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A Nonlinear Boundary Value Problem
for a Nonlinear Ordinary Differential Operator
in Weighted Sobolev Spaces

N. T. Long, B. T. Dung and T. M. Thuyet

Abstract. We use the Galerkin and compactness method in appropriate weighted Sobolev
spaces to prove the existence of a unique weak solution of the nonlinear boundary valued
problem

LA M(z,u' (@) + f(z.u(z) = F(a) (0<z<1)
|limm_>o+m7/pu'(m)\ < 400
M(1,4'(1)) + h(u(1)) =0
where v > 0,p > 2 are given constants and f, F, h, M are given functions.
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1. Introduction

We consider the nonlinear boundary value problem

_QJ%%M(Q;,U'(@) vz, u(z) = F(z) (0<z<1)

\limm_,0+x7/pu’(x)| < 400 (1.1)

M(1,4/(1)) + h(u(1)) =0

where

v > 0 and p > 2 are given constants

f, F, h are given functions
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M : (0,1] x R — R satisfies the Carathéodory condition and is monotonically
increasing with respect to the second variable.

In the case of v = 0 the problem

fiiM(m, u'(2)) + f(z,u(x))

zY dx

F(z) (0<z<1)

u(0) (1.2)

M(1,4/(1)) + v1G(1) sinu(1)

0
0

is related to the buckling of a nonlinear elastic bar with specific weight 7o immersed in
a fluid with specific weight «; that Tucsnak [1] has constructed in the case of

flz,u) = F(z) = [— A (o —71)g(z) — G'(l)] sin u

where A > 0 is a constant, g and G are given functions with some mechanical meaning,
and u(x) is the angle between the tangent of the bar in the buckled state of a point
with curvilinear abscissa x and vertical axis Oy. Then, in the case of ¢ = const and
M (z,u") = M(u') being monotonically increasing and sufficiently smooth Tucsnak has
studied the bifurcation of integral equations equivalent to problems (1.1) and (1.2)
depending on a parameter A.

We note that problem (1.1) with v = 0 and v'M(z,u") > C1|[u'|P (p > 1,Cy > 0)
independent of 2z had been considered in [2]. In [6] problem (1.1) with p = 2, M (z,u') =
xVu' with v > 0 and the boundary condition u’(1) + hyu(1) = hy with given constants
hi > 0 and hs has been studied. At least, in [3, 4] the nonlinear Bessel differential
equation

—liM(m1L’(m))+1L2—11,:0 (x > 0) (1.3)
xdz
has been studied.
In this paper we use the Galerkin and compactness method in appropriate weighted
Sobolev spaces to prove the existence of a unique weak solution of problem (1.1). The
results obtained here generalize those of [1 - 4, 6].

2. Preliminary results, notations, function spaces

Put Q = (0,1) and p’ = -£-. We omit the definitions of the usual function spaces

p—1
c™(Q), LP(Q), H™(Q) and W™P(Q2). We denote by LE(Q) = LY the class of all

measurable functions u defined on €2 for which
[ullpy <oo (1 <p<oo) (2.1)

where

||tt]| 00,y = ess sup |u(x)]|
<z<Ll1
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and were we identify functions that are equal almost everywhere on 2. The elements
of LY are thus actually equivalence classes of measurable functions satisfying (2.1), two
functions being equivalent if they are equal a.e. in €. Then LE is also a Banach space
with respect to the norm || - [|, . Tn particular, L2 is a Hilbert space with usual scalar

product (u,v) = fol zYu(x)v(z) dr and norm ||ulla,, = \/(u, u). We denote by

Wvlyp(Q)sz’p:{veLZ: v'ELfY} (1<p<o0)

the real Banach space with respect to the norm

1
[vll1,p,5 = (0155 + [10']5,,)" (1 <p<o0)

||7)||1,oc,'y = max{”“Hoc,'y: ||7)/||00,7}

with derivatives in the sense of distributions [8]. In defining the function space W ()
with weight 27, we can also define Wﬁ}’p(Q) as the completion of the space

S1={ueC'(Q): ||lull1p, < oc}

with respect to the norm || - ||1 5 4 (see Adams [8]).

The following imbedding inequality will be used in the sequence.

Lemma 2.1. For every u € C1(Q), v > 0 and p > 1 we have

[ullf - < fu(D)F + K[|,
()] < Kallull1p.

o 2.2
v (@) < Ksl[ull1p.y 22
1
Jull3., < Kallullspn (D + [ [2.)% (p>2 - L
B!
where .
—1\P—
Ky = (7)
1
Ky=(v+p)7
Ky = max{27, (y+2p—1)7}
_ P!\
K4 - Kg(l—l—(p—l)'y) :
Proof. (i) Integrating by parts in the following integral, we get
1P !
ullp., = P _» / 2 T () [P 2u () (x) da
T 14y 1+ ) (2.3)
O
14y 144y
where by using the Holder inequality
ba 1+ 2 1
1= [ o) T @) ey do < gl (2.4
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It follows that
L+ Dullp ., < lu@)P + pllu [l lulb

Using the Holder inequality

1 1 7 I
ab < —e"PaP + —eP bP (e>0,a>0,b>0)
p b

it follows that

(T lullp, < lu)P +e P[5, + (p = De? [Jullf,

where (p — 1)e?’ = ~. Hence (2.2); is deduced.
(ii) Similarly, it follows from (2.3), (2.4) and the Holder inequality with ¢ = 1 that

[u()” = L+ Null}, +pI < (+)ulp, + ]}, (2.5)

Hence (2.2)5 is deduced.
(iii) We have for all z € [0, 1]

1

d
2 fu(@)|” = [u(1)] / d—y(yVIU(y)lp) dy

T
1

1
= Ju(1)[” — / g Yuly)[Pdy — p / y ()P 2uly)e (y) dy

where by using the Holder inequality the later integral in the right-hand side is estimated
as

< ullp 3 1w .-

1
/ Y ()P 2uly)ed (y) dy

Taking together we deduce that

2 u(z) P < Tu(D) P + pllul B2 [ [l
We again use the Holder inequality with e = 1 to get from (2.5) that
2 u(x) [P < (p+ Vllullp + 1015 + = Dllullf , + [[a]15 -

Hence (2.2)3 is proved.

(iv) Let p > 2 — % and p > 1. We have from (2.2)3 that

1 1
ful3, = / 2% |u(a) |07 u(x)| dr < Kolullr,p, / 7 u(x) do. (2.6)
0 0

On the other hand, using the Holder inequality we obtain the inequalities

o <2 e ([ wean) |

T

< or-1 [|u(1)p + (1 —az)P ! /Tl U’(y)lpdy}
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1 P 1
(/ oy |u(x )|d7‘> < / =Y |y (2) P,
Jo Jo
Hence, Taking together we deduce that

(Almﬁzﬂx)dm>p

27~ u(1) P . e
< — + 2p1/ 2P0V (1 = )P 1dm/ u'(y)|Pdy.
-1 o O )

and

(2.7)

Inverting the variables of integration x and y in the last integral we estimate that
integral as

1
/ T(P*U’Y( z)P~ 1(]’1‘ |“ )|Pdy

T

/ lu (y pdy/ (= DY(1 — )Pl
/ ! (y pdu/ (=174

L — y1+(p Dy ) [Pdy
o

and note that y™®=17 <97 for all y € [0,1] and p > 2 — % Then (2.2)4 is deduced
from (2.6) - (2.8) &

IN

Remark 1. The results (2.2); 5 proves that (Ju(1)” + ||u’||£ﬁ)% and ||ul|y p, are
two equivalent norms on W7 (Q) and

1
1+ K4

[ullf .y < lwP+ W15, < U+ K3)ullf, 5 (2.9)

for all u € W1 P(Q).

Lemma 2.2. The imbedding WP () — L2(Q) (p > 1) is continuous if p > 2—%
and compact if p > 2.

Proof. Forp > 2—% the continuity of the imbedding W7 (Q) — L2(£2) is deduced
from (2.2)4 and (2.9). For p > 2 we have W)P(Q) — W} ?(Q) — L2(€2) and on the
other hand the imbedding W.-*(Q) — L2(Q) is compact (see [5]). Hence, W P(Q) —
L2() is also compact B

Remark 2. We also note that

lim 27 u(z) =0 (u€ Wﬂ}’p(Q)) (2.10)
.’I,‘—)0+
(see [7: p. 128/Lemma 5.40). On the other hand, by WP (e, 1) — C°([e,1]) (0 <e < 1)

and
evllullwineny < lullipy (W€ WIP,0<e<1) (2.11)
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it follows that
ule 1€ C([e, 1)) (0<e<1). (2.12)

From (2.10) and (2.12) we deduce that
zrue CQ)  (ue WP(Q). (2.13)

Put H = L%(Q2) and V = W}?(Q) with p > 1 and p > 2 — 1. From the result of
Lemma 2.2 with p > 2 — %, V' is continuously embedded into H. Furthermore, V is

dense in H since C'(Q) is dense in H; identifying H with H' (the dual of H), we have
V < H — V'. On the other hand, the notation (-, -) is used for the pairing between V'
and V',

3. Theorem on existence and uniqueness

We assume that p > 2 and formulate the hypotheses

(M;) M: (0,1] x R — R satisfies the Carathéodory condition, i.e. M(-,y) is measur-
able on (0, 1] for every y € R and M (z,-) is continuous on R for a.e. = € (0, 1].

(M3) There exist a constant C; > 0 and a function ¢; € L'() such that yM (x,y) >
Cra[yl? — g (2)].

(M3) There exist a constant Co > 0 and a function go with 5Trgy € L (Q2) and
lim, 0, 277 |ga ()| < oo such that |M(z,y)| < Coz|y[P~! + |ga(z)].

(My) M is monotonically increasing with respect to the second variable, i.e. (M(x,y)
—M(z,9))(y —y) >0 for all y,y € R and a.e. z € Q.

Furthermore, we formulate the hypotheses

(F1) f: QxR — R satisfies the Carathéodory condition.

(F2) There exist constants Cs > 0 and 1 < 7 < p and a function g3 € L} () such
that yf(z,y) + Csly|” > —|g3(z)| for all y € R and a.e. x € Q.

(F3) There exist a constant Cy > 0 and a function g4 € L?;I(Q) such that |f(z,y)| <
Caly/P~' + |qa(z)| for all y € R and a.e. z € .

Finally, we formulate the hypothesis

(H,) For h € C°(R; R) there exist two constants Cs, Cf > 0 with uh(u) > Cs|ulP —C}
for all u € R.

Suppose that
FeV. (3.1)

Remark 3. In hypothesis (F3), r = p still holds if C5 > 0 is sufficiently small (see
Remark 6).

The weak solution of problem (1.1) is formed from the following variational
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Problem. Find u € V such that

/0 M (z,u'(z))v' () dz + h(u(1))v(1) + (f(z,u(x)),v) = (F,v) (3.2)

forallveV.

Remark 4. By (2.13), the terms u(1) and v(1) appearing in (3.2) are defined for
every u,v € V. We obtain (3.2) by formally multiplying both sides of (1.1); by z7v € V
and then integrating by parts when taking conditions (1.1)3 3, (2.10) and hypothesis

(Ms).
Then we have the following

Theorem 1. Let F € V' and let hypotheses (My) - (My), (F1) - (F3) and (Hy) hold.
Then the variational problem (3.2) has a solution. Furthermore, if M(x,-), f(z,-), h are
non-decreasing, i.e.

(M(z,y) — M(z,9)(y —§) >0
(f(z,y) = fz.9))(y—9) >0 (3.3)
(h(y) = h(@) (v —9) > 0

forally,y € R and a.e. x € Q where two of the three inequalities above are strict in the
case y # 1y, then the solution is unique.

On the other hand, uniqueness of the solution also holds if condition (3.3) is replaced
by the hypothesis

(A1) There exist constants Cg,C7,Cg > 0 with 0 < Cy < min {C’g, %} such that
(i) (M(z,y) — M(2,9))(y —§) > Cox"|y — yI?
(i) (f(z,y) = f(z. )y —9) = =Crly — g
(iii) (h(y) — h(@))(y — 9) > Csly — g[?
for all y,y € R and a.e. © € ().

Proof. Since V is separable there exists a sequence of linear independent elements
{w;} which is total in V. We find u,, under the form

Uy, = Zcmjwj (3.4)

Jj=1

where ¢, satisfy the nonlinear equation system

/ M (2, uy, () w; () da 4 bty (1)w; (1) + (f (2, um (), w;) = (F,w;). (3.5)

By the Brouwer lemma (see [8: p. 53/Lemma 4.3) it follows from hypotheses (M) -
(M3), (F1) - (F3) and (H;) that system (3.4) - (3.5) has a solution u,,. Multiplying the
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4™ equation of system (3.5) by ¢,,; and then adding these equations for j =1,2,...,m
we have

/0 M (2, gy, () )ty () A + A1t (1)) (1) + (f (2, i (2)), thm) = (Ftim). (3.6)

By using hypotheses (Ms), (F2), (H1) and (2.9), (3.1) we obtain we obtain

3

1
Colltm| < Ca [t ()"
J0

(3.7)
+IF(lvllumll1pq + C5 + laalln @) + llaslliy
where Cy = %;{105} Using the Holder inequality
1 P 1 _p’ 1
ab < —ejal + —e " b (e1>0,a>0,b>0
b p
we get the inequality
L, P L _p p’
[Fllvellumll1py < =€t llumllt p\ + —er” 1FIV (3.8)
b b
where ;}571’ = %. We also note that |u,,|" < éeg/T\um\p + pszg’/_”T*T for all e5 > 0. Hence
we have
Os [ Mm@ de < O 7l + 10 L (39)
T\ Um (T T < —& Um, :
3' . 3p 2 DY 1 _|_,yp€12o/p—r
where ngeg/’“ = £ Combining (3.7) - (3.9) we obtain

where C' is a constant independent of m. From hypothesis (M3) and (3.10) it follows
that X
o ¥ Moyt < ColllalZ5 + 57l < C. (3.11)

On the other hand, it follows from hypothesis (F3) and (3.10) that

a2 _
22" f (@, um) || 1o < Callumlp5" + llgallpy < C (3.12)

where C is a constant independent of m.

By means of (3.10), (3.11) and Lemma 2.2 the sequence {u,,} has a subsequence

3

still denoted by {u,,} such that

U, — U in V' weakly

U, — U in H strongly and a.e. in Q % . (3.13)

2T M(z,ul) = x in L?" weakly
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Note that because the embedding W1 (e, 1) < C°([e,1]) (0 < e < 1) is compact, by
(2.11) and (3.10) {u., } has a subsequence still denoted {u,, } such that w,, |j. 1] = [ 1]
in C%([e, 1]). Hence

U (1) = u(1)
. (3.14)
h(tm (1)) = h(u(1))
On the other hand, it follows from hypothesis (F1) and (3.13)2 that
m%f(x,um) — x%f(m w) a.e. x € . (3.15)

We shall need the following lemma, the proof of which can be found in [9].

Lemma 3.1. Let QQ be an open bounded set of RN and G, G, € LY(Q) (1 < ¢ < o0)
such that Gy, — G a.e. in Q and ||Gp||paq) < C, with C being a constant independent
of m. Then G, — G weakly in L1(Q).

Applying Lemma 3.1 with N =1, g =9, Q = Q, G,,, = m%f(m,um) and G =
m%f(x,u) we deduce from (3.12) and (3.15) that

’r%f(r Upp) — v f(z,u) weakly in L? . (3.16)

If we pass to the limit in equation (3.5) we find without difficulty from (3.13)s3, (3.14)
and (3.16) that u satisfies the equation

/0 w0 (1) do + h(u(1)o(1) + (f (2, 1), v) = (F,v) (3.17)

for all w € V. So we shall prove the existence of the solution of the variational problem
(3.2) if we show that x = 27 M (z,«'). From (3.4) and (3.5) we can deduce

/ M (ot () ) di

= —h(tm (1)U (1) — (f(2, um (), Um) + (F, ).

(3.18)

By using (3.13)1 2, (3.14), (3.16) and (3.17) and passing to the limit in (3.18) as m —
+o0o we have

1

1
lim M (z,ul (x))u, () dz = / zv x(z)u (z) da. (3.19)
Jo

m—+00 Jo

We deduce from (3.13); 3 and (3.19) that

lim (M (z, up, () — M(2,0(2))) (ul, (z) — 0(z))dx

m
m— 400 0

~y

= [ ate) - MG 00) () — )
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for all § € LY. Using the monotonicity property of M, we obtain

'/0 (’I‘%X(T) ~ M(z,0(x))) (v (z) — 6(z))dz > 0

for all & € L?. If we choose here § = v’ — Adw with A > 0 and w € LY and let A — 0,

we easily deduce that y = m*%M(m, u’) and the existence proof is completed.

To prove uniqueness let v and v be two solutions of the variational problem (3.2).
Then w = u — v satisfies the equality

/0 (M (a4 (2)) — M(x, o/ (2))) ' (x) da
+(h(u(1)) = h(v(1)))w(1) + (f(z,u) = f(z,0),w) = 0.

(3.20)

If (3.3) holds, then evidently u = v. If hypothesis (A1) holds, by (3.20) and (2.7) we
have
Collw'l[5 + Cslw(1)[” < Crlwl[},

and C
Cel|w'[} ., + Cglw(1)[” > min {C’g, ?j} (Kq|lw'|[p 4 w(1)[P)

) Cs
> min {C’g, 71} ||w||577,

respectively, and since 0 < C7 < min{C’g, %} we deduce that w = 0. Theorem 1 is
proved completely i

Remark 5. In [3], corresponding to p = 2 and v = 1, we have proved that the
nonlinear Bessel differential equation (1.4) associated with the boundary conditions
u(0) = 1 and u(+oc) = 0 has at least one solution. Wherein, the nonlinear term u? — u
is non-monotonic. One of the solutions above is constructed from the boundary value
problem (1.4) in the interval a < 2 < b associated with the boundary condition u(a) = 1
and u(b) = 0 wherein z; < a < b < x;41 and z;, ;11 are two consecutive zeros of the
first order Bessel function .Jy. Formation of a counterexample for the function f(z,u)
not satisfying the assumption to be monotonically increasing with respect u to so that

the solution of (3.2) is not unique is an open problem.
Remark 6. Theorem 1 still holds if hypothesis (F3) is replaced by the hypothesis

(F) There exist a constant C3 with 0 < C3 < min {05, %} and a function g3 € L}r
such that yf(z,y) + Csly|? > —|g3(z)| for all y € R and a.e. z € Q.

In fact, from hypotheses (Mz), (F2’), (Hy) and (3.1), (3.6) we can obtain the following
inequality similar to (3.7)
Crllum I} + Cslum (1)

< Csllumlly + 1F v lumllpy + a1l + llaslliy + Cs.
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Choosing Cj such that 0 < C3 < C3 < min {Cs, %} it follows from (2.2); 3 that

C; min{C’l,C’5} P ,
(1- ) o OO et < 1l i+ sl + s +
Hence, we obtain (3.10).
Remark 7. In Theorem 1 hypotheses (Ms), (My), (F%), (Hq) are implied by hy-

3 3

pothesis (Aq). Indeed, it follows from (A;) that
(Ms) yM(z,y) > C12" |yl — |gi(=)]

y
(Fy) yf(z,y)+ Cslyl? > —|Ga(x)|
(Hy1) yh(y) > Csly|P — Cf

where
—_~ gp \
Ci=Cg——>0
b
— Ep *p’ ] ,
Cy=Crt—- >0 (@) = o~ lp(@) € 1!
. P > and p ,
Cs5=Cs—— >0 ~ e? '
5 8 D q3(x) = p qa(z)|P GL;
G = oy
5 p/ J
From the condition 0 < C; < min{C’g,IC{—‘j} we obtain the condition 0 < 6’; <

min {5; I%} with € > 0 sufficiently small. We then have the following

Theorem 2. Let F' € V' and let hypotheses (M1), (M3), (F1), (F3), (A1) hold.
Then problem (3.2) has a unique solution.

Remark 8. Theorem 2 still holds if hypothesis (A;) is implied by the following
hypothesis

(A2) There exist constants Cg, Cr7, Cg with 0 < Cg < %g min{Cg, C7} such that, for
all y,y € R and a.e. z € ().
(1) (M(2,y) = M(z,9))(y —9) = Cox|y — I
(i1) (f(z,y) — f(=,9)(y —9) > Cely — gI?
(iii) (h(y) — h(®)(y —9) > —Csly — y|*.
In fact, from (3.1), (3.6) and hypotheses (As), (M), (M3), (F1), (F3) we obtain
min{C1, Cs} ||t |

D
1,p,y

!

— eP g~ P ) _ _ —
< (CoBF + Yl + N FIT + 20 + 15114 + C
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for all € > 0 where

— p )

Cr =0 =
VY

— E‘p . 6‘_pl 7'\/_1)’ !
C'3:07—z qi(x) = LT q2() [P
- oD 3 and pp,
Cr — Cs + — - o '

5 8T D q3(r) = ——|qa ()|

~ e p'
Cy = ()" |

It follows from the condition 0 < Cg < % min{Cys,C7} that there exists € > 0 such
2

that min{C7,Cs} > CsK? + %. Hence we obtain that ||tm,|1,py < C where C is a
constant independent of m. We then have the following

Theorem 3. Let (3.1) and let hypotheses (Ay), (My), (M3), (Fy1), (F3) hold. Then

3

problem (3.2) has a unique solution.
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