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ompa
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es to prove the existen
e of a unique weak solution of the nonlinear boundary valuedproblem � 1x
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 > 0; p � 2 are given 
onstants and f;F; h;M are given fun
tions.Keywords: Boundary value problems, ordinary di�erential operators, weak solutions, exis-ten
e and uniqueness, Galerkin method, weighted Sobolev spa
esAMS subje
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lassi�
ation: 34B09, 34B15, 34L301. Introdu
tionWe 
onsider the nonlinear boundary value problem� 1x
 ddxM(x; u0(x)) + f(x; u(x)) = F (x) (0 < x < 1)jlimx!0+x
=pu0(x)j < +1M(1; u0(1)) + h(u(1)) = 0
9>>>=>>>; (1:1)where
 > 0 and p � 2 are given 
onstantsf; F; h are given fun
tionsNguyen Thanh Long: Polyte
hni
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1036 N. T. Long et. al.M : (0; 1℄ � R ! R satis�es the Carath�eodory 
ondition and is monotoni
allyin
reasing with respe
t to the se
ond variable.In the 
ase of 
 = 0 the problem� 1x
 ddxM(x; u0(x)) + f(x; u(x)) = F (x) (0 < x < 1)u(0) = 0M(1; u0(1)) + 
1G(1) sinu(1) = 0 9>>=>>; (1:2)is related to the bu
kling of a nonlinear elasti
 bar with spe
i�
 weight 
0 immersed ina 
uid with spe
i�
 weight 
1 that Tu
snak [1℄ has 
onstru
ted in the 
ase off(x; u)� F (x) = �� �+ (
0 � 
1)g(x)�G0(1)� sinuwhere � > 0 is a 
onstant, g and G are given fun
tions with some me
hani
al meaning,and u(x) is the angle between the tangent of the bar in the bu
kled state of a pointwith 
urvilinear abs
issa x and verti
al axis Oy. Then, in the 
ase of g = 
onst andM(x; u0) = M(u0) being monotoni
ally in
reasing and suÆ
iently smooth Tu
snak hasstudied the bifur
ation of integral equations equivalent to problems (1.1) and (1.2)depending on a parameter �.We note that problem (1.1) with 
 = 0 and u0M(x; u0) � C1ju0jp (p > 1; C1 > 0)independent of x had been 
onsidered in [2℄. In [6℄ problem (1.1) with p = 2,M(x; u0) =x
u0 with 
 > 0 and the boundary 
ondition u0(1) + h1u(1) = h2 with given 
onstantsh1 > 0 and h2 has been studied. At least, in [3, 4℄ the nonlinear Bessel di�erentialequation � 1x ddxM(xu0(x)) + u2 � u = 0 (x > 0) (1:3)has been studied.In this paper we use the Galerkin and 
ompa
tness method in appropriate weightedSobolev spa
es to prove the existen
e of a unique weak solution of problem (1.1). Theresults obtained here generalize those of [1 - 4, 6℄.2. Preliminary results, notations, fun
tion spa
esPut 
 = (0; 1) and p0 = pp�1 . We omit the de�nitions of the usual fun
tion spa
esCm(
), Lp(
), Hm(
) and Wm;p(
). We denote by Lp
(
) � Lp
 the 
lass of allmeasurable fun
tions u de�ned on 
 for whi
hkukp;
 <1 (1 � p � 1) (2:1)where kukp;
 = �Z 10 x
 ju(x)jpdx� 1p (1 � p <1)kuk1;
 = ess sup0<x<1 ju(x)j



A Nonlinear Boundary Value Problem 1037and were we identify fun
tions that are equal almost everywhere on 
. The elementsof Lp
 are thus a
tually equivalen
e 
lasses of measurable fun
tions satisfying (2.1), twofun
tions being equivalent if they are equal a.e. in 
. Then Lp
 is also a Bana
h spa
ewith respe
t to the norm k � kp;
 . In parti
ular, L2
 is a Hilbert spa
e with usual s
alarprodu
t hu; vi = R 10 x
u(x)v(x) dx and norm kuk2;
 =phu; ui. We denote byW 1;p
 (
) �W 1;p
 = �v 2 Lp
 : v0 2 Lp
	 (1 � p � 1)the real Bana
h spa
e with respe
t to the normkvk1;p;
 = �kvkpp;
 + kv0kpp;
� 1p (1 � p <1)kvk1;1;
 = max�kvk1;
; kv0k1;
	with derivatives in the sense of distributions [8℄. In de�ning the fun
tion spa
e W 1;p
 (
)with weight x
 , we 
an also de�ne W 1;p
 (
) as the 
ompletion of the spa
eS1 = �u 2 C1(�
) : kuk1;p;
 <1	with respe
t to the norm k � k1;p;
 (see Adams [8℄).The following imbedding inequality will be used in the sequen
e.Lemma 2.1. For every u 2 C1(�
), 
 > 0 and p > 1 we havekukpp;
 � ju(1)jp +K1ku0kpp;
ju(1)j � K2kuk1;p;
x 
p ju(x)j � K3kuk1;p;
kuk22;
 � K4kuk1;p;
(ju(1)jp + ku0kpp;
) 1p (p � 2� 1

9>>>>=>>>>; (2:2)where K1 = �p�1
 �p�1K2 = (
 + p) 1pK3 = maxf2 1p ; (
 + 2p� 1) 1p gK4 = K3� 2p�11+(p�1)
 � 1p :Proof. (i) Integrating by parts in the following integral, we getkukpp;
 = ju(1)jp1 + 
 � p1 + 
 Z 10 x1+
 ju(x)jp�2u(x)u0(x) dx=: ju(1)jp1 + 
 � p1 + 
 I (2:3)where by using the H�older inequalityjIj = ����Z 10 x 
p u0(x)x1+ 
p0 ju(x)jp�2u(x) dx���� � ku0kp;
kukp�1p;
 : (2:4)



1038 N. T. Long et. al.It follows that (1 + 
)kukpp;
 � ju(1)jp + pku0kp;
kukp�1p;
 :Using the H�older inequalityab � 1p"�pap + 1p0 "p0bp0 (" > 0; a � 0; b � 0)it follows that (1 + 
)kukpp;
 � ju(1)jp + "�pku0kpp;
 + (p� 1)"p0kukpp;
where (p� 1)"p0 = 
. Hen
e (2.2)1 is dedu
ed.(ii) Similarly, it follows from (2.3), (2.4) and the H�older inequality with " = 1 thatju(1)jp = (1 + 
)kukpp;
 + p I � (p+ 
)kukpp;
 + ku0kpp;
 : (2:5)Hen
e (2.2)2 is dedu
ed.(iii) We have for all x 2 [0; 1℄x
 ju(x)jp = ju(1)jp � Z 1x ddy (y
ju(y)jp) dy= ju(1)jp � 
 Z 1x y
�1ju(y)jpdy � p Z 1x y
 ju(y)jp�2u(y)u0(y) dywhere by using the H�older inequality the later integral in the right-hand side is estimatedas ����Z 1x y
 ju(y)jp�2u(y)u0(y) dy���� � kukp�1p;
 ku0kp;
 :Taking together we dedu
e thatx
 ju(x)jp � ju(1)jp + pkukp�1p;
 ku0kp;
:We again use the H�older inequality with " = 1 to get from (2.5) thatx
 ju(x)jp � (p+ 
)kukpp;
 + ku0kpp;
 + (p� 1)kukpp;
 + ku0kpp;
:Hen
e (2.2)3 is proved.(iv) Let p � 2� 1
 and p > 1. We have from (2.2)3 thatkuk22;
 = Z 10 x 
p ju(x)jx 
p0 ju(x)j dx � K3kuk1;p;
 Z 10 x 
p0 ju(x)j dx: (2:6)On the other hand, using the H�older inequality we obtain the inequalitiesju(x)jp � 2p�1�ju(1)jp + �Z 1x ju0(y)jpdy�p �� 2p�1�ju(1)jp + (1� x)p�1 Z 1x ju0(y)jpdy�



A Nonlinear Boundary Value Problem 1039and �Z 10 x 
p0 ju(x)j dx�p � Z 10 x(p�1)
 ju(x)jpdx:Hen
e, Taking together we dedu
e that�Z 10 x 
p0 ju(x)j dx�p� 2p�1ju(1)jp1 + (p� 1)
 + 2p�1 Z 10 x(p�1)
(1� x)p�1dx Z 1x ju0(y)jpdy: (2:7)Inverting the variables of integration x and y in the last integral we estimate thatintegral as Z 10 x(p�1)
(1� x)p�1dx Z 1x ju0(y)jpdy= Z 10 ju0(y)jpdy Z y0 x(p�1)
(1� x)p�1dx� Z 10 ju0(y)jpdy Z y0 x(p�1)
dx� 11 + (p� 1)
 Z 10 y1+(p�1)
 ju0(y)jpdy (2:8)
and note that y1+(p�1)
 � y
 for all y 2 [0; 1℄ and p � 2 � 1
 . Then (2.2)4 is dedu
edfrom (2.6) - (2.8)Remark 1. The results (2.2)1;2 proves that (ju(1)jp + ku0kpp;
) 1p and kuk1;p;
 aretwo equivalent norms on W 1;p
 (
) and11 +K1 kukp1;p;
 � ju(1)jp + ku0kpp;
 � (1 +Kp2 )kukp1;p;
 (2:9)for all u 2W 1;p
 (
).Lemma 2.2. The imbedding W 1;p
 (
) ,! L2
(
) (p > 1) is 
ontinuous if p � 2� 1
 ,and 
ompa
t if p � 2.Proof. For p � 2� 1
 the 
ontinuity of the imbeddingW 1;p
 (
) ,! L2
(
) is dedu
edfrom (2.2)4 and (2.9). For p � 2 we have W 1;p
 (
) ,! W 1;2
 (
) ,! L2
(
) and on theother hand the imbedding W 1;2
 (
) ,! L2
(
) is 
ompa
t (see [5℄). Hen
e, W 1;p
 (
) ,!L2
(
) is also 
ompa
tRemark 2. We also note thatlimx!0+ x 
p u(x) = 0 �u 2W 1;p
 (
)� (2:10)(see [7: p. 128/Lemma 5.40). On the other hand, byW 1;p("; 1) ,! C0(["; 1℄) (0 < " < 1)and " 
p kukW 1;p(";1) � kuk1;p;
 �u 2W 1;p
 ; 0 < " < 1� (2:11)



1040 N. T. Long et. al.it follows that uj[";1℄ 2 C0(["; 1℄) (0 < " < 1): (2:12)From (2.10) and (2.12) we dedu
e thatx 
p u 2 C0(�
) �u 2W 1;p
 (
)�: (2:13)Put H = L2
(
) and V = W 1;p
 (
) with p > 1 and p � 2 � 1
 . From the result ofLemma 2.2 with p � 2 � 1
 , V is 
ontinuously embedded into H. Furthermore, V isdense in H sin
e C1(
) is dense in H; identifying H with H 0 (the dual of H), we haveV ,! H ,! V 0. On the other hand, the notation h�; �i is used for the pairing between Vand V 0.3. Theorem on existen
e and uniquenessWe assume that p � 2 and formulate the hypotheses(M1) M : (0; 1℄�R! R satis�es the Carath�eodory 
ondition, i.e. M(�; y) is measur-able on (0; 1℄ for every y 2 R and M(x; �) is 
ontinuous on R for a.e. x 2 (0; 1℄.(M2) There exist a 
onstant C1 > 0 and a fun
tion q1 2 L1(
) su
h that yM(x; y) �C1x
 jyjp � jq1(x)j.(M3) There exist a 
onstant C2 > 0 and a fun
tion q2 with x� 
p q2 2 Lp0(
) andlimx!0+ x� 
p jq2(x)j <1 su
h that jM(x; y)j � C2x
 jyjp�1 + jq2(x)j.(M4) M is monotoni
ally in
reasing with respe
t to the se
ond variable, i.e. (M(x; y)�M(x; ~y))(y � ~y) � 0 for all y; ~y 2 R and a.e. x 2 
.Furthermore, we formulate the hypotheses(F1) f : 
� R! R satis�es the Carath�eodory 
ondition.(F2) There exist 
onstants C3 > 0 and 1 < r < p and a fun
tion q3 2 L1
(
) su
hthat yf(x; y) + C3jyjr � �jq3(x)j for all y 2 R and a.e. x 2 
.(F3) There exist a 
onstant C4 > 0 and a fun
tion q4 2 Lp0
 (
) su
h that jf(x; y)j �C4jyjp�1 + jq4(x)j for all y 2 R and a.e. x 2 
.Finally, we formulate the hypothesis(H1) For h 2 C0(R;R) there exist two 
onstants C5; C 05 > 0 with uh(u) � C5jujp�C 05for all u 2 R.Suppose that F 2 V 0: (3:1)Remark 3. In hypothesis (F2), r = p still holds if C3 > 0 is suÆ
iently small (seeRemark 6).The weak solution of problem (1.1) is formed from the following variational



A Nonlinear Boundary Value Problem 1041Problem. Find u 2 V su
h thatZ 10 M(x; u0(x))v0(x) dx+ h(u(1))v(1) + hf(x; u(x)); vi= hF; vi (3:2)for all v 2 V .Remark 4. By (2.13), the terms u(1) and v(1) appearing in (3.2) are de�ned forevery u; v 2 V . We obtain (3.2) by formally multiplying both sides of (1.1)1 by x
v 2 Vand then integrating by parts when taking 
onditions (1.1)2;3, (2.10) and hypothesis(M3).Then we have the followingTheorem 1. Let F 2 V 0 and let hypotheses (M1) - (M4), (F1) - (F3) and (H1) hold.Then the variational problem (3:2) has a solution. Furthermore, if M(x; �); f(x; �); h arenon-de
reasing, i.e. �M(x; y)�M(x; ~y)�(y � ~y) � 0�f(x; y)� f(x; ~y)�(y � ~y) � 0�h(y)� h(~y)�(y � ~y) � 09>=>; (3:3)for all y; ~y 2 R and a.e. x 2 
 where two of the three inequalities above are stri
t in the
ase y 6= ~y, then the solution is unique.On the other hand, uniqueness of the solution also holds if 
ondition (3:3) is repla
edby the hypothesis(A1) There exist 
onstants C6; C7; C8 > 0 with 0 < C1 < min�C8; C6K1	 su
h that(i) �M(x; y)�M(x; ~y)�(y � ~y) � C6x
 jy � ~yjp(ii) �f(x; y)� f(x; ~y)�(y � ~y) � �C7jy � ~yjp(iii) �h(y)� h(~y)�(y � ~y) � C8jy � ~yjpfor all y; ~y 2 R and a.e. x 2 
.Proof. Sin
e V is separable there exists a sequen
e of linear independent elementsfwjg whi
h is total in V . We �nd um under the formum = mXj=1 
mjwj (3:4)where 
mj satisfy the nonlinear equation systemZ 10 M(x; u0m(x))w0j(x) dx+ h(um(1))wj(1) + hf(x; um(x)); wji = hF;wji: (3:5)By the Brouwer lemma (see [8: p. 53/Lemma 4.3) it follows from hypotheses (M1) -(M3), (F1) - (F3) and (H1) that system (3.4) - (3.5) has a solution um. Multiplying the



1042 N. T. Long et. al.jth equation of system (3.5) by 
mj and then adding these equations for j = 1; 2; : : : ;mwe haveZ 10 M(x; u0m(x))u0m(x)dx+ h(um(1))um(1) + hf(x; um(x)); umi = hF; umi: (3:6)By using hypotheses (M2), (F2), (H1) and (2.9), (3.1) we obtain we obtainC0kumkp1;p;
 � C3 Z 10 x
 jum(x)jrdx+ kFkV 0kumk1;p;
 + C 05 + kq1kL1(
) + kq3k1;
 (3:7)where C0 = minfC1;C5g1+K1 . Using the H�older inequalityab � 1p"p1ap + 1p0 "�p01 bp0 ("1 > 0; a � 0; b � 0we get the inequalitykFkV 0kumk1;p;
 � 1p"p1kumkp1;p;
 + 1p0 "�p01 kFkp0V 0 (3:8)where 1p"p1 = C04 . We also note that jumjr � rp"p=r2 jumjp + p�rp"p=p�r2 for all "2 > 0. Hen
ewe have C3 Z 10 x
 jum(x)jrdx � C3 rp"p=r2 kumkpp;
 + C31 + 
 p� rp"p=p�r2 (3:9)where C3 rp"p=r2 = C04 . Combining (3.7) - (3.9) we obtainkumk1;p;
 � C (3:10)where C is a 
onstant independent of m. From hypothesis (M3) and (3.10) it followsthat kx� 
pM(x; u0m)kLp0 � C2ku0mkp�1p;
 + kx�
=pq2kLp0 � C: (3:11)On the other hand, it follows from hypothesis (F3) and (3.10) thatkx 
p0 f(x; um)kLp0 � C4kumkp�1p;
 + kq4kp0;
 � C (3:12)where C is a 
onstant independent of m.By means of (3.10), (3.11) and Lemma 2.2 the sequen
e fumg has a subsequen
estill denoted by fumg su
h thatum ! u in V weaklyum ! u in H strongly and a.e. in 
x� 
pM(x; u0m)! � in Lp0 weakly 9>=>; : (3:13)



A Nonlinear Boundary Value Problem 1043Note that be
ause the embedding W 1;p("; 1) ,! C0(["; 1℄) (0 < " < 1) is 
ompa
t, by(2.11) and (3.10) fumg has a subsequen
e still denoted fumg su
h that umj[";1℄ ! uj[";1℄in C0(["; 1℄). Hen
e um(1)! u(1)h(um(1))! h(u(1))) : (3:14)On the other hand, it follows from hypothesis (F1) and (3.13)2 thatx 
p0 f(x; um)! x 
p0 f(x; u) a.e. x 2 
: (3:15)We shall need the following lemma, the proof of whi
h 
an be found in [9℄.Lemma 3.1. Let Q be an open bounded set of RN and G;Gm 2 Lq(Q) (1 < q <1)su
h that Gm ! G a.e. in 
 and kGmkLq(Q) � C, with C being a 
onstant independentof m. Then Gm ! G weakly in Lq(Q).Applying Lemma 3.1 with N = 1, q = p0, Q = 
, Gm = x 
p0 f(x; um) and G =x 
p0 f(x; u) we dedu
e from (3.12) and (3.15) thatx 
p0 f(x; um)! x 
p0 f(x; u) weakly in Lp0 : (3:16)If we pass to the limit in equation (3.5) we �nd without diÆ
ulty from (3.13)3, (3.14)2and (3.16) that u satis�es the equationZ 10 x 
p�v0(x) dx+ h(u(1))v(1) + hf(x; u); vi = hF; vi (3:17)for all u 2 V . So we shall prove the existen
e of the solution of the variational problem(3.2) if we show that � = x� 
pM(x; u0). From (3.4) and (3.5) we 
an dedu
eZ 10 M(x; u0m(x))u0m(x) dx= �h(um(1))um(1)� hf(x; um(x)); umi+ hF; umi: (3:18)By using (3.13)1;2, (3.14), (3.16) and (3.17) and passing to the limit in (3.18) as m !+1 we have limm!+1 Z 10 M(x; u0m(x))u0m(x) dx = Z 10 x 
p�(x)u0(x) dx: (3:19)We dedu
e from (3.13)1;3 and (3.19) thatlimm!+1 Z 10 �M(x; u0m(x))�M(x; �(x))��u0m(x)� �(x)�dx= Z 10 �x 
p �(x)�M(x; �(x))��u0(x)� �(x)�dx



1044 N. T. Long et. al.for all � 2 Lp
 . Using the monotoni
ity property of M , we obtainZ 10 �x 
p�(x)�M(x; �(x))��u0(x)� �(x)�dx � 0for all � 2 Lp
 . If we 
hoose here � = u0 � �w with � > 0 and w 2 Lp
 and let � ! 0+,we easily dedu
e that � = x� 
pM(x; u0) and the existen
e proof is 
ompleted.To prove uniqueness let u and v be two solutions of the variational problem (3.2).Then w = u� v satis�es the equalityZ 10 �M(x; u0(x))�M(x; v0(x))�w0(x) dx+�h(u(1))� h(v(1))�w(1) + hf(x; u)� f(x; v); wi = 0: (3:20)If (3.3) holds, then evidently u = v. If hypothesis (A1) holds, by (3.20) and (2.7) wehave C6kw0kpp;
 + C8jw(1)jp � C7kwkpp;
and C6kw0kpp;
 + C8jw(1)jp � min�C8; C6K1� (K1kw0kpp;
 + jw(1)jp)� min�C8; C6K1� kwkpp;
;respe
tively, and sin
e 0 < C7 < min�C8; C6K1	 we dedu
e that w = 0. Theorem 1 isproved 
ompletelyRemark 5. In [3℄, 
orresponding to p = 2 and 
 = 1, we have proved that thenonlinear Bessel di�erential equation (1.4) asso
iated with the boundary 
onditionsu(0) = 1 and u(+1) = 0 has at least one solution. Wherein, the nonlinear term u2� uis non-monotoni
. One of the solutions above is 
onstru
ted from the boundary valueproblem (1.4) in the interval a < x < b asso
iated with the boundary 
ondition u(a) = 1and u(b) = 0 wherein xi < a < b < xi+1 and xi; xi+1 are two 
onse
utive zeros of the�rst order Bessel fun
tion J0. Formation of a 
ounterexample for the fun
tion f(x; u)not satisfying the assumption to be monotoni
ally in
reasing with respe
t u to so thatthe solution of (3.2) is not unique is an open problem.Remark 6. Theorem 1 still holds if hypothesis (F2) is repla
ed by the hypothesis(F02) There exist a 
onstant C3 with 0 < C3 < min�C5; C1K1	 and a fun
tion q3 2 L1
su
h that yf(x; y) + C3jyjp � �jq3(x)j for all y 2 R and a.e. x 2 
.In fa
t, from hypotheses (M2), (F2'), (H1) and (3.1), (3.6) we 
an obtain the followinginequality similar to (3.7)C1ku0mkpp;
 + C5jum(1)jp� C3kumkpp;
 + kFkV 0kumk1;p;
 + kq1kL1(
) + kq3k1;
 + C 05:



A Nonlinear Boundary Value Problem 1045Choosing C�3 su
h that 0 < C3 < C�3 < min�C5; C1K1	 it follows from (2.2)1;3 that�1� C�3C3� minfC1; C5g1 +K1 kumkp1;p;
 � kFkV 0kumk1;p;
 + kq1kL1(
) + kq3k1;
 + C 05:Hen
e, we obtain (3.10).Remark 7. In Theorem 1 hypotheses (M2), (M4), (F02), (H1) are implied by hy-pothesis (A1). Indeed, it follows from (A1) that(fM2) yM(x; y) � fC1x
 jyjp � jeq1(x)j(fF2) yf(x; y) + fC3jyjp � �j eq3(x)j(fH1) yh(y) � fC5jyjp � fC 05where fC1 = C6 � "pp > 0fC3 = C7 + "pp > 0fC5 = C8 � "pp > 0fC 05 = "�p0p0 jh(0)jp0
9>>>>>>>>>>>=>>>>>>>>>>>; and eq1(x) = "�p0p0 x� 
p0p jq2(x)jp0 2 L1eq3(x) = "�p0p0 jq4(x)jp0 2 L1
 9>>>=>>>; :

From the 
ondition 0 < C7 < min�C8; C6K1	 we obtain the 
ondition 0 < fC3 <min�fC5; eC1K1	 with " > 0 suÆ
iently small. We then have the followingTheorem 2. Let F 2 V 0 and let hypotheses (M1), (M3), (F1), (F3), (A1) hold.Then problem (3:2) has a unique solution.Remark 8. Theorem 2 still holds if hypothesis (A1) is implied by the followinghypothesis(A2) There exist 
onstants C6; C7; C8 with 0 < C8 < 1Kp2 minfC6; C7g su
h that, forall y; ~y 2 R and a.e. x 2 
.(i) �M(x; y)�M(x; ~y)�(y � ~y) � C6x
 jy � ~yjp(ii) �f(x; y)� f(x; ~y)�(y � ~y) � C7jy � ~yjp(iii) �h(y)� h(~y)�(y � ~y) � �C8jy � ~yjp.In fa
t, from (3.1), (3.6) and hypotheses (A2), (M1), (M3), (F1), (F3) we obtainminffC1;fC3gkumkp1;p;
� �fC5Kp2 + "pp �kumkp1;p;
 + "�p0p0 kFkp0V 0 + k eq1kL1(
) + k eq3k1;
 + fC 05



1046 N. T. Long et. al.for all " > 0 wherefC1 = C6 � "ppfC3 = C7 � "ppfC5 = C8 + "ppfC 05 = "�p0p0 jh(0)jp0
9>>>>>>>>>>>=>>>>>>>>>>>; and eq1(x) = "�p0p0 x� 
p0p jq2(x)jp0eq3(x) = "�p0p0 jq4(x)jp0 9>>>=>>>; :

It follows from the 
ondition 0 < C8 < 1Kp2 minfC6; C7g that there exists " > 0 su
hthat minffC1;fC3g > ~C5Kp2 + "pp . Hen
e we obtain that kumk1;p;
 � C where C is a
onstant independent of m. We then have the followingTheorem 3. Let (3:1) and let hypotheses (A2), (M1), (M3), (F1), (F3) hold. Thenproblem (3:2) has a unique solution.A
knowledgements. The authors would like to thank the referee for having kindly
ontributed most valuable suggestions in the �rst version of the paper.Referen
es[1℄ Tu
snak, M.: Bu
kling of nonlinearly elasti
 rods immersed in a 
uid. Bull. Math. So
.S
i. Math. R.S. Roumanie. 33 (1989), 173 { 181.[2℄ Long, N. T. and T. V. Lang: The problem of bu
kling of a nonlinearly elasti
 bar immersedin a 
uid. Vietnam J. Math. 24 (1996), 131 { 142.[3℄ Long, N. T., Ortiz, E. L. and A. P. N. Dinh: On the existen
e of a solution of a boundaryvalue problem for a nonlinear Bessel equation on an unbounded interval. Pro
. RoyalIrish A
ad. 95A (1995), 237 { 247.[4℄ Long, N. T., Ortiz, E. L. and A. P. N. Dinh: A nonlinear Bessel di�erential equationasso
iated with Cau
hy 
ondition. Computers Math. Appl. 31 (1996), 131 { 139.[5℄ Long, N. T. and A. P. N. Dinh: Periodi
 solutions for a nonlinear paraboli
 equationasso
iated with the penetration of a magneti
 �eld into a substan
e. Computers Math.Appl. 30 (1995), 63 { 78.[6℄ Nghia, N. H. and N. T. Long: On a nonlinear boundary value problem with a mixednonhomogeneous 
ondition. Vietnam J. Math. 26 (1998), 301 { 309.[7℄ Adams, R. A.: Sobolev Spa
es. New York: A
ad. Press 1975.[8℄ Lions, J. L.: Quelques m�ethodes de r�esolution des probl�emes aux limites non-lin�eaires.Paris: Dunod Gauthier-Villars 1969.Re
eived 25.06.1999; in revised form 14.06.2000


