expansion v"(t; x) = V �t; x; �1(t; x)" ; : : : ; �m(t; x)" �+ o(1)where the leading term V is the 
lassi
al smooth solution of the problemXkVk = Ekfk(V )Vk(0; x; �k) = ak(x; �k)) : (3:19)The relation among these various 
lassi
al and generalized parts is des
ribed by thefollowing result:Proposition 3.3. Suppose f is sublinear and satis�es assumption (HP). Let �; a;u";U; v"; V and w be as des
ribed above. Then:(1) For ea
h " > 0, u" admits v" + w as asso
iated distribution.(2) U admits V + w as asso
iated distribution.Proof. Assertion (1) is a standard result on delta waves and 
an be found in [15℄or in Rau
h and Reed [16℄.Let w� be the smooth solution to problem (3.17), but with regularized initial dataw�(0; x) = � � '�(x). Using equations (3.17) and (3.19) we know that, for any � 2 Iand k 2 f1; : : : ;mg, Wk;� = Uk;� � Vk � wk;� satis�es��t + �k(t; x)�x�Wk;� = Ek�fk(U�)� fk(V + w�) +Q�Wk;�(0; x; �k) = 0 ) (3:20)where Q = fk(V + w�)� fk(V ). The L1lo
(
)-norm of the term Q is seen to go to zerowhen � ! 0 by using the sublinear property of f , the 
onvergen
e w� ! 0 for almostall (t; x) 2 
, and the Lebesgue dominated 
onvergen
e theorem.Integrating equations (3.20) along 
hara
teristi
 lines and using the global Lips
hitzproperty of f , we obtain that the L1lo
(
)-norm ofW� goes to zero when � ! 0. Finally,it is 
lear that w� ! w in the sense of distributions as � ! 0. This establishes assertion(2)
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s 923Remark 3.4. This result 
an be generalized in various dire
tions. First, one maytake f sublinear of order s 2 (0; 1℄ as in [15℄. Se
ond, depending on this order ofsublinearity s, the initial data �k may 
ontain derivatives of delta fun
tions as well, asin [15℄ and [16℄. Third, the os
illatory term a(�) need not be smooth. It would suÆ
ethat a(x; �0) 2 L1lo
(!;C0p(R)); then an additional regularization is required, but theresult remains true.4. Appendix: Proof of Proposition 3.1The lo
al existen
e of solutions u" and U to problems (1.1) and (3.9) and the zero-orderasymptoti
 expansion (3.8) in the L1-norm have been established in [7: Theorem 2.8.1℄.It remains to prove the additional estimates (3.7) and (3.10) as well as the estimates onthe derivatives needed for the asymptoti
 expansion (3.8) a

ording to De�nition 2.1.(1)At �rst, we 
onsider estimates (3.7). From (1.1), the solution u" 
an be expressedas u"k(t; x) = a"k�
k(0; t; x)�+ Z t0 fk�u"(s; 
k(s; t; x))�dswhi
h gives rise to ku"kkt � ka"kk+ C Z t0 ku"ks ds (A:1)by using the global Lips
hitz property of f(u) and f(0) = 0. It immediately followsfrom (A.1) that ku"kT � eCT ka"k. A
ting the operator �px on problem (1.1), we getL(�pxu") = rf(u") � �pxu" � �x�(t; x)�pxu" + F (f�qxu"g0�q<p)�pxu"(0; x) = �pxa"(x) ) (A:2)whi
h impliesk�pxu"kt � k�pxa"k+ C Z t0 k�pxu"ks ds+ Z t0 P� p�1Xq=0 k�qxu"ks�ds (A:3)be
ause in (A.2), F (�) is polynomially bounded. By using the Gronwall inequality in(A.3), estimate (3.7) for terms �pxu" with any p � 0 follows. The estimates of �qt �pxu"are easily obtained by using the equations for u" and indu
tion on q � 0.(2) Next we 
onsider estimates (3.10). The solutions Uk of (3.9) 
an be expressedas Uk(t; x; �k) = ak�
k(0; t; x); �k�+ Z t0 Ekfk(U)�s; 
k(s; t; x); �k�dswhi
h implies estimate (3.10) for the term kUkT by using the boundedness of the oper-ator Ek and 
ondition (HP). The estimates for the general terms k��(t;x)�
�UkT 
an beestablished in the same way as those for u" by a
ting ��x �
� on problem (3.9).(3) Finally, we study the asymptoti
 properties of "j�j��(t;x)u"(t; x) for any j�j > 0.



924 Y.-G. Wang and M. Oberguggenberger(a) A
ting "�x on problem (1.1), we obtain that v" = "�xu" solves the problemXkv"k = rfk(u")v" � �x�k(t; x)v"kv"k(0; x) = "�xa"k(x) ) (A:4)where the initial data satisfy "�xa"(x)��00(x)��0a�x; �0(x)" � = o(1) in L1(!). Applyingthe result of [7: Theorem 2.8.1℄ in problem (A.4), we obtainv"k(x)� Vk�t; x; �k(t; x)" � = o(1) (A:5)in L1(
) where the fun
tions Vk satisfyXkVk = Ek(rfk(U)V )� �x�k(t; x)VkVk(0; x; �k) = �00(x)��kak(x; �k) ) : (A:6)On the other hand, by a
ting the operators �x�k(t; x)��k on problem (3.9), we getthat Vk(t; x; �k) = �x�k(t; x)��kUk(t; x; �k) solve problem (A.6) by using [7: Lemma4.3.1℄ and Xk�k = 0. Thus, by invoking the uniqueness of solutions to (A.6), we knowthat (A.5) 
an be rewritten as("�x)u"k(t; x)� �x�k(t; x)��kUk�t; x; �k(t; x)" � = o(1) (A:7)in L1(
).(b) From the equations for u" we have "�tu"k = "fk(u")� �k("�xu"k) whi
h implies("�t)u"k(t; x)� �t�k(t; x)��kUk�t; x; �k(t; x)" � = o(1)in L1(
) by using (A.7) and Xk�k = 0 again.(
) A
ting "�x on problem (A.4), it follows that z"(t; x) = ("�x)2u"(t; x) solves theproblem Xkz"k = (r2fk(u")v"; v") +rfk(u") � z" � 2�x�kz"k � "�2x�kv"kz"k(0; x) = ("�x)2a"k(x) ) (A:8)where v" = "�xu", and the initial data satisfy ("�x)2a"(x) � (�00(x))2�2�0a�x; �0(x)" � =o(1) in L1(!). Applying the result of [7: Theorem 2.8.1℄ again in problem (A.8), weobtain z"k(t; x)� Zk�t; x; �k(t; x)" � = o(1) (A:9)in L1(
) where the fun
tions Zk satisfyXkZk = Ek�(r2fk(U)V; V ) +rfk(U)Z�� 2�x�kZkZk(0; x; �k) = (�00(x))2�2�kak(x; �k) ) (A:10)
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s 925by using (A.5).On the other hand, by a
ting the operators �x�k��k on problem (A.6) and using[7: Lemma 4.3.1℄ and Xk�k = 0 again, we get that Zk(t; x; �k) = (�x�k)2�2�kUk(t; x; �k)solves problem (A.10). Thus, (A.9) 
an be rewritten as("�x)2u"k(t; x)� (�x�k(t; x))2�2�kUk�t; x; �k(t; x)" � = o(1) (A:11)in L1(
) for any k 2 f1; : : : ;mg.(d) A
ting "2�x on the equations for u", it follows"2�2txu"k(t; x) = �"2�k(t; x)�2xu"k(t; x) + o(1)= �t�k�x�k�2�kUk�t; x; �k(t; x)" �+ o(1) (A:12)in L1(
) by using (A.11) and Xk�k = 0.(e) A
ting "2�t on the equations for u", it follows"2�2t u"k(t; x) = �"2�k(t; x)�2txu"k(t; x) + o(1)= (�t�k)2�2�kUk�t; x; �k(t; x)" �+ o(1)in L1(
) by using (A.12) and Xk�k = 0 again.Summarizing the above results from (a) to (e), we obtain the asymptoti
 property(3.9) in the norm k � k2;";K for any K �� 
. Su

essively, we 
an prove (3.9) in thenorm k � kk;";K for any K �� 
 and k � 3A
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