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Coerciveness Property
for a Class of Non-Smooth Functionals

D. Motreanu and V. V. Motreanu

Abstract. The paper establishes a general coerciveness property for a class of non-smooth func-
tionals satisfying an appropriate Palais-Smale condition. This result is obtained by applying
an abstract principle supplying qualitative information concerning the asymptotic behaviour
of a non-smooth functional. Comparison with other results in this field is provided.
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1. Introduction

An extensive work has been devoted in the setting of differentiable functionals to show
the basic property that the Palais-Smale condition implies the coerciveness (see, e.g.,
[1, 2, 7] and the references therein). The aim of this paper is to establish that this
assertion is essentially true for a large class of non-differentiable functionals, too.

The non-smooth functions for which we study this problem are those that can be
written as a sum ® + ¥ of a locally Lipschitz functional ® and a proper, convex, lower
semicontinuous functional ¥ (see relation (3.1) below). For a detailed study of this
class of non-smooth functionals from the point of view of critical point theory we refer
to Motreanu and Panagiotopoulos [8: Chapter 3].

Towards our purpose we use a suitable Palais-Smale condition for this class of non-
smooth functionals that reduces to the usual concepts in the differentiable situations as
well as in all the important non-smooth cases (see Chang [3] and Szulkin [9]). This new
formulation for the Palais-Smale condition in our non-smooth setting (see Definition
2.3) can be seen as a unification of the Palais-Smale conditions due to Chang [3] and
Szulkin [9] (see Definitions 2.1 and 2.2). The essential tools in our approach are the
calculus with generalized gradients developed by Clarke [4] and Ekeland’s variational
principle [5, 6].

Our coerciveness results stated in Corollaries 3.1 - 3.3 extend the corresponding
properties from the differentiable case (see [1, 2, 7]) to the non-smooth framework
of functionals of type (3.1) (for a detailed discussion see Remark 3.2). These results
are deduced from a general principle, namely Theorem 3.1, involving the asymptotic
behaviour of the respective non-smooth functionals. This result extends Proposition 1

Both authors: ” Al. 1. Cuza” University, Dept. Math., RO-6600 Iagi, Romania

ISSN 0232-2064 / $ 2.50 (© Heldermann Verlag Berlin



1UGO U. viotreanu and v. V. IViotreanu

in Brézis and Nirenberg [1] to the general class of functionals of form (3.1). Specifically,
our non-smooth coerciveness results are obtained by applying the general principle in
Theorem 3.1 in conjunction with the non-smooth version of Palais-Smale condition
formulated for the class of non-smooth functionals satisfying the structure hypothesis
(3.1).

The rest of the paper is organized as follows. Section 2 deals with three types
of Palais-Smale conditions for non-smooth functionals and their relationship. Section 3
contains the statements of the main results and the proofs of our coerciveness properties.
Section 4 presents the proof of our main abstract result.

2. Palais-Smale conditions

Throughout the paper X denotes a real Banach space endowed with the norm || - ||.
The notation X* stands for the dual space of X. For the sake of clarity we recall
the definition of the generalized directional derivative ®°(u;v) of a locally Lipschitz
functional ® : X — R at the point u € X in the direction v € X:

1
®°(u;v) = limsup n (®(w + tv) — ®(w)) (2.1)

w—>u
tl0

(see Clarke [4]). We recall three basic definitions of Palais-Smale conditions for non-
smooth functionals.

Definition 2.1 (Chang [3]). The locally Lipschitz functional ® : X — R satisfies
the Palais-Smale condition (in the sense of Chang) if every sequence (u,) C X with
®(u,,) bounded and for which there exists a sequence

Zn — 0 in X*, z, € 09(uy,) (2.2)

has a (strongly) convergent subsequence in X.

The notation 9® in (2.2) means the generalized gradient of the locally Lipschitz
functional ® (in the sense of Clarke [4]), that is

0P (u) = {m* € X*: (zy,v) < P°(uyv) for all v € X} (u € X) (2.3)

where ®° is defined in (2.1).

Definition 2.2 (Szulkin [9]). Let ® : X — R be a differentiable functional of
class C1 and let ¥ : X — R U {+0c} be a proper (i.e. # +oc) convex and lower
semicontinuous function. The functional I = ® + ¥ : X — R U {400} satisfies the
Palais-Smale condition (in the sense of Szulkin) if every sequence (u,) C X with I(u,,)
bounded and for which there exists a sequence (g,,) C RT with &, | 0 such that

D (u,) (v —up) + V(v) — U(u,) > —enllv — uy| (v eX) (2.4)

contains a (strongly) convergent subsequence in X.
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Definition 2.3 (Motreanu and Panagiotopoulos [8]). Let ® : X — R be a locally
Lipschitz functional and let ¥ : X — RU{+o0c} be a proper, convex and lower semicon-
tinuous function. The functional I = &+ ¥ : X — RU{+oo} satisfies the Palais-Smale
condition (in the sense of Motreanu and Panagiotopoulos) if every sequence (u,) C X
with I(u,) bounded and for which there exists a sequence (g,) C R* with ¢, | 0 such
that

D (U v — up) + W (v) — W(uy) > —enllv — un| (v e X) (2.5)

contains a (strongly) convergent subsequence in X.

In order to establish a relationship between the foregoing definitions, we need the
following result.

Lemma 2.1 (Szulkin [9]). Let X be a real Banach space and let x : X — RU{+o0}
be a lower semicontinuous convex function with x(0) = 0. If x(x) > —||z|| for allx € X,
then there exists some z € X* such that ||z||x+ <1 and x(z) > (z,z) for all z € X.

The result below points out a relationship between Definitions 2.1 - 2.3.

Proposition 2.1.
(1) If ¥ = 0, Definition 2.3 reduces to Definition 2.1.
(ii) If ® € C'(X,R), Definition 2.3 coincides with Definition 2.2.

Proof. (i) Let U = 0 in Definition 2.3. It is sufficient to show the equivalence
between relations (2.2) and (2.5). Suppose that property (2.2) holds. By relation (2.3)
it follows that

D (up;v) > (zpn,v) > —||zn]| ||v]| (v eX).

Therefore inequality (2.5) (with ¥ = 0) is verified for &,, = ||z,]|.

Conversely, we admit that (2.5) is satisfied. We apply Lemma 2.1 to x = i(l)o(un; ).
Since x is continuous, convex and (2.5) is satisfied (with ¥ = 0), the assumptions of
Lemma 2.1 are verified. Lemma 2.1 yields an element w,, € X* with ||w,| x~ < 1 and
i@"(un; x) > (wy, x) for all z € X. Choosing z,, = ,w,, we arrive at (2.2).

(ii) This assertion follows from the fact that ®° is equal to the Fréchet differential
@’ if the functional ® : X — R is of class C'. Therefore, in this case inequalities (2.4)
and (2.5) coincide. The proof of Proposition 2.1 is complete I

3. Main results

Our main result is stated below.
Theorem 3.1. Let ® : X — R be a locally Lipschitz functional and let ¥ : X —
R U {+oc} be a proper, conver, lower semicontinuous function. For the function

[=d+10 (3.1)

we suppose that
a := liminf I(v) € R. (3.2)

o]l =00
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Then for every sequence (e,) C RT with €, | 0 there exists a sequence (u,) C X
satisfying

ltup|| — oo as n — 0o
I(u,) > « as n — 0o (3.4)
and (2.5).
The proof of Theorem 3.1 is given in Section 4.

Corollary 3.1. Assume that the functional I : X — RU{+o0} satisfies the struc-
ture hypothesis (3.1), with ® and VU as in the statement of Theorem 3.1, together with

a > —00 (3.5)
where « is defined in (3.2), and
I verifies the Palais-Smale condition of Definition 2.3. (3.6)
Then I 18 coercive on X, i.e.
I(u) = 400 as ||u|| = oo. (3.7)

Proof. Arguing by contradiction we admit that the functional I in (3.1) is not
coercive. Since (3.7) does not hold there exists a sequence (v,,) C X satisfying ||v,, || — oo
and

a < liminf I(v,) < 4o00. (3.8)

n— 00

From (3.5) and (3.8) one obtains that o = liminfy, . /(v) € R. Consequently, we
may apply Theorem 3.1 to the functional 7 : X — R U {400} for a fixed sequence
(en) C R* with e, | 0. In this way a sequence (u,) C X is found fulfilling properties
(3.3), (3.4) and (2.5). According to assumption (3.6) it results that (u,) possesses a
convergent subsequence denoted again by (u,,), say u, — u as n — oc, for some u € X.
This contradicts assertion (3.3), which accomplishes the proof il

Corollary 3.2. Let ® : X — R be a locally Lipschitz functional which satisfies
the Palais-Smale condition of Definition 2.1 and lim inf), o ®(v) > —oco. Then ® is
coercive on X, i.e. ®(u) — 400 as ||u|| — occ.

Proof. Let us apply Corollary 3.1 with ¥ = 0. Then condition (3.5) with ¥ = 0 is
satisfied (for v introduced in (3.2)). By part (i) in Proposition 2.1 requirement (3.6) is
satisfied for I = ®. Then Corollary 3.1 leads to the desired result i

Corollary 3.3. Let ® : X — R be a function of class C' and let ¥ : X — R U
{+oc} be a proper, convex, lower semicontinuous function. Assume that the functional
I =®+ T : X — RU/{+oc} satisfies the Palais-Smale condition in the sense of
Definition 2.2 and fulfils also (3.5) where «a is introduced in (3.2). Then I is coercive
on X.

Proof. Let us apply Corollary 3.1 for I = &+ ¥ : X — RU {400}, with ® and
U as in Corollary 3.3. Since we supposed that property (3.5) holds, it remains to check
(3.6). This follows from Proposition 2.1/(ii). The proof is thus complete B
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Remark 3.1. If ® € C'(X,R) and ¥ = 0 in (3.1), Theorem 3.1 reduces to Propo-
sition 1 of Brézis and Nirenberg [1].

Remark 3.2. The case in (3.1) where ® is Gateaux differentiable and lower semi-
continuous has been studied in Caklovic, Li and Willem [2] (with ¥ = 0) and in Goeleven
[7]. Our Corollary 3.1 provides, in particular, non-differentiable versions of these re-
sults. Precisely, Corollary 3.1 covers the non-differentiable situation where, in (3.1),
® : X — R is locally Lipschitz and ¥ : X — R U {400} is proper, convex and lower
semicontinuous. Therefore Corollary 3.1 deals with different situations with respect to
[2] and [7]. Corollary 3.2 treats the purely locally Lipschitz case, i.e. ¥ = 0 in (3.1).
It extends Corollary 1 in [1] and allows to extend the main result in [2] to locally Lip-
schitz functionals. It overlaps with the main result in [2] if ® € C'(X,R) and @ is
bounded from below. Corollary 3.3 represents the version of Corollary 3.1 in the case
where ® € C'(X,R). Under the assumption that ® € C'(X,R) is bounded from below,
Corollary 3.3 has been obtained in [7].

Remark 3.3. Corollaries 3.1 - 3.3 correspond to the three concepts of Palais-Smale
conditions in Definitions 2.3, 2.1 and 2.2, respectively.

4. Proof of Theorem 3.1

The proof of Theorem 3.1 relies on the following version of Ekeland’s Variational Prin-
ciple.

Theorem 4.1 (Ekeland [5,6]). Let M be a complete metric space endowed with
distance d and let f : M — R U {+oo} be a proper, lower semicontinuous and bounded
from below function. Then for every number e > 0 and every point xy € M there exists
vg € M such that

fvo) < f(x0) — ed(vo, xo) (4.1)
f(x) > f(vg) —ed(vg,z) (z € M\ {vg}). (4.2)

Proof of Theorem 3.1. Suggested by the argument in the proof of Proposition 1
in [1], for each r > 0, we denote

m(r) = ||7%]ﬂ1£TI(u). (4.3)

Assumption (3.2) in conjunction with (4.3) leads to

a = lim m(r) € R. (4.4)

r—00

Assersion (4.4) ensures that for each € > 0 there exists 7. > 0 satisfying
a—e? < m(r) Vor>r.. (4.5)
For any fixed € > 0 let us choose a number 7. with

Te > max{re,2¢e}. (4.6)
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Using assumption (3.2), we can fix some ug = ug(e) € X such that
|luo|| > 27 and I(ug) < a + €2, (4.7)
The set M = M(e) C X given by
M={seX: o >7.) (4.8)

is a closed subset of X, so M is a complete metric space with respect to the metric
induced on M by the norm || - ||. The function I : X — R U {+oc} expressed in (3.1) is
lower semicontinuous on X, thus on M. By (4.3), (4.5) and (4.6) we derive that

I(u) > m(||Jul]) > a — & Vue X with ||ul| > 7. (4.9)

This estimate ensures that the function I is bounded from below on M. From (4.8) and
the first inequality in (4.7) it is seen that uy € M. Hence by the second relation in (4.7)
we know that the function I is proper on M. Since all the assumptions of Theorem
4.1 are fulfilled for the functional f = I‘M : M — R U {+oc}, it is allowed to apply
Theorem 4.1, where the fixed number £ > 0 and the point g = u( are the data entering
relations (4.5) - (4.7). Consequently, we find some v, € M such that

I(ve) < I(ug) — €l|lve — ugl| (4.10)
I(z) > I(ve) —gl||lve — z|| ¥V & # ve with ||z|| > 7. (4.11)

(see (4.1) and (4.2)).

Since v. € M, using relations (4.5), (4.6), (4.8), (4.3), (4.10) and the second in-
equality in (4.7), we have

a— e <m(T.) < I(ve) < I(ug) —€l|lve — upl|l < a+e* —¢l|lve — ugl.

This implies that
|ve — uo|| < 2e. (4.12)

Combining (4.12), the first inequality in (4.7) and (4.6) we deduce that
lvell > [|woll = [|ve — uol| > 27 — 2e > 7. (4.13)

From here it is clear that v. is an interior point of M defined in (4.8). This guaranties
that for an arbitrary v € X with v # v, it is true that x = v. + t(v — v.) belongs to the
interior of M in (4.8) whenever ¢ > 0 is sufficiently small. It is thus permitted to use
such a point = above in (4.11). By means of (3.1) and (4.11) we can write

O(ve + (v —ve)) + V(ve +t(v —ve)) > P(ve) + V(ve) — etl|v — ve| (4.14)

for all v € X \ {v:} and all ¢ > 0 sufficiently small. On the other hand, we observe from
inequality (4.10) and the second relation in (4.7) that ¥(v.) < +oc. On the basis of the
convexity of U : X — R U {400}, inequality (4.14) yields

D(ve + (v —ve)) =tV (ve) + W (v) > P(ve) — etf|v — ve|
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for all v € X \ {v.} and all ¢ > 0 small enough. Passing to the limit one obtains that

1
lim sup ;(@(ve +it(v—ve)) — P(ve)) + V(v) — U(ve) > —€l|lv — ve||
t10

for all v € X \ {v.}. Taking into account formula (2.1) we deduce that
D°(ve; v — ve) + VU(v) — U(ve) > —¢l|v — ve| (4.15)

for all v € X \ {v.}. Consider now a sequence (g,) C R™ with €, | 0. Corresponding to
it we may choose a sequence of positive numbers r.  — 400 as n — oo satisfying (4.5)
with e = &,,. We denote u,, = v., where we recall that v., € M = M(e,,) is the point
satisfying (4.15) with € = g, i.e., property (2.5) holds true. Since ||u,|| > 7. > r. (cf.
(4.8) and (4.6)), we obtain that property (3.3) is satisfied. In order to check relation
(3.4) we notice that (4.10) and the second inequality in (4.7) imply

I(uy) < I(ug) — enl|tn — ugl| < I(ug) < o + £2.
This combined with (3.3) and (3.2) expresses that

a < liminf I(u,) < limsup I (u,) < «

n—0Q n— oo

which establishes (3.4). The proof of Theorem 3.1 is complete B

References

[1] Brezis, H. and L. Nirenberg: Remarks on finding critical points. Commun. Pure Appl.
Math. 44 (1991), 939 — 963.

[2] Caklovic, L., Li, S. and M. Willem: A note on Palais-Smale condition and coercivity. Diff.
Int. Eq. 3 (1990), 799 — 800.

[3] Chang, K.-C.: Variational methods for non-differentiable functionals and their applica-
tions to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102 129.

[4] Clarke, F. H.: Optimization and Nonsmooth Analysis. New York: John Wiley-Intersci.
1983.

[6] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324  353.

[6] Ekeland, I.: Nonconvexr minimization problems. Bull. Amer. Math. Soc. (New Series) 1
(1979), 443 — 474.

[7] Goeleven, D.: A note on Palais-Smale condition in the sense of Szulkin. Diff. Int. Eq. 6
(1993), 1041 — 1043.

[8] Motreanu, D. and P. D. Panagiotopoulos: Minimaz Theorems and Qualitative Properties
of the Solutions of Hemivariational Inequalities and Applications. Dordrecht - Boston -
London: Kluwer Acad. Publ. 1999.

[9] Szulkin A.: Minimaz principles for lower semicontinuous functions and applications to
nonlinear boundary value problems. Ann. Inst. Henri Poincaré. Analyse nonlinéaire 3
(1986), 77 — 109.

Received 22.03.2000



