

A Nonlinear Boundary Value Problem for a Nonlinear Ordinary Differential Operator in Weighted Sobolev Spaces

N. T. Long, B. T. Dung and T. M. Thuyet

Abstract. We use the Galerkin and compactness method in appropriate weighted Sobolev spaces to prove the existence of a unique weak solution of the nonlinear boundary valued problem

$$\left. \begin{array}{l} -\frac{1}{x^\gamma} \frac{d}{dx} M(x, u'(x)) + f(x, u(x)) = F(x) \quad (0 < x < 1) \\ |\lim_{x \rightarrow 0^+} x^{\gamma/p} u'(x)| < +\infty \\ M(1, u'(1)) + h(u(1)) = 0 \end{array} \right\}$$

where $\gamma > 0, p \geq 2$ are given constants and f, F, h, M are given functions.

Keywords: *Boundary value problems, ordinary differential operators, weak solutions, existence and uniqueness, Galerkin method, weighted Sobolev spaces*

AMS subject classification: 34B09, 34B15, 34L30

1. Introduction

We consider the nonlinear boundary value problem

$$\left. \begin{array}{l} -\frac{1}{x^\gamma} \frac{d}{dx} M(x, u'(x)) + f(x, u(x)) = F(x) \quad (0 < x < 1) \\ |\lim_{x \rightarrow 0^+} x^{\gamma/p} u'(x)| < +\infty \\ M(1, u'(1)) + h(u(1)) = 0 \end{array} \right\} \quad (1.1)$$

where

$\gamma > 0$ and $p \geq 2$ are given constants

f, F, h are given functions

Nguyen Thanh Long: Polytechnic Univ. of HoChiMinh City, Dept. Math., 268 Ly Thuong Kiet Str., Dist.10, HoChiMinh City, Vietnam; longnt@netnam2.org.vn

Bui Tien Dung: Univ. of HoChiMinh City, Dept. Math., 196 Pasteur Str., Dist.3, HoChiMinh City, Vietnam

Tran Minh Thuyet: Vietnam Nat. Univ. of HoChiMinh City, Dept. Math., 59 C Nguyen Dinh Chieu Str., Dist.3, Ho ChiMinh City, Vietnam

$M : (0, 1] \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition and is monotonically increasing with respect to the second variable.

In the case of $\gamma = 0$ the problem

$$\left. \begin{aligned} & -\frac{1}{x^\gamma} \frac{d}{dx} M(x, u'(x)) + f(x, u(x)) = F(x) \quad (0 < x < 1) \\ & u(0) = 0 \\ & M(1, u'(1)) + \gamma_1 G(1) \sin u(1) = 0 \end{aligned} \right\} \quad (1.2)$$

is related to the buckling of a nonlinear elastic bar with specific weight γ_0 immersed in a fluid with specific weight γ_1 that Tucsnak [1] has constructed in the case of

$$f(x, u) - F(x) = [-\lambda + (\gamma_0 - \gamma_1)g(x) - G'(1)] \sin u$$

where $\lambda > 0$ is a constant, g and G are given functions with some mechanical meaning, and $u(x)$ is the angle between the tangent of the bar in the buckled state of a point with curvilinear abscissa x and vertical axis Oy . Then, in the case of $g = \text{const}$ and $M(x, u') = M(u')$ being monotonically increasing and sufficiently smooth Tucsnak has studied the bifurcation of integral equations equivalent to problems (1.1) and (1.2) depending on a parameter λ .

We note that problem (1.1) with $\gamma = 0$ and $u'M(x, u') \geq C_1|u'|^p$ ($p > 1, C_1 > 0$) independent of x had been considered in [2]. In [6] problem (1.1) with $p = 2$, $M(x, u') = x^\gamma u'$ with $\gamma > 0$ and the boundary condition $u'(1) + h_1 u(1) = h_2$ with given constants $h_1 > 0$ and h_2 has been studied. At least, in [3, 4] the nonlinear Bessel differential equation

$$-\frac{1}{x} \frac{d}{dx} M(xu'(x)) + u^2 - u = 0 \quad (x > 0) \quad (1.3)$$

has been studied.

In this paper we use the Galerkin and compactness method in appropriate weighted Sobolev spaces to prove the existence of a unique weak solution of problem (1.1). The results obtained here generalize those of [1 - 4, 6].

2. Preliminary results, notations, function spaces

Put $\Omega = (0, 1)$ and $p' = \frac{p}{p-1}$. We omit the definitions of the usual function spaces $C^m(\bar{\Omega})$, $L^p(\Omega)$, $H^m(\Omega)$ and $W^{m,p}(\Omega)$. We denote by $L_\gamma^p(\Omega) \equiv L_\gamma^p$ the class of all measurable functions u defined on Ω for which

$$\|u\|_{p,\gamma} < \infty \quad (1 \leq p \leq \infty) \quad (2.1)$$

where

$$\begin{aligned} \|u\|_{p,\gamma} &= \left(\int_0^1 x^\gamma |u(x)|^p dx \right)^{\frac{1}{p}} \quad (1 \leq p < \infty) \\ \|u\|_{\infty,\gamma} &= \text{ess sup}_{0 < x < 1} |u(x)| \end{aligned}$$

and were we identify functions that are equal almost everywhere on Ω . The elements of L_γ^p are thus actually equivalence classes of measurable functions satisfying (2.1), two functions being equivalent if they are equal a.e. in Ω . Then L_γ^p is also a Banach space with respect to the norm $\|\cdot\|_{p,\gamma}$. In particular, L_γ^2 is a Hilbert space with usual scalar product $\langle u, v \rangle = \int_0^1 x^\gamma u(x)v(x) dx$ and norm $\|u\|_{2,\gamma} = \sqrt{\langle u, u \rangle}$. We denote by

$$W_\gamma^{1,p}(\Omega) \equiv W_\gamma^{1,p} = \{v \in L_\gamma^p : v' \in L_\gamma^p\} \quad (1 \leq p \leq \infty)$$

the real Banach space with respect to the norm

$$\begin{aligned} \|v\|_{1,p,\gamma} &= (\|v\|_{p,\gamma}^p + \|v'\|_{p,\gamma}^p)^{\frac{1}{p}} \quad (1 \leq p < \infty) \\ \|v\|_{1,\infty,\gamma} &= \max \{ \|v\|_{\infty,\gamma}, \|v'\|_{\infty,\gamma} \} \end{aligned}$$

with derivatives in the sense of distributions [8]. In defining the function space $W_\gamma^{1,p}(\Omega)$ with weight x^γ , we can also define $W_\gamma^{1,p}(\Omega)$ as the completion of the space

$$S_1 = \{u \in C^1(\bar{\Omega}) : \|u\|_{1,p,\gamma} < \infty\}$$

with respect to the norm $\|\cdot\|_{1,p,\gamma}$ (see Adams [8]).

The following imbedding inequality will be used in the sequence.

Lemma 2.1. *For every $u \in C^1(\bar{\Omega})$, $\gamma > 0$ and $p > 1$ we have*

$$\left. \begin{aligned} \|u\|_{p,\gamma}^p &\leq |u(1)|^p + K_1 \|u'\|_{p,\gamma}^p \\ |u(1)| &\leq K_2 \|u\|_{1,p,\gamma} \\ x^{\frac{\gamma}{p}} |u(x)| &\leq K_3 \|u\|_{1,p,\gamma} \\ \|u\|_{2,\gamma}^2 &\leq K_4 \|u\|_{1,p,\gamma} (|u(1)|^p + \|u'\|_{p,\gamma}^p)^{\frac{1}{p}} \quad (p \geq 2 - \frac{1}{\gamma}) \end{aligned} \right\} \quad (2.2)$$

where

$$K_1 = \left(\frac{p-1}{\gamma} \right)^{p-1}$$

$$K_2 = (\gamma + p)^{\frac{1}{p}}$$

$$K_3 = \max \{ 2^{\frac{1}{p}}, (\gamma + 2p - 1)^{\frac{1}{p}} \}$$

$$K_4 = K_3 \left(\frac{2^{p-1}}{1+(p-1)\gamma} \right)^{\frac{1}{p}}.$$

Proof. (i) Integrating by parts in the following integral, we get

$$\begin{aligned} \|u\|_{p,\gamma}^p &= \frac{|u(1)|^p}{1+\gamma} - \frac{p}{1+\gamma} \int_0^1 x^{1+\gamma} |u(x)|^{p-2} u(x) u'(x) dx \\ &=: \frac{|u(1)|^p}{1+\gamma} - \frac{p}{1+\gamma} I \end{aligned} \quad (2.3)$$

where by using the Hölder inequality

$$|I| = \left| \int_0^1 x^{\frac{\gamma}{p}} u'(x) x^{1+\frac{\gamma}{p}} |u(x)|^{p-2} u(x) dx \right| \leq \|u'\|_{p,\gamma} \|u\|_{p,\gamma}^{p-1}. \quad (2.4)$$

It follows that

$$(1 + \gamma)\|u\|_{p,\gamma}^p \leq |u(1)|^p + p\|u'\|_{p,\gamma}\|u\|_{p,\gamma}^{p-1}.$$

Using the Hölder inequality

$$ab \leq \frac{1}{p}\varepsilon^{-p}a^p + \frac{1}{p'}\varepsilon^{p'}b^{p'} \quad (\varepsilon > 0, a \geq 0, b \geq 0)$$

it follows that

$$(1 + \gamma)\|u\|_{p,\gamma}^p \leq |u(1)|^p + \varepsilon^{-p}\|u'\|_{p,\gamma}^p + (p - 1)\varepsilon^{p'}\|u\|_{p,\gamma}^p$$

where $(p - 1)\varepsilon^{p'} = \gamma$. Hence (2.2)₁ is deduced.

(ii) Similarly, it follows from (2.3), (2.4) and the Hölder inequality with $\varepsilon = 1$ that

$$|u(1)|^p = (1 + \gamma)\|u\|_{p,\gamma}^p + pI \leq (p + \gamma)\|u\|_{p,\gamma}^p + \|u'\|_{p,\gamma}^p. \quad (2.5)$$

Hence (2.2)₂ is deduced.

(iii) We have for all $x \in [0, 1]$

$$\begin{aligned} x^\gamma|u(x)|^p &= |u(1)|^p - \int_x^1 \frac{d}{dy}(y^\gamma|u(y)|^p) dy \\ &= |u(1)|^p - \gamma \int_x^1 y^{\gamma-1}|u(y)|^p dy - p \int_x^1 y^\gamma|u(y)|^{p-2}u(y)u'(y) dy \end{aligned}$$

where by using the Hölder inequality the later integral in the right-hand side is estimated as

$$\left| \int_x^1 y^\gamma|u(y)|^{p-2}u(y)u'(y) dy \right| \leq \|u\|_{p,\gamma}^{p-1}\|u'\|_{p,\gamma}.$$

Taking together we deduce that

$$x^\gamma|u(x)|^p \leq |u(1)|^p + p\|u\|_{p,\gamma}^{p-1}\|u'\|_{p,\gamma}.$$

We again use the Hölder inequality with $\varepsilon = 1$ to get from (2.5) that

$$x^\gamma|u(x)|^p \leq (p + \gamma)\|u\|_{p,\gamma}^p + \|u'\|_{p,\gamma}^p + (p - 1)\|u\|_{p,\gamma}^p + \|u'\|_{p,\gamma}^p.$$

Hence (2.2)₃ is proved.

(iv) Let $p \geq 2 - \frac{1}{\gamma}$ and $p > 1$. We have from (2.2)₃ that

$$\|u\|_{2,\gamma}^2 = \int_0^1 x^{\frac{\gamma}{p}}|u(x)|x^{\frac{\gamma}{p'}}|u(x)| dx \leq K_3\|u\|_{1,p,\gamma} \int_0^1 x^{\frac{\gamma}{p'}}|u(x)| dx. \quad (2.6)$$

On the other hand, using the Hölder inequality we obtain the inequalities

$$\begin{aligned} |u(x)|^p &\leq 2^{p-1} \left[|u(1)|^p + \left(\int_x^1 |u'(y)|^p dy \right)^p \right] \\ &\leq 2^{p-1} \left[|u(1)|^p + (1-x)^{p-1} \int_x^1 |u'(y)|^p dy \right] \end{aligned}$$

and

$$\left(\int_0^1 x^{\frac{\gamma}{p}} |u(x)| dx \right)^p \leq \int_0^1 x^{(p-1)\gamma} |u(x)|^p dx.$$

Hence, Taking together we deduce that

$$\begin{aligned} & \left(\int_0^1 x^{\frac{\gamma}{p}} |u(x)| dx \right)^p \\ & \leq \frac{2^{p-1} |u(1)|^p}{1 + (p-1)\gamma} + 2^{p-1} \int_0^1 x^{(p-1)\gamma} (1-x)^{p-1} dx \int_x^1 |u'(y)|^p dy. \end{aligned} \quad (2.7)$$

Inverting the variables of integration x and y in the last integral we estimate that integral as

$$\begin{aligned} & \int_0^1 x^{(p-1)\gamma} (1-x)^{p-1} dx \int_x^1 |u'(y)|^p dy \\ & = \int_0^1 |u'(y)|^p dy \int_0^y x^{(p-1)\gamma} (1-x)^{p-1} dx \\ & \leq \int_0^1 |u'(y)|^p dy \int_0^y x^{(p-1)\gamma} dx \\ & \leq \frac{1}{1 + (p-1)\gamma} \int_0^1 y^{1+(p-1)\gamma} |u'(y)|^p dy \end{aligned} \quad (2.8)$$

and note that $y^{1+(p-1)\gamma} \leq y^\gamma$ for all $y \in [0, 1]$ and $p \geq 2 - \frac{1}{\gamma}$. Then (2.2)₄ is deduced from (2.6) - (2.8) ■

Remark 1. The results (2.2)_{1,2} proves that $(|u(1)|^p + \|u'\|_{p,\gamma}^p)^{\frac{1}{p}}$ and $\|u\|_{1,p,\gamma}$ are two equivalent norms on $W_\gamma^{1,p}(\Omega)$ and

$$\frac{1}{1 + K_1} \|u\|_{1,p,\gamma}^p \leq |u(1)|^p + \|u'\|_{p,\gamma}^p \leq (1 + K_2^p) \|u\|_{1,p,\gamma}^p \quad (2.9)$$

for all $u \in W_\gamma^{1,p}(\Omega)$.

Lemma 2.2. *The imbedding $W_\gamma^{1,p}(\Omega) \hookrightarrow L_\gamma^2(\Omega)$ ($p > 1$) is continuous if $p \geq 2 - \frac{1}{\gamma}$, and compact if $p \geq 2$.*

Proof. For $p \geq 2 - \frac{1}{\gamma}$ the continuity of the imbedding $W_\gamma^{1,p}(\Omega) \hookrightarrow L_\gamma^2(\Omega)$ is deduced from (2.2)₄ and (2.9). For $p \geq 2$ we have $W_\gamma^{1,p}(\Omega) \hookrightarrow W_\gamma^{1,2}(\Omega) \hookrightarrow L_\gamma^2(\Omega)$ and on the other hand the imbedding $W_\gamma^{1,2}(\Omega) \hookrightarrow L_\gamma^2(\Omega)$ is compact (see [5]). Hence, $W_\gamma^{1,p}(\Omega) \hookrightarrow L_\gamma^2(\Omega)$ is also compact ■

Remark 2. We also note that

$$\lim_{x \rightarrow 0^+} x^{\frac{\gamma}{p}} u(x) = 0 \quad (u \in W_\gamma^{1,p}(\Omega)) \quad (2.10)$$

(see [7: p. 128/Lemma 5.40]). On the other hand, by $W^{1,p}(\varepsilon, 1) \hookrightarrow C^0([\varepsilon, 1])$ ($0 < \varepsilon < 1$) and

$$\varepsilon^{\frac{\gamma}{p}} \|u\|_{W^{1,p}(\varepsilon, 1)} \leq \|u\|_{1,p,\gamma} \quad (u \in W_\gamma^{1,p}, 0 < \varepsilon < 1) \quad (2.11)$$

it follows that

$$u|_{[\varepsilon, 1]} \in C^0([\varepsilon, 1]) \quad (0 < \varepsilon < 1). \quad (2.12)$$

From (2.10) and (2.12) we deduce that

$$x^{\frac{\gamma}{p}} u \in C^0(\bar{\Omega}) \quad (u \in W_\gamma^{1,p}(\Omega)). \quad (2.13)$$

Put $H = L_\gamma^2(\Omega)$ and $V = W_\gamma^{1,p}(\Omega)$ with $p > 1$ and $p \geq 2 - \frac{1}{\gamma}$. From the result of Lemma 2.2 with $p \geq 2 - \frac{1}{\gamma}$, V is continuously embedded into H . Furthermore, V is dense in H since $C^1(\bar{\Omega})$ is dense in H ; identifying H with H' (the dual of H), we have $V \hookrightarrow H \hookrightarrow V'$. On the other hand, the notation $\langle \cdot, \cdot \rangle$ is used for the pairing between V and V' .

3. Theorem on existence and uniqueness

We assume that $p \geq 2$ and formulate the hypotheses

- (M₁) $M : (0, 1] \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition, i.e. $M(\cdot, y)$ is measurable on $(0, 1]$ for every $y \in \mathbb{R}$ and $M(x, \cdot)$ is continuous on \mathbb{R} for a.e. $x \in (0, 1]$.
- (M₂) There exist a constant $C_1 > 0$ and a function $q_1 \in L^1(\Omega)$ such that $yM(x, y) \geq C_1 x^\gamma |y|^p - |q_1(x)|$.
- (M₃) There exist a constant $C_2 > 0$ and a function q_2 with $x^{-\frac{\gamma}{p}} q_2 \in L^{p'}(\Omega)$ and $\lim_{x \rightarrow 0^+} x^{-\frac{\gamma}{p}} |q_2(x)| < \infty$ such that $|M(x, y)| \leq C_2 x^\gamma |y|^{p-1} + |q_2(x)|$.
- (M₄) M is monotonically increasing with respect to the second variable, i.e. $(M(x, y) - M(x, \tilde{y}))(y - \tilde{y}) \geq 0$ for all $y, \tilde{y} \in \mathbb{R}$ and a.e. $x \in \Omega$.

Furthermore, we formulate the hypotheses

- (F₁) $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition.
- (F₂) There exist constants $C_3 > 0$ and $1 < r < p$ and a function $q_3 \in L_\gamma^1(\Omega)$ such that $yf(x, y) + C_3 |y|^r \geq -|q_3(x)|$ for all $y \in \mathbb{R}$ and a.e. $x \in \Omega$.
- (F₃) There exist a constant $C_4 > 0$ and a function $q_4 \in L_\gamma^{p'}(\Omega)$ such that $|f(x, y)| \leq C_4 |y|^{p-1} + |q_4(x)|$ for all $y \in \mathbb{R}$ and a.e. $x \in \Omega$.

Finally, we formulate the hypothesis

- (H₁) For $h \in C^0(\mathbb{R}; \mathbb{R})$ there exist two constants $C_5, C'_5 > 0$ with $uh(u) \geq C_5 |u|^p - C'_5$ for all $u \in \mathbb{R}$.

Suppose that

$$F \in V'. \quad (3.1)$$

Remark 3. In hypothesis (F₂), $r = p$ still holds if $C_3 > 0$ is sufficiently small (see Remark 6).

The weak solution of problem (1.1) is formed from the following variational

Problem. Find $u \in V$ such that

$$\int_0^1 M(x, u'(x))v'(x) dx + h(u(1))v(1) + \langle f(x, u(x)), v \rangle = \langle F, v \rangle \quad (3.2)$$

for all $v \in V$.

Remark 4. By (2.13), the terms $u(1)$ and $v(1)$ appearing in (3.2) are defined for every $u, v \in V$. We obtain (3.2) by formally multiplying both sides of (1.1)₁ by $x^\gamma v \in V$ and then integrating by parts when taking conditions (1.1)_{2,3}, (2.10) and hypothesis (M₃).

Then we have the following

Theorem 1. Let $F \in V'$ and let hypotheses (M₁) - (M₄), (F₁) - (F₃) and (H₁) hold. Then the variational problem (3.2) has a solution. Furthermore, if $M(x, \cdot), f(x, \cdot), h$ are non-decreasing, i.e.

$$\left. \begin{aligned} (M(x, y) - M(x, \tilde{y}))(y - \tilde{y}) &\geq 0 \\ (f(x, y) - f(x, \tilde{y}))(y - \tilde{y}) &\geq 0 \\ (h(y) - h(\tilde{y}))(y - \tilde{y}) &\geq 0 \end{aligned} \right\} \quad (3.3)$$

for all $y, \tilde{y} \in \mathbb{R}$ and a.e. $x \in \Omega$ where two of the three inequalities above are strict in the case $y \neq \tilde{y}$, then the solution is unique.

On the other hand, uniqueness of the solution also holds if condition (3.3) is replaced by the hypothesis

(A₁) There exist constants $C_6, C_7, C_8 > 0$ with $0 < C_1 < \min \{C_8, \frac{C_6}{K_1}\}$ such that

- (i) $(M(x, y) - M(x, \tilde{y}))(y - \tilde{y}) \geq C_6 x^\gamma |y - \tilde{y}|^p$
- (ii) $(f(x, y) - f(x, \tilde{y}))(y - \tilde{y}) \geq -C_7 |y - \tilde{y}|^p$
- (iii) $(h(y) - h(\tilde{y}))(y - \tilde{y}) \geq C_8 |y - \tilde{y}|^p$

for all $y, \tilde{y} \in \mathbb{R}$ and a.e. $x \in \Omega$.

Proof. Since V is separable there exists a sequence of linear independent elements $\{w_j\}$ which is total in V . We find u_m under the form

$$u_m = \sum_{j=1}^m c_{mj} w_j \quad (3.4)$$

where c_{mj} satisfy the nonlinear equation system

$$\int_0^1 M(x, u'_m(x))w'_j(x) dx + h(u_m(1))w_j(1) + \langle f(x, u_m(x)), w_j \rangle = \langle F, w_j \rangle. \quad (3.5)$$

By the Brouwer lemma (see [8: p. 53/Lemma 4.3]) it follows from hypotheses (M₁) - (M₃), (F₁) - (F₃) and (H₁) that system (3.4) - (3.5) has a solution u_m . Multiplying the

j^{th} equation of system (3.5) by c_{mj} and then adding these equations for $j = 1, 2, \dots, m$ we have

$$\int_0^1 M(x, u'_m(x)) u'_m(x) dx + h(u_m(1)) u_m(1) + \langle f(x, u_m(x)), u_m \rangle = \langle F, u_m \rangle. \quad (3.6)$$

By using hypotheses (M_2) , (F_2) , (H_1) and (2.9), (3.1) we obtain we obtain

$$\begin{aligned} C_0 \|u_m\|_{1,p,\gamma}^p &\leq C_3 \int_0^1 x^\gamma |u_m(x)|^r dx \\ &\quad + \|F\|_{V'} \|u_m\|_{1,p,\gamma} + C'_5 + \|q_1\|_{L^1(\Omega)} + \|q_3\|_{1,\gamma} \end{aligned} \quad (3.7)$$

where $C_0 = \frac{\min\{C_1, C_5\}}{1+K_1}$. Using the Hölder inequality

$$ab \leq \frac{1}{p} \varepsilon_1^p a^p + \frac{1}{p'} \varepsilon_1^{-p'} b^{p'} \quad (\varepsilon_1 > 0, a \geq 0, b \geq 0)$$

we get the inequality

$$\|F\|_{V'} \|u_m\|_{1,p,\gamma} \leq \frac{1}{p} \varepsilon_1^p \|u_m\|_{1,p,\gamma}^p + \frac{1}{p'} \varepsilon_1^{-p'} \|F\|_{V'}^{p'} \quad (3.8)$$

where $\frac{1}{p} \varepsilon_1^p = \frac{C_0}{4}$. We also note that $|u_m|^r \leq \frac{r}{p} \varepsilon_2^{p/r} |u_m|^p + \frac{p-r}{p \varepsilon_2^{p/p-r}}$ for all $\varepsilon_2 > 0$. Hence we have

$$C_3 \int_0^1 x^\gamma |u_m(x)|^r dx \leq C_3 \frac{r}{p} \varepsilon_2^{p/r} \|u_m\|_{p,\gamma}^p + \frac{C_3}{1+\gamma} \frac{p-r}{p \varepsilon_2^{p/p-r}} \quad (3.9)$$

where $C_3 \frac{r}{p} \varepsilon_2^{p/r} = \frac{C_0}{4}$. Combining (3.7) - (3.9) we obtain

$$\|u_m\|_{1,p,\gamma} \leq C \quad (3.10)$$

where C is a constant independent of m . From hypothesis (M_3) and (3.10) it follows that

$$\|x^{-\frac{\gamma}{p}} M(x, u'_m)\|_{L^{p'}} \leq C_2 \|u'_m\|_{p,\gamma}^{p-1} + \|x^{-\gamma/p} q_2\|_{L^{p'}} \leq C. \quad (3.11)$$

On the other hand, it follows from hypothesis (F_3) and (3.10) that

$$\|x^{\frac{\gamma}{p'}} f(x, u_m)\|_{L^{p'}} \leq C_4 \|u_m\|_{p,\gamma}^{p-1} + \|q_4\|_{p',\gamma} \leq C \quad (3.12)$$

where C is a constant independent of m .

By means of (3.10), (3.11) and Lemma 2.2 the sequence $\{u_m\}$ has a subsequence still denoted by $\{u_m\}$ such that

$$\left. \begin{aligned} u_m &\rightarrow u && \text{in } V \text{ weakly} \\ u_m &\rightarrow u && \text{in } H \text{ strongly and a.e. in } \Omega \\ x^{-\frac{\gamma}{p}} M(x, u'_m) &\rightarrow \chi && \text{in } L^{p'} \text{ weakly} \end{aligned} \right\}. \quad (3.13)$$

Note that because the embedding $W^{1,p}(\varepsilon, 1) \hookrightarrow C^0([\varepsilon, 1])$ ($0 < \varepsilon < 1$) is compact, by (2.11) and (3.10) $\{u_m\}$ has a subsequence still denoted $\{u_m\}$ such that $u_m|_{[\varepsilon, 1]} \rightarrow u|_{[\varepsilon, 1]}$ in $C^0([\varepsilon, 1])$. Hence

$$\left. \begin{array}{l} u_m(1) \rightarrow u(1) \\ h(u_m(1)) \rightarrow h(u(1)) \end{array} \right\}. \quad (3.14)$$

On the other hand, it follows from hypothesis (F_1) and (3.13)₂ that

$$x^{\frac{\gamma}{p'}} f(x, u_m) \rightarrow x^{\frac{\gamma}{p'}} f(x, u) \quad \text{a.e. } x \in \Omega. \quad (3.15)$$

We shall need the following lemma, the proof of which can be found in [9].

Lemma 3.1. *Let Q be an open bounded set of \mathbb{R}^N and $G, G_m \in L^q(Q)$ ($1 < q < \infty$) such that $G_m \rightarrow G$ a.e. in Ω and $\|G_m\|_{L^q(Q)} \leq C$, with C being a constant independent of m . Then $G_m \rightarrow G$ weakly in $L^q(Q)$.*

Applying Lemma 3.1 with $N = 1$, $q = p'$, $Q = \Omega$, $G_m = x^{\frac{\gamma}{p'}} f(x, u_m)$ and $G = x^{\frac{\gamma}{p'}} f(x, u)$ we deduce from (3.12) and (3.15) that

$$x^{\frac{\gamma}{p'}} f(x, u_m) \rightarrow x^{\frac{\gamma}{p'}} f(x, u) \quad \text{weakly in } L^{p'}. \quad (3.16)$$

If we pass to the limit in equation (3.5) we find without difficulty from (3.13)₃, (3.14)₂ and (3.16) that u satisfies the equation

$$\int_0^1 x^{\frac{\gamma}{p}} \chi v'(x) dx + h(u(1))v(1) + \langle f(x, u), v \rangle = \langle F, v \rangle \quad (3.17)$$

for all $u \in V$. So we shall prove the existence of the solution of the variational problem (3.2) if we show that $\chi = x^{-\frac{\gamma}{p}} M(x, u')$. From (3.4) and (3.5) we can deduce

$$\begin{aligned} & \int_0^1 M(x, u'_m(x)) u'_m(x) dx \\ &= -h(u_m(1)) u_m(1) - \langle f(x, u_m(x)), u_m \rangle + \langle F, u_m \rangle. \end{aligned} \quad (3.18)$$

By using (3.13)_{1,2}, (3.14), (3.16) and (3.17) and passing to the limit in (3.18) as $m \rightarrow +\infty$ we have

$$\lim_{m \rightarrow +\infty} \int_0^1 M(x, u'_m(x)) u'_m(x) dx = \int_0^1 x^{\frac{\gamma}{p}} \chi(x) u'(x) dx. \quad (3.19)$$

We deduce from (3.13)_{1,3} and (3.19) that

$$\begin{aligned} & \lim_{m \rightarrow +\infty} \int_0^1 (M(x, u'_m(x)) - M(x, \theta(x))) (u'_m(x) - \theta(x)) dx \\ &= \int_0^1 (x^{\frac{\gamma}{p}} \chi(x) - M(x, \theta(x))) (u'(x) - \theta(x)) dx \end{aligned}$$

for all $\theta \in L_\gamma^p$. Using the monotonicity property of M , we obtain

$$\int_0^1 (x^{\frac{\gamma}{p}} \chi(x) - M(x, \theta(x))) (u'(x) - \theta(x)) dx \geq 0$$

for all $\theta \in L_\gamma^p$. If we choose here $\theta = u' - \lambda w$ with $\lambda > 0$ and $w \in L_\gamma^p$ and let $\lambda \rightarrow 0_+$, we easily deduce that $\chi = x^{-\frac{\gamma}{p}} M(x, u')$ and the existence proof is completed.

To prove uniqueness let u and v be two solutions of the variational problem (3.2). Then $w = u - v$ satisfies the equality

$$\begin{aligned} & \int_0^1 (M(x, u'(x)) - M(x, v'(x))) w'(x) dx \\ & + (h(u(1)) - h(v(1))) w(1) + \langle f(x, u) - f(x, v), w \rangle = 0. \end{aligned} \quad (3.20)$$

If (3.3) holds, then evidently $u = v$. If hypothesis (A₁) holds, by (3.20) and (2.7) we have

$$C_6 \|w'\|_{p,\gamma}^p + C_8 |w(1)|^p \leq C_7 \|w\|_{p,\gamma}^p$$

and

$$\begin{aligned} C_6 \|w'\|_{p,\gamma}^p + C_8 |w(1)|^p & \geq \min \left\{ C_8, \frac{C_6}{K_1} \right\} (K_1 \|w'\|_{p,\gamma}^p + |w(1)|^p) \\ & \geq \min \left\{ C_8, \frac{C_6}{K_1} \right\} \|w\|_{p,\gamma}^p, \end{aligned}$$

respectively, and since $0 < C_7 < \min \left\{ C_8, \frac{C_6}{K_1} \right\}$ we deduce that $w = 0$. Theorem 1 is proved completely ■

Remark 5. In [3], corresponding to $p = 2$ and $\gamma = 1$, we have proved that the nonlinear Bessel differential equation (1.4) associated with the boundary conditions $u(0) = 1$ and $u(+\infty) = 0$ has at least one solution. Wherein, the nonlinear term $u^2 - u$ is non-monotonic. One of the solutions above is constructed from the boundary value problem (1.4) in the interval $a < x < b$ associated with the boundary condition $u(a) = 1$ and $u(b) = 0$ wherein $x_i < a < b < x_{i+1}$ and x_i, x_{i+1} are two consecutive zeros of the first order Bessel function J_0 . Formation of a counterexample for the function $f(x, u)$ not satisfying the assumption to be monotonically increasing with respect u to so that the solution of (3.2) is not unique is an open problem.

Remark 6. Theorem 1 still holds if hypothesis (F₂) is replaced by the hypothesis

(F'₂) There exist a constant C_3 with $0 < C_3 < \min \left\{ C_5, \frac{C_1}{K_1} \right\}$ and a function $q_3 \in L_\gamma^1$ such that $yf(x, y) + C_3|y|^p \geq -|q_3(x)|$ for all $y \in \mathbb{R}$ and a.e. $x \in \Omega$.

In fact, from hypotheses (M₂), (F'₂), (H₁) and (3.1), (3.6) we can obtain the following inequality similar to (3.7)

$$\begin{aligned} & C_1 \|u'_m\|_{p,\gamma}^p + C_5 |u_m(1)|^p \\ & \leq C_3 \|u_m\|_{p,\gamma}^p + \|F\|_{V'} \|u_m\|_{1,p,\gamma} + \|q_1\|_{L^1(\Omega)} + \|q_3\|_{1,\gamma} + C'_5. \end{aligned}$$

Choosing C_3^* such that $0 < C_3 < C_3^* < \min \{C_5, \frac{C_1}{K_1}\}$ it follows from (2.2)_{1,3} that

$$\left(1 - \frac{C_3^*}{C_3}\right) \frac{\min\{C_1, C_5\}}{1 + K_1} \|u_m\|_{1,p,\gamma}^p \leq \|F\|_{V'} \|u_m\|_{1,p,\gamma} + \|q_1\|_{L^1(\Omega)} + \|q_3\|_{1,\gamma} + C'_5.$$

Hence, we obtain (3.10).

Remark 7. In Theorem 1 hypotheses (M₂), (M₄), (F'₂), (H₁) are implied by hypothesis (A₁). Indeed, it follows from (A₁) that

$$\begin{aligned} (\widetilde{M}_2) \quad & yM(x, y) \geq \widetilde{C}_1 x^\gamma |y|^p - |\widetilde{q}_1(x)| \\ (\widetilde{F}_2) \quad & yf(x, y) + \widetilde{C}_3 |y|^p \geq -|\widetilde{q}_3(x)| \\ (\widetilde{H}_1) \quad & yh(y) \geq \widetilde{C}_5 |y|^p - \widetilde{C}'_5 \end{aligned}$$

where

$$\left. \begin{aligned} \widetilde{C}_1 &= C_6 - \frac{\varepsilon^p}{p} > 0 \\ \widetilde{C}_3 &= C_7 + \frac{\varepsilon^p}{p} > 0 \\ \widetilde{C}_5 &= C_8 - \frac{\varepsilon^p}{p} > 0 \\ \widetilde{C}'_5 &= \frac{\varepsilon^{-p'}}{p'} |h(0)|^{p'} \end{aligned} \right\} \quad \text{and} \quad \left. \begin{aligned} \widetilde{q}_1(x) &= \frac{\varepsilon^{-p'}}{p'} x^{-\frac{\gamma p'}{p}} |q_2(x)|^{p'} \in L^1 \\ \widetilde{q}_3(x) &= \frac{\varepsilon^{-p'}}{p'} |q_4(x)|^{p'} \in L_\gamma^1 \end{aligned} \right\}.$$

From the condition $0 < C_7 < \min \{C_8, \frac{C_6}{K_1}\}$ we obtain the condition $0 < \widetilde{C}_3 < \min \{\widetilde{C}_5, \frac{\widetilde{C}_1}{K_1}\}$ with $\varepsilon > 0$ sufficiently small. We then have the following

Theorem 2. *Let $F \in V'$ and let hypotheses (M₁), (M₃), (F₁), (F₃), (A₁) hold. Then problem (3.2) has a unique solution.*

Remark 8. Theorem 2 still holds if hypothesis (A₁) is implied by the following hypothesis

(A₂) There exist constants C_6, C_7, C_8 with $0 < C_8 < \frac{1}{K_2^p} \min\{C_6, C_7\}$ such that, for all $y, \tilde{y} \in \mathbb{R}$ and a.e. $x \in \Omega$.

- (i) $(M(x, y) - M(x, \tilde{y}))(y - \tilde{y}) \geq C_6 x^\gamma |y - \tilde{y}|^p$
- (ii) $(f(x, y) - f(x, \tilde{y}))(y - \tilde{y}) \geq C_7 |y - \tilde{y}|^p$
- (iii) $(h(y) - h(\tilde{y}))(y - \tilde{y}) \geq -C_8 |y - \tilde{y}|^p$.

In fact, from (3.1), (3.6) and hypotheses (A₂), (M₁), (M₃), (F₁), (F₃) we obtain

$$\begin{aligned} & \min\{\widetilde{C}_1, \widetilde{C}_3\} \|u_m\|_{1,p,\gamma}^p \\ & \leq \left(\widetilde{C}_5 K_2^p + \frac{\varepsilon^p}{p} \right) \|u_m\|_{1,p,\gamma}^p + \frac{\varepsilon^{-p'}}{p'} \|F\|_{V'}^{p'} + \|\widetilde{q}_1\|_{L^1(\Omega)} + \|\widetilde{q}_3\|_{1,\gamma} + \widetilde{C}'_5 \end{aligned}$$

for all $\varepsilon > 0$ where

$$\left. \begin{array}{l} \widetilde{C}_1 = C_6 - \frac{\varepsilon^p}{p} \\ \widetilde{C}_3 = C_7 - \frac{\varepsilon^p}{p} \\ \widetilde{C}_5 = C_8 + \frac{\varepsilon^p}{p} \\ \widetilde{C}'_5 = \frac{\varepsilon^{-p'}}{p'} |h(0)|^{p'} \end{array} \right\} \quad \text{and} \quad \left. \begin{array}{l} \widetilde{q}_1(x) = \frac{\varepsilon^{-p'}}{p'} x^{-\frac{\gamma p'}{p}} |q_2(x)|^{p'} \\ \widetilde{q}_3(x) = \frac{\varepsilon^{-p'}}{p'} |q_4(x)|^{p'} \end{array} \right\}.$$

It follows from the condition $0 < C_8 < \frac{1}{K_2^p} \min\{C_6, C_7\}$ that there exists $\varepsilon > 0$ such that $\min\{\widetilde{C}_1, \widetilde{C}_3\} > \tilde{C}_5 K_2^p + \frac{\varepsilon^p}{p}$. Hence we obtain that $\|u_m\|_{1,p,\gamma} \leq C$ where C is a constant independent of m . We then have the following

Theorem 3. *Let (3.1) and let hypotheses (A₂), (M₁), (M₃), (F₁), (F₃) hold. Then problem (3.2) has a unique solution.*

Acknowledgements. The authors would like to thank the referee for having kindly contributed most valuable suggestions in the first version of the paper.

References

- [1] Tucsnak, M.: *Buckling of nonlinearly elastic rods immersed in a fluid*. Bull. Math. Soc. Sci. Math. R.S. Roumanie. 33 (1989), 173 – 181.
- [2] Long, N. T. and T. V. Lang: *The problem of buckling of a nonlinearly elastic bar immersed in a fluid*. Vietnam J. Math. 24 (1996), 131 – 142.
- [3] Long, N. T., Ortiz, E. L. and A. P. N. Dinh: *On the existence of a solution of a boundary value problem for a nonlinear Bessel equation on an unbounded interval*. Proc. Royal Irish Acad. 95A (1995), 237 – 247.
- [4] Long, N. T., Ortiz, E. L. and A. P. N. Dinh: *A nonlinear Bessel differential equation associated with Cauchy condition*. Computers Math. Appl. 31 (1996), 131 – 139.
- [5] Long, N. T. and A. P. N. Dinh: *Periodic solutions for a nonlinear parabolic equation associated with the penetration of a magnetic field into a substance*. Computers Math. Appl. 30 (1995), 63 – 78.
- [6] Nghia, N. H. and N. T. Long: *On a nonlinear boundary value problem with a mixed nonhomogeneous condition*. Vietnam J. Math. 26 (1998), 301 – 309.
- [7] Adams, R. A.: *Sobolev Spaces*. New York: Acad. Press 1975.
- [8] Lions, J. L.: *Quelques méthodes de résolution des problèmes aux limites non-linéaires*. Paris: Dunod Gauthier-Villars 1969.

Received 25.06.1999; in revised form 14.06.2000