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Abstra
t. The paper establishes a general 
oer
iveness property for a 
lass of non-smooth fun
-tionals satisfying an appropriate Palais-Smale 
ondition. This result is obtained by applyingan abstra
t prin
iple supplying qualitative information 
on
erning the asymptoti
 behaviourof a non-smooth fun
tional. Comparison with other results in this �eld is provided.Keywords: Coer
iveness, Palais-Smale 
ondition, variational prin
ipleAMS subje
t 
lassi�
ation: 58E30, 49J52, 49J401. Introdu
tionAn extensive work has been devoted in the setting of di�erentiable fun
tionals to showthe basi
 property that the Palais-Smale 
ondition implies the 
oer
iveness (see, e.g.,[1, 2, 7℄ and the referen
es therein). The aim of this paper is to establish that thisassertion is essentially true for a large 
lass of non-di�erentiable fun
tionals, too.The non-smooth fun
tions for whi
h we study this problem are those that 
an bewritten as a sum � +	 of a lo
ally Lips
hitz fun
tional � and a proper, 
onvex, lowersemi
ontinuous fun
tional 	 (see relation (3.1) below). For a detailed study of this
lass of non-smooth fun
tionals from the point of view of 
riti
al point theory we referto Motreanu and Panagiotopoulos [8: Chapter 3℄.Towards our purpose we use a suitable Palais-Smale 
ondition for this 
lass of non-smooth fun
tionals that redu
es to the usual 
on
epts in the di�erentiable situations aswell as in all the important non-smooth 
ases (see Chang [3℄ and Szulkin [9℄). This newformulation for the Palais-Smale 
ondition in our non-smooth setting (see De�nition2.3) 
an be seen as a uni�
ation of the Palais-Smale 
onditions due to Chang [3℄ andSzulkin [9℄ (see De�nitions 2.1 and 2.2). The essential tools in our approa
h are the
al
ulus with generalized gradients developed by Clarke [4℄ and Ekeland's variationalprin
iple [5, 6℄.Our 
oer
iveness results stated in Corollaries 3.1 - 3.3 extend the 
orrespondingproperties from the di�erentiable 
ase (see [1, 2, 7℄) to the non-smooth frameworkof fun
tionals of type (3.1) (for a detailed dis
ussion see Remark 3.2). These resultsare dedu
ed from a general prin
iple, namely Theorem 3.1, involving the asymptoti
behaviour of the respe
tive non-smooth fun
tionals. This result extends Proposition 1Both authors: "Al. I. Cuza" University, Dept. Math., RO-6600 Ia�si, RomaniaISSN 0232-2064 / $ 2.50 
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1088 D. Motreanu and V. V. Motreanuin Br�ezis and Nirenberg [1℄ to the general 
lass of fun
tionals of form (3.1). Spe
i�
ally,our non-smooth 
oer
iveness results are obtained by applying the general prin
iple inTheorem 3.1 in 
onjun
tion with the non-smooth version of Palais-Smale 
onditionformulated for the 
lass of non-smooth fun
tionals satisfying the stru
ture hypothesis(3.1).The rest of the paper is organized as follows. Se
tion 2 deals with three typesof Palais-Smale 
onditions for non-smooth fun
tionals and their relationship. Se
tion 3
ontains the statements of the main results and the proofs of our 
oer
iveness properties.Se
tion 4 presents the proof of our main abstra
t result.2. Palais-Smale 
onditionsThroughout the paper X denotes a real Bana
h spa
e endowed with the norm k � k.The notation X� stands for the dual spa
e of X. For the sake of 
larity we re
allthe de�nition of the generalized dire
tional derivative �Æ(u; v) of a lo
ally Lips
hitzfun
tional � : X ! R at the point u 2 X in the dire
tion v 2 X:�Æ(u; v) = lim supw!ut#0 1t ��(w + tv)� �(w)� (2:1)(see Clarke [4℄). We re
all three basi
 de�nitions of Palais-Smale 
onditions for non-smooth fun
tionals.De�nition 2.1 (Chang [3℄). The lo
ally Lips
hitz fun
tional � : X ! R satis�esthe Palais-Smale 
ondition (in the sense of Chang) if every sequen
e (un) � X with�(un) bounded and for whi
h there exists a sequen
ezn ! 0 in X�; zn 2 ��(un) (2:2)has a (strongly) 
onvergent subsequen
e in X.The notation �� in (2.2) means the generalized gradient of the lo
ally Lips
hitzfun
tional � (in the sense of Clarke [4℄), that is��(u) = nx� 2 X� : hx�; vi � �Æ(u; v) for all v 2 Xo (u 2 X) (2:3)where �Æ is de�ned in (2.1).De�nition 2.2 (Szulkin [9℄). Let � : X ! R be a di�erentiable fun
tional of
lass C1 and let 	 : X ! R [ f+1g be a proper (i.e. 6� +1) 
onvex and lowersemi
ontinuous fun
tion. The fun
tional I = � + 	 : X ! R [ f+1g satis�es thePalais-Smale 
ondition (in the sense of Szulkin) if every sequen
e (un) � X with I(un)bounded and for whi
h there exists a sequen
e ("n) � R+ with "n # 0 su
h that�0(un)(v � un) + 	(v)�	(un) � �"nkv � unk (v 2 X) (2:4)
ontains a (strongly) 
onvergent subsequen
e in X.



Coer
iveness Property for Fun
tionals 1089De�nition 2.3 (Motreanu and Panagiotopoulos [8℄). Let � : X ! R be a lo
allyLips
hitz fun
tional and let 	 : X ! R[f+1g be a proper, 
onvex and lower semi
on-tinuous fun
tion. The fun
tional I = �+	 : X ! R[f+1g satis�es the Palais-Smale
ondition (in the sense of Motreanu and Panagiotopoulos) if every sequen
e (un) � Xwith I(un) bounded and for whi
h there exists a sequen
e ("n) � R+ with "n # 0 su
hthat �Æ(un; v � un) + 	(v)�	(un) � �"nkv � unk (v 2 X) (2:5)
ontains a (strongly) 
onvergent subsequen
e in X.In order to establish a relationship between the foregoing de�nitions, we need thefollowing result.Lemma 2.1 (Szulkin [9℄). Let X be a real Bana
h spa
e and let � : X ! R[f+1gbe a lower semi
ontinuous 
onvex fun
tion with �(0) = 0: If �(x) � �kxk for all x 2 X,then there exists some z 2 X� su
h that kzkX� � 1 and �(x) � hz; xi for all x 2 X.The result below points out a relationship between De�nitions 2.1 - 2.3.Proposition 2.1.(i) If 	 = 0, De�nition 2:3 redu
es to De�nition 2:1.(ii) If � 2 C1(X;R), De�nition 2:3 
oin
ides with De�nition 2:2.Proof. (i) Let 	 = 0 in De�nition 2.3. It is suÆ
ient to show the equivalen
ebetween relations (2.2) and (2.5). Suppose that property (2.2) holds. By relation (2.3)it follows that �Æ(un; v) � hzn; vi � �kznk kvk (v 2 X):Therefore inequality (2.5) (with 	 = 0) is veri�ed for "n = kznk.Conversely, we admit that (2.5) is satis�ed. We apply Lemma 2.1 to � = 1"n�Æ(un; �).Sin
e � is 
ontinuous, 
onvex and (2.5) is satis�ed (with 	 = 0), the assumptions ofLemma 2.1 are veri�ed. Lemma 2.1 yields an element wn 2 X� with kwnkX� � 1 and1"n�Æ(un;x) � hwn; xi for all x 2 X. Choosing zn = "nwn we arrive at (2.2).(ii) This assertion follows from the fa
t that �Æ is equal to the Fr�e
het di�erential�0 if the fun
tional � : X ! R is of 
lass C1. Therefore, in this 
ase inequalities (2.4)and (2.5) 
oin
ide. The proof of Proposition 2.1 is 
omplete3. Main resultsOur main result is stated below.Theorem 3.1. Let � : X ! R be a lo
ally Lips
hitz fun
tional and let 	 : X !R [ f+1g be a proper, 
onvex, lower semi
ontinuous fun
tion. For the fun
tionI = �+ 	 (3:1)we suppose that � := lim infkvk!1 I(v) 2 R: (3:2)



1090 D. Motreanu and V. V. MotreanuThen for every sequen
e ("n) � R+ with "n # 0 there exists a sequen
e (un) � Xsatisfying kunk ! 1 as n!1 (3:3)I(un)! � as n!1 (3:4)and (2:5).The proof of Theorem 3.1 is given in Se
tion 4.Corollary 3.1. Assume that the fun
tional I : X ! R[ f+1g satis�es the stru
-ture hypothesis (3:1), with � and 	 as in the statement of Theorem 3.1, together with� > �1 (3:5)where � is de�ned in (3:2), andI veri�es the Palais-Smale 
ondition of De�nition 2:3: (3:6)Then I is 
oer
ive on X, i.e.I(u)! +1 as kuk ! 1: (3:7)Proof. Arguing by 
ontradi
tion we admit that the fun
tional I in (3.1) is not
oer
ive. Sin
e (3.7) does not hold there exists a sequen
e (vn) � X satisfying kvnk ! 1and � � lim infn!1 I(vn) < +1: (3:8)From (3.5) and (3.8) one obtains that � = lim infkvk!1 I(v) 2 R. Consequently, wemay apply Theorem 3.1 to the fun
tional I : X ! R [ f+1g for a �xed sequen
e("n) � R+ with "n # 0. In this way a sequen
e (un) � X is found ful�lling properties(3.3), (3.4) and (2.5). A

ording to assumption (3.6) it results that (un) possesses a
onvergent subsequen
e denoted again by (un), say un ! u as n!1, for some u 2 X.This 
ontradi
ts assertion (3.3), whi
h a

omplishes the proofCorollary 3.2. Let � : X ! R be a lo
ally Lips
hitz fun
tional whi
h satis�esthe Palais-Smale 
ondition of De�nition 2:1 and lim infkvk!1�(v) > �1. Then � is
oer
ive on X, i.e. �(u)! +1 as kuk ! 1.Proof. Let us apply Corollary 3.1 with 	 = 0. Then 
ondition (3.5) with 	 = 0 issatis�ed (for � introdu
ed in (3.2)). By part (i) in Proposition 2.1 requirement (3.6) issatis�ed for I = �. Then Corollary 3.1 leads to the desired resultCorollary 3.3. Let � : X ! R be a fun
tion of 
lass C1 and let 	 : X ! R [f+1g be a proper, 
onvex, lower semi
ontinuous fun
tion. Assume that the fun
tionalI = � + 	 : X ! R [ f+1g satis�es the Palais-Smale 
ondition in the sense ofDe�nition 2:2 and ful�ls also (3:5) where � is introdu
ed in (3:2). Then I is 
oer
iveon X.Proof. Let us apply Corollary 3.1 for I = � + 	 : X ! R [ f+1g, with � and	 as in Corollary 3.3. Sin
e we supposed that property (3.5) holds, it remains to 
he
k(3.6). This follows from Proposition 2.1/(ii). The proof is thus 
omplete



Coer
iveness Property for Fun
tionals 1091Remark 3.1. If � 2 C1(X;R) and 	 = 0 in (3.1), Theorem 3.1 redu
es to Propo-sition 1 of Br�ezis and Nirenberg [1℄.Remark 3.2. The 
ase in (3.1) where � is Gâteaux di�erentiable and lower semi-
ontinuous has been studied in Caklovi
, Li and Willem [2℄ (with 	 = 0) and in Goeleven[7℄. Our Corollary 3.1 provides, in parti
ular, non-di�erentiable versions of these re-sults. Pre
isely, Corollary 3.1 
overs the non-di�erentiable situation where, in (3.1),� : X ! R is lo
ally Lips
hitz and 	 : X ! R [ f+1g is proper, 
onvex and lowersemi
ontinuous. Therefore Corollary 3.1 deals with di�erent situations with respe
t to[2℄ and [7℄. Corollary 3.2 treats the purely lo
ally Lips
hitz 
ase, i.e. 	 = 0 in (3.1).It extends Corollary 1 in [1℄ and allows to extend the main result in [2℄ to lo
ally Lip-s
hitz fun
tionals. It overlaps with the main result in [2℄ if � 2 C1(X;R) and � isbounded from below. Corollary 3.3 represents the version of Corollary 3.1 in the 
asewhere � 2 C1(X;R). Under the assumption that � 2 C1(X;R) is bounded from below,Corollary 3.3 has been obtained in [7℄.Remark 3.3. Corollaries 3.1 - 3.3 
orrespond to the three 
on
epts of Palais-Smale
onditions in De�nitions 2.3, 2.1 and 2.2, respe
tively.4. Proof of Theorem 3.1The proof of Theorem 3.1 relies on the following version of Ekeland's Variational Prin-
iple.Theorem 4.1 (Ekeland [5,6℄). Let M be a 
omplete metri
 spa
e endowed withdistan
e d and let f : M ! R [ f+1g be a proper, lower semi
ontinuous and boundedfrom below fun
tion. Then for every number " > 0 and every point x0 2M there existsv0 2M su
h that f(v0) � f(x0)� "d(v0; x0) (4:1)f(x) > f(v0)� "d(v0; x) (x 2M n fv0g): (4:2)Proof of Theorem 3.1. Suggested by the argument in the proof of Proposition 1in [1℄, for ea
h r > 0, we denote m(r) = infkuk�r I(u): (4:3)Assumption (3.2) in 
onjun
tion with (4.3) leads to� = limr!1m(r) 2 R: (4:4)Assersion (4.4) ensures that for ea
h " > 0 there exists r" > 0 satisfying�� "2 � m(r) 8 r � r": (4:5)For any �xed " > 0 let us 
hoose a number r" withr" � maxfr"; 2"g: (4:6)



1092 D. Motreanu and V. V. MotreanuUsing assumption (3.2), we 
an �x some u0 = u0(") 2 X su
h thatku0k � 2r" and I(u0) < �+ "2: (4:7)The set M =M(") � X given byM = fx 2 X : kxk � r"g (4:8)is a 
losed subset of X, so M is a 
omplete metri
 spa
e with respe
t to the metri
indu
ed on M by the norm k � k. The fun
tion I : X ! R[ f+1g expressed in (3.1) islower semi
ontinuous on X, thus on M . By (4.3), (4.5) and (4.6) we derive thatI(u) � m(kuk) � �� "2 8 u 2 X with kuk � r": (4:9)This estimate ensures that the fun
tion I is bounded from below on M . From (4.8) andthe �rst inequality in (4.7) it is seen that u0 2M . Hen
e by the se
ond relation in (4.7)we know that the fun
tion I is proper on M . Sin
e all the assumptions of Theorem4.1 are ful�lled for the fun
tional f = I��M : M ! R [ f+1g, it is allowed to applyTheorem 4.1, where the �xed number " > 0 and the point x0 = u0 are the data enteringrelations (4.5) - (4.7). Consequently, we �nd some v" 2M su
h thatI(v") � I(u0)� "kv" � u0k (4:10)I(x) > I(v")� "kv" � xk 8 x 6= v" with kxk � r" (4:11)(see (4.1) and (4.2)).Sin
e v" 2 M , using relations (4.5), (4.6), (4.8), (4.3), (4.10) and the se
ond in-equality in (4.7), we have�� "2 � m(r") � I(v") � I(u0)� "kv" � u0k < �+ "2 � "kv" � u0k:This implies that kv" � u0k < 2": (4:12)Combining (4.12), the �rst inequality in (4.7) and (4.6) we dedu
e thatkv"k � ku0k � kv" � u0k > 2r" � 2" � r": (4:13)From here it is 
lear that v" is an interior point of M de�ned in (4.8). This guarantiesthat for an arbitrary v 2 X with v 6= v" it is true that x = v"+ t(v� v") belongs to theinterior of M in (4.8) whenever t > 0 is suÆ
iently small. It is thus permitted to usesu
h a point x above in (4.11). By means of (3.1) and (4.11) we 
an write�(v" + t(v � v")) + 	(v" + t(v � v")) > �(v") + 	(v")� "tkv � v"k (4:14)for all v 2 X n fv"g and all t > 0 suÆ
iently small. On the other hand, we observe frominequality (4.10) and the se
ond relation in (4.7) that 	(v") < +1. On the basis of the
onvexity of 	 : X ! R [ f+1g, inequality (4.14) yields�(v" + t(v � v"))� t	(v") + t	(v) > �(v")� "tkv � v"k



Coer
iveness Property for Fun
tionals 1093for all v 2 X n fv"g and all t > 0 small enough. Passing to the limit one obtains thatlim supt#0 1t (�(v" + t(v � v"))� �(v")) + 	(v)�	(v") � �"kv � v"kfor all v 2 X n fv"g. Taking into a

ount formula (2.1) we dedu
e that�Æ(v"; v � v") + 	(v)�	(v") � �"kv � v"k (4:15)for all v 2 X n fv"g. Consider now a sequen
e ("n) � R+ with "n # 0. Corresponding toit we may 
hoose a sequen
e of positive numbers r"n ! +1 as n!1 satisfying (4.5)with " = "n. We denote un = v"n where we re
all that v"n 2 M = M("n) is the pointsatisfying (4.15) with " = "n, i.e., property (2.5) holds true. Sin
e kunk � r"n � r"n (
f.(4.8) and (4.6)), we obtain that property (3.3) is satis�ed. In order to 
he
k relation(3.4) we noti
e that (4.10) and the se
ond inequality in (4.7) implyI(un) � I(u0)� "nkun � u0k � I(u0) < �+ "2n:This 
ombined with (3.3) and (3.2) expresses that� � lim infn!1 I(un) � lim supn!1 I(un) � �whi
h establishes (3.4). The proof of Theorem 3.1 is 
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