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On a Simple System of
Discrete Two-Scale Difference Equations
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Abstract. A special system of two discrete two-scale difference equations with polynomial
solutions is investigated. For the solutions, addition and subtraction theorems are established
showing in particular the behaviour of the solutions for a great argument, as well as further
relations and inequalities. Also, corresponding generating functions are constructed which
imply explicit representations for the solutions.
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1. Introduction

In this paper we consider the special system

Tow = p 2
2 =Pk (k € N) (1.1)
Zok41 = q 2k + 1 Zrg1

of two discrete two-scale difference equations under the initial condition
Z1=1. (1.2)

The coefficients are assumed to be non-vanishing complex numbers, and the solution is
obviously a polynomial 7Z,, = Z,(p, q,r) of the coefficients. In a forthcoming paper [3]
the solution of system (1.1) shall be used for an explicit representation of solutions of
continuous two-scale difference equations at dyadic points. Such equations appear in
wavelet theory and subdivision schemes, cf. [4, 7]. The special case S,, = Z,(¢+1,q,1)
was already considered in [2] in connection with de Rham’s singular function. After
replacement 7,1 = x,,, the second equation of system (1.1) with ¢ = % and r = —% for
¢ > 0 appeared also in [1, 5], however in another context and without its first equation.

It is very simple to calculate the first polynomials Z,, (cf. Table 1) as well as Zy: = p*
for £ € Ny, but our aim is to analyze the general structure of Z,, which becomes visible in
addition and subtraction theorems. We establish further relations and calculate infinite
series. For p = ¢ = r = 1 some 7, are the Fibonacci numbers which here have an
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extremal property. Moreover, we construct generating functions of Z,, and of related
polynomials and derive different explicit representations for Z,,.

Table 1: The first polynomials Z,, = 7, (p, q,r)

In Table 1 it is conspicuous that the non-vanishing coefficients of the polynomials
Z, are all equal to 1. However, this is not a general property as the example

a1 = pr2 (pq + pr + qr) + (p2q + 2pqr +pr2 + qrz)q

shows. Tt is possible to use the second equation of system (1.1) also for £ = 0 and to

introduce .
-7
Zo = . 1.3
. (1.3)

However, only in the case p =1 or r =1, i.e.
(p—1)(r—1)=0 (1.4)

the first equation of system (1.1) is compatible with value (1.3) so that we shall use
(1.3) only in these two cases.

2. Addition theorems

We begin with the construction of addition theorems, i.e. of formulas for Z,, where n is
a certain sum of two terms.

Proposition 2.1. Under conditions (1.2) and p # r the solution of system (1.1)
with initial condition (1.2) has the structure

Doty = 525 (0°X5 — 1Y) Zi + 7' Y Zyia (2.1)

p—r
for0<j <2t (keN;jteNy) where X; = Z,-(l, %, %) and Y; = Z,-(%/ o 1).
Proof. In the case £ = 0 equation (2.1) is satisfied for j € {0,1} in view of Xy =

p;’", Yo =0 and X; =Y; = 1. Hence for £ =0 and 0 < j < 1 the polynomials Z,, have

the structure

Loty = XejZi + Yo Zj11 - (2.2)
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We assume that (2.2) is satisfied for a fixed £ and 0 < j < 2%, Replacing k by 2k und
using (1.1) we obtain

Zatrigy; = X+ aYei) 2 + Y0 Zga

and therefore

Xop1,5 = pXyj +qYy; (2.3)
Yiprj = 1Yy . .
Analogously, replacing k in (2.2) by 2k + 1 we find
Xog1,2045 = qXyj (2.4)
Yipro0s = rXgg +0Ye |

both equations for 0 < j < 2¢. This shows that (2.2) is satisfied for £+ 1 instead of /
and for 0 < j < 21, Hence by induction (2.2) is proved for all £ € Ny.

Equations (2.3) have the general solutions
Xoj = 55 (0°X; —r'Y;)
Yy =r'Y;

(2.5)

for every fixed j and j < 2¢ so that (2.2) implies (2.1). Replacing j in (2.1) by 2j and
using Zotgyoj = pZat-1p4; for £ > 1 we obtain by comparison of coefficients

Xoj = Xj

Yo; = 7Yj.

Analogously, replacing j in (2.1) by 2j+1 and using Zorg 9,41 = qZot 154 ;+7 Zot- 154 11

we obtain
Xojr1 = 1X;+rpXjp

Yojpn = 3Yi+ Y
In view of the initial conditions the proposition is proved il

Remark 2.2.

1. In the case (1.4) at most two of the sequences X,,, Y, Z, are different since
X,=7,forp=1andY, =7, for r = 1. Obviously, X,, =Y, =7, forp=r =1.

2. For k = 1 equation (2.1) specializes to

L)Y (2.6)

Zot = 350" X+ (p -

with 0 < j < 2° (£ € Ng). In view of Y; = Z;(%,4,1) and X; = Z;(1, 2, L) equation

VAR S)

(2.6) immediately implies
¢
Yoy = 35 (8) X+ (7 - 35)Y) (2.7)

p
Xy = 75X+ (1 52)

p—r
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and the three equations (2.6) - (2.8) can be used to calculate Z,, for n = 27k ... 4271 4270
with integers v > ... > v1 > 79 > 0. In Section 6 we shall come back to this question in
a special case. Equations (2.5), (2.7) - (2.8) can also be used to check equations (2.4).

3

3. Eliminating X; and Y; out of (2.6) - (2.8) we obtain the relation

Z, = — ((p — l)r“'lYn - (r— l)p“'an) (2.9)

for 2¢ <n <241 (£ € Ny).

The excluded case p = r in Proposition 2.1 can be treated in an analogous way or
by means of the limit process r — p. For convenience, we consider the case p — r and
write afterwards once more p instead of r. The appearing derivatives with respect to p
shall be labelled by means of a dash.

Proposition 2.3. Forp = r the solution of system (1.1) with initial condition (1.2)
has the structure

Zyey =" [(Lg+97) Y — quy] (2.10)

where
wj = Z;(p, 2, p) [p=1 (2.11)

satisfies
Wy j(x) = (202 + £+ 1) Y; — baw;(z) (2.12)

for0<j<2° (jLeNg), Y;=Z;(1,2,1), 2 =1, and wy = —, wy = 0.

Proof. Since Z,, is a polynomial in p, g, r it is differentiable and so are X,, and Y,,
in view of p # 0 and r # 0. Equation (2.6) can be written in the form

/l l

- Y, — X;

)Yj—peq j i
p—r

p
Z2[+j — <p7“£ + q

For p — r both X, = Z,-(l, %, %) and Y; = Z,-(%, 1 1) converge to Z,;(1, %, 1) and, by
means of de 'Hospital’s rule (which is also applicable to holomorphic functions), we
obtain

Zyeyy =0 0"+ Lg)Y; — pla(Y] — X))

and therefore (2.10) with

R CACER R A 213

r=p’
Obviously, w; depends on = = % alone and it can be represented as (2.11). In particular,

2.11) yields the initial values of w; for 7 = 0 and 7 = 1. Substituting ¢ = px in (2.10
J
we obtain

oty = p* [(& +p)Y; — 33“"7']

and by differentiation with respect to p, choosing p = 1 and considering (2.11), we also
have proved (2.12) i1



pIscrete 1 wo-oCale vilrrerence cquations 1UU9

Remark 2.4. More generally, it follows from (2.1) for p — r
Zathtj = pﬂilquj — w;) Zy +peY.iZlH—l (2.14)
and in view of (2.11)
Workj = (Y — Lw;) Vi + £V Vi1 + (Y — wj)wp + Yjwpsy (2.15)

for 0 < j <2 (ke N,LeNy),Y; =Z;(1,z,1). For j = 0 this implies wyr;, = £Yy + wy,
and for £ > 0 in particular wye = £. Moreover, for £ =1 and 7 = 0 resp. 7 = 1 we easily
see:

Corollary 2.5. The polynomials w; (j € N) are uniquely determined by the initial
value wy = 0 and the system

wa; = w; +Y;
23 J J }7 (2.16)

Wojy1 = TW; + Wit + Yoj41

Y; = Z;(1,z,1), which is the inhomogeneous counterpart to the homogeneous system
(1.1) withp=r =1 and g = x.

By elimination of Y in (2.16), using Y2;41 = zY; + Y;4+1, we obtain the further
relation

Waj41 = TWaj + W2j42 (2.17)

which is also satisfied by Y, instead of w,, and from (2.10) and (2.12) with p = 1 and
q =z we get
w21+]- = EYQI_{_]' + Y7, (218)

Y; = Z;(1,2,1). All these relations can be checked for the first indices by means of
Table 2.

Table 2: The first polynomials Y;, = Z,,(1,z,1) and w,, (z)
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3. Subtraction theorems

There exist analogous formulas for negative j, i.e. corresponding subtraction theorems.

Proposition 3.1. In the case p # q the solution of system (1.1) with initial condi-
tion (1.2) has the property

Zye_j = S=p'Us + (5 = 224"V (3.1)

for 0 < j <2%—1 (£ € Ngy) where U; = Z,-(l, %, %) and V; = Zj(%, g, 1).

The proof can easily be carried out inductively using the initial values Zy = pt,
Up = 4, Vo = 0 and the recursions

Uz; = Uj i Voj =LV
Uzj1 = 3Uj + LUj1 Vajp1 = gVi+ Vin

so that it shall be omitted here. For j = 2¢ the right-hand side of (3.1) is equal to
1_T’"pe, and is equal to (1.3) for all £ if and only if p=1 or r = 1.

As a consequence of (2.6) and (3.1) we find
Zotyy =t Zi (5, 80) + 4" Zy (5. 5.1) (3.2)

and this equation is not only valid for 0 < j < 2¢ but also for j = 2¢. Owing to
continuity, equation (3.2) remains valid in the limit case p = r. Since both terms on the
right-hand side of (3.2) are homogeneous polynomials we can conclude (cf. Table 1):

Corollary 3.2. For1 < j <2’ 1 every polynomial Zaiyj 15 a sum of a homoge-
neous polynomial of degree £+ 1 plus such a polynomial of degree /.

It is also possible to consider the limit case ¢ — p in (3.1) where we proceed
analogously as before.

Proposition 3.3. Forp = q the solution of system (1.1) with initial condition (1.2)
has the property
Zye—y =p'H(r(€ = 1) + U; — ruy] (3:3)

for0<j<2—1 (£ € Ngy) where U; = Z,-(l, %, 1) and wj = wj(g) is determined by
(2.16) with x = 7 and wy = 0.

Proof. By means of de I'Hospital’s rule we obtain from (3.1) for p — g
Zye g = (rl+1=r)p" 1 Z;(1, 50) —rp [ Z) (2, 2,1) = Z3(1, 5, 9)]|
where in view of (2.11)
p[Zj(2.2.1) - Z;(L. 2. ]|, = wi (%)

so that (3.3) is proved B
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Analogously, in the case z # 1 we can derive

woe_j(z) = T (U; — 2'V;) — 271V (3.4)

for 0 < j <2 (£ € Np) with U; = Z;(1,1,z) and V; = Zj(%,%,l), and in the case
r=1

wye (1) = (£2 = 1)Y; — bw; (3.5)

with Y; = Z;(1,1,1). Moreover, a simple consequence of (2.10) with p = ¢ = 1 as well
as £ — 1 instead of £ and (3.3) withp=r =1 is

Y2/7j - Y2/71+]' (36)

for 0 < j < 2! with ¥;, = Z,(1,1,1). This equation shows a local symmetry of Y,
with respect to the points n = 3-2=2 (£ > 2) (cf. the later Table 3).

4. Further relations and inequalities

In the following we also admit vanishing coefficients in system (1.1). In order to establish
new relations between different solutions 7,, we need the definition of a k-sequence.

Definition 4.1. Let k£ € N and £ € Nj,.

(i) A finite sequence p1, po, ..., py is called a k-sequence if pi € {1,3}, p; € {80+

(ii) A finite sequence pi1, p12, ..., g, p1y, is called an extended k-sequence if pq, ..., pu,
is a k-sequence, py = 44 4 3 for py, = 44 + 1 and pj, = 44 + 1 for py, = 44 + 3.

The foregoing definitions can be visualized by means of a so-called Collatz graph
(cf. [8]). We begin with the directed Collatz graph in Figure 1 for the function g defined
by

g +1)=g(4+3)=20+1 (£ € Ng).

Inverting the directions and interchanging the neighbouring numbers 4¢ + 1 and 44 + 3
for all £ € N, we obtain the inversely directed Collatz graph in Figure 2 for the function
f defined by

F8E+1)=f(8+3)=40+3

} (E € N(]) .
f8+5)=f(8+7)=4L+1

After these preparations, the numbers of k consecutive vertices in a directed path of Fig-
ure 2 beginning with 1 or 3, where in the last case the loop at the vertex 3 can be passed
several times, yield always terms of a k-sequence. The term pj of the corresponding
extended k-sequence is fixed by the demand that pj # pp and that an interchange of
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px and p} again yields an extended k-sequence. Note that for all j we have pu; < 279+,

Figure 1: The directed Collatz graph of the function g

Figure 2: The inversely directed Collatz graph of the function f
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Proposition 4.2. For every extended k-sequence the polynomials 7, satisfy the

relations . - -
)\ Z2n—|—1 = )\ N Z4n+lﬂ + )\ N ZSTL-I—;LQ —|— e

(4.1)
—+ )\Zan+uk71 —+ Z2k+]n+ﬂk —+ sz“n‘ﬂl;
for arbitrary k € N, n € Ng and A=p+q+r.
Proof. From system (1.1) we easily derive
Zak+1 = PqZx + v Zog 41 . (4.2)
Zaky3 = qZok+1 + pridyia
By addition we obtain
(P+aq+7)Zwms1 = Zang1 + Zanss (4.3)

and therefore (4.1) for £ = 1. If (4.1) is satisfied for a fixed k-sequence, we multiply
this equation by A and regard that
Agksrnyapt1 = Lok+2pyge1 T Zokt2ny8043

Aok+inyae43 = Zok+onggeqs + Lok+2n 8047

in view of (4.3). Hence we obtain (4.1) with £+ 1 instead of k and two extended (k+1)-
sequences, one with the old p; for j < k and one with the old p; for j <k — 1 and pj
instead of g, and both with suitable py 1, py B

Remark 4.3.

1. Further special cases of relations (4.1) besides of (4.3) are

N Zons1 = Mans1 + Zgnis + Zsnar
M Zomi1 = Manis + Zani1 + Zsnys-

2. Dividing (4.1) by A* and considering the case k — oo we obtain the expansion

Z2n+1 = Z %ZQZ‘HTH—N( (44)
/=1

so long as the series is converging. This is always the case for positive p, ¢, r but also
for some complex coefficients:

Proposition 4.4. The series (4.4) converges for complex p,q,r provided that
C = max {|pl, lg| + ||, 1} <[] (4.5)

where A\=p—+q+r.

Proof. 1. In order to show the convergence of series (4.4) first we shall prove that

Z| < C* (4.6)
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for 1 < k < 2¢ (£ € Ng). For this reason we shall show by induction that
|ZQ£+‘7" S C£+1 (47)

for 0 < j < 2%, This inequality is true for £ = 0,5 € {0,1} according to Z; = 1 < C and
|Z2] = |p| < C. Assume that (4.7) is valid for a fixed £. Then we have

| Zotr1 40| = [Pl [ Zoey ] < [p|CHT! < CFF?

Zoevr o | < lal | Zoess| + |rl [ Zaeg | < (lg] + [r)CH < CFF2

for j < 2% and j < 2*, respectively, i.e. (4.7) with £ + 1 instead of £ so that (4.7) is
proved. This implies inequality (4.6) in view of C' > 1.

2. Now, from (4.6) and u, < 2+ we obtain |Zyi41 | < CH™HL for p+ 1 < 2™

N+
in view of 2F1n 4+ py < 271 (n+1) < 284™F1 This yields |57 Zar+1,4,, | < Cm“(%)e
so that according to (4.5) the series in (4.4) converges i
For k = 2¢ + j we immediately obtain from (4.7) and 2¢ < k < 2¢+1:
Corollary 4.5. The polynomials Zy, (k € N) can be estimated by
| Zx| < Ck¢ (4.8)
. InC
with ¢ = 1.

In the case p = ¢ = r = 1 we can state the following curious connection between
the numbers Y,, = Z,,(1,1,1) and the Fibonacci numbers Fj, (k € Ny):

Proposition 4.6. With the notation my, = 5 (2"**+(=1)*) (k € Ny) the numbers
Yin, = Zm,(1,1,1) are the Fibonacci numbers Fy. These have the extremal property
Y, <Y, forn<myg and k > 2.

Proof. In view of mg =m; = 1 and (1.2) the first assertion is valid for & = 0 and
k = 1. According to

2k—|—1 + (71)]6 — 2k + (71)]6—1 + 2(2k—1 + (71)]6—2)
and (1.1) with p = ¢ = 7 = 1 the numbers Y,,, satisfy the difference equation
Y, = Yy o + Yo, (4.9)

for £ > 2 which proves the first assertion.

In order to prove the second assertion it suffices to consider odd indices since Ys,, =
Y,, and to consider (4.2) in the specialization

Yiny1 =Yn + Yo } (4.10)

Yin+s = Yny1 + Yont1
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The assertion is valid for n < mg = 3 where Y3 = 2 (cf. Table 3). We assume that it is
valid for n < my_y with & > 3. In the case that k is even we choose £ = 3(2F°1 — 2)
and have

mk_2:£+1
mk_1:2f+1
mk:4ﬁ+3.

Hence 4n +1 < 44 + 3 impliesn < £, i.e. n < £+ 1 as well as 2n +1 < 2/ + 1, and
dn+3 < 4+ 3 impliesn < £, i.e. n+1 < £+ 1 as well as 2n+ 1 < 2/+ 1. In the case
that  is odd we choose £ = (2~ — 1) and obtain

My—g =4
mpe_—1 :2f—+—1
my — 40 + 1.

Hence 4n+1 < 44+ 1 impliesn < £ as well as 2n+1 < 24+ 1, and 4n+3 < 44+ 1 implies
n+1</aswell as 2n+1 < 20+ 1. In both cases equations (4.9) and (4.10) show that
the second assertion is also valid for n < my so that it is proved by induction B

It can be shown analogously by induction that Y;, < Y,,, for my < n < 3-2¥2 and
k > 3, but we can extend this inequality a second time by means of (3.6). Introducing
numbers my, (k € N) by 28 —my, = 2871 4+ my,, ie. by
(5281 — (=1)¥)

1

we have Y,,, = Ys, according to (3.6). Obviously, 281 < my < 3-2F 2 <my, < 2F
and my = My if and only if £ = 2. Now, the foregoing remarks and equation (3.6)
imply:

Corollary 4.7 For a fized k € N the Fibonacci number Fy, is equal to the mazimum,
of Yy, for 1 < n < 2% which is attained in this interval exactly for both n = my and
n = "mg.

The extremal properties in Proposition 4.6 and in Corollary 4.7 can be checked for
the first indices by means of Table 3 where the Fibonacci numbers Y,,,, are underlined
and the Fibonacci numbers Yz;, are labelled by an overhead bar.

Table 3: The first numbers Y,, = Z,,(1,1,1)
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5. Generating functions

It is useful to construct the generating function

= i Zpt™ ! (5.1)
n=1

of the sequence Z,,. In view of (4.8) the series converges for |t/ < 1. The recursions
(1.1) easily imply the functional equation

Gt)=1—r+ (r+pt+qt?) G (5.2)

and therefore by iteration for arbitrary n € Ny

n—1k—1 —

=(1-r)Y J[e+p +at® )+ G0 H r+pt? gt
k=0 j=0 j=0

As usual the products are defined by 1 in the cases £ = 0 and n = 0. For |t| < 1 we
have G(t2") — G(0) = 1 as n — oo. Hence for |t| < 1 we get in the case |r| < 1

(1 r) i H (r+pt* +q>) (5.3)
k=0

and in the case r =1

=TT (1 +pt? +at*). (5.4)
) =0

However, if we write (5.2) in the form
G(t) — 1 =pt+qt> + (r + pt + qt*) (G(t*) — 1)

we get
00 k—1

=1+ Z (ptzk + qt2k+1) H (r + ptzj + qtzH]) (5.5)

for arbitrary r and again for |¢| < 1. Summarizing these results we have proved:

Proposition 5.1. For [t| < 1 the generating function (5.1) has the representation
(5.5). In the case |r| < 1 it can also be represented by (5.3) and in the case r = 1 by
(5.4).

Concerning the different representations (5.4) and (5.5) in the case r = 1 cf. [6: p.
233).

Moreover, we consider the generating functions

oo oo
=) V"' and  H(t) =) wut" ! (5.6)
n=1 n=1

where Y,, = Z,,(1,¢,1) and w,, = w,(q) so that F(t) = G(t) from (5.1) withp=r =1
and (5.2) specializes to

Ft)= (1+t+ qt?) F(t?). (5.7)
According to (2.18) and (4.8) the series for H(t) converges for |t| < 1, too.
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Proposition 5.2. The generating function H from (5.6) satisfies the equation
Ht)=F@) 1+ (1+t+q*) H1) (5.8)
and it can be represented by the series

HE) =F©6)Y (1 . ﬁ) (5.9)

0

which converges for |t| < 1.

Proof. Equation (5.8) follows from (2.16) and (5.6) by straitforward calculations,
and (5.9) follows from (5.7) and (5.8) in view of H(0) =0 and F/(0) =11

Let us mention that series (5.9) can be written in the form

- F(t)
H(t)=) <F(t) — F(t”‘)) (5.10)
k=0
where the quotients
F(t) kl:[l (14 2 fQj+1)
F(t2k) - fn g qr

are polynomials. Tt is also possible to eliminate F'(t) out of (5.7) and (5.8), but then
H (t*) appears in the equation.

6. Explicit representations

We begin with very special representations. In our representations we need the dyadic
sum-of-digits function v(j) and its complement p(k) = £ — v(k) for 2671 < k < 2¢ with
j € Ngand £,k € N, i.e. v(j) denotes the number of 1s and (k) the number of 0s in the
dyadic representation of j resp. k. Obviously, we have the initial values v(0) = p(1) =0
and the recursions

v(2)) = v(j) } - u(%)—u(kHl}
v(2j +1) = v(j) + 1 w2k +1)=p(k) [

Moreover, we put (0) = 0 which is compatible with the last equation of (6.1). Since
Zoey, = ptZy, it suffices to consider odd k only.

(6.1)

Proposition 6.1. For k € N the polynomials Zsy1 have the representations
qu(k),ru(k:) f()'r’p =0
Zogg1 = § p?BprE)FL - for g =0 (6.2)
pu(k)qu(k) f()'r r=20.
Proof. From (1.1) and (4.2) we immediately obtain
T Zok41 qZok41 forp =20
Z4k_|_1 = TZQk+1 and Z4k+3 = ngk_|_1 for q = 0 (63)
D22k 41 qZop41  for r=0.

In view of Z3 = pr + ¢q equations (6.2) are valid for k = 1. If they are valid for a fixed
k € N, then also for 2k resp. 2k + 1 instead of k in view of (6.1) and (6.3). Hence the
proposition is proved by induction B
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Remark 6.2. In view of (1.2) the first and last equations of (6.2) remain valid
for k = 0. In the case 7 = 0 we have Z,, = p*™g¢*("~1 for all n € N. We even can
use Proposition 2.1 for ¢ = 0 and Proposition 3.1 for » = 0 if for j = 0 we interpret
gXg=p—rresp. rUg=p—q.

In order to deal with the general case we need some preparations. It can easily be
seen that

-1 _ 2t 1
H (1 +pt2j) _ Z P ) g
j=0 k=0
and, more generally,
—1 ‘ 2f—1 v(k)—1
[TC+pt™) =31 T pon | 7 (6.4)
j=0 k=0 m=0

where the indices v, € Ng are defined by
k — 2'7k,u(k)71 + ...+ 2'7k1 + 2'7k0 (65)

with yro < k1 < Yk2 < ... . For another generalization we need

Definition 6.3. We say that the ordered pair (i, k) € Nox Ny belongs to the relation
w(i, k), if i =0 or if {70, i1, - Viw(i)—1} C {VR0s Vh1s s Vhow (k) =17 -

By means of this definition we find that

v(k)—1
[ (+a?™)= 3 pr®-vigog, (6.6)
m=0 w(i,k)

Choosing p; = p + qt2j we obtain

-1 £-1 21
I+t + at”") = [TC+pt™) =2 > siet™ (6.7)
=0 =0 k=0 w(i,k)

according to (6.4) and (6.5) where we have used the abbreviation

Sipp = rﬂfu(k)pu(k)fu(i)qu(i) ) (68)

Proposition 6.4. For n € N the solution of problem (1.1) — (1.2) has the repre-

sentation
L4l = E Sike + E D Sike (6.9)
i+k=n i+k=n—2¢

where 2° < n < 21 (i,k € Ng) and a prime at sums shall mean that (i, k) must belong
to w(i, k) and that k < 2¢ — 1.
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Proof. Comparing (5.1) with (5.5) we see that 7,11 is the coefficient of t” in the
polynomial

-2 _ _ £-1 . :
e+ @) [ +pt? +at? )+ [ o+ 92 + 0t (6.10)
j=0 7=0

since the product in (5.5) is a polynomial in t of degree 2521 27 = 2k+1 _ 9 Tt is
possible to replace (6.10) by

{—1

(1 +pt2[) H (7" + pt2j + qt2j+])
=0

because the difference is a polynomial in t of degree 2¢ — 2 which gives no contribution
to the coefficient in question. Now, (6.7) immediately implies (6.9) I

Remark 6.5.

1. In accordance with Corollary 3.2 the first sum of (6.9) is a homogeneous poly-
nomial of degree £ and the last sum is such a polynomial of degree ¢ + 1.

2. In view of i+k = n—2% and n < 2¢t1, the restriction k < 2¢ —1 is automatically
satisfied in the second sum of (6.9).

By means of (2.11), it follows from (6.9) with ¢ = pz:
Corollary 6.6. For n € N the polynomial w,1 has the representation
/ . / .
Wpy1(x) =4 Z '@ 4 (£ +1) Z zv(® (6.11)
i+k=n i+k=n—2°¢
with the same restrictions as in Proposition 6.4.

Comparing (6.9) and (6.11) with (2.18) inthecasep=r =1,z = gand n = 2°4+j—1
we obtain the simplification
/ .
V= > ¢ (6.12)
ith=j—1
where j € N, (i, k) € w(i, k) and Y; = Z;(1,¢,1), but a further restriction with respect
to k is not required.

In the special case r = 1 we can derive another type of representations. For conve-
nience we use the notation z, = z,(p,q) = Z,(p,q,1) for n € Ng. If we introduce new
parameters o and 3 as solutions of ¢2 — p€ + ¢ = 0 so that

Zizgﬁ} (6.13)

we can write system (1.1) with » = 1 in the form
zon = (@ + B) 2k
Zok+1 = f 2k + 241

and every z, is a symmetric polynomial with respect to o and 3. The generating
function (5.4) supplies a representation for z,:
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Proposition 6.7. The polynomial z, has the representation

n—1
Zn = Z o () gr(n=1-7) (6.14)
=0

where o and 3 are determined by (6.13) and v(j) by (6.1).

Proof. In view of (6.13) we have 1 + pt + qt> = (1 + «t) (1 + Bt) so that the
generating function (5.4) has the form

- ﬁ (1+at?) ﬁ 1+ 8¢%)
j=0 j=0

for |t| < 1. Owing to

3

L+et?) =Y ¢k (6.15)
k=0

7=0

we obtain .
Z v ) i Zﬁ'/(k) tk
7=0 =

and hence, by means of the Cauchy product and (5.1), representation (6.14)
Solving (6.13) with respect to p and ¢ it is possible in (6.14) to express z, explicitly

by means of the parameters p and q.
Examples 6.8.

1. In the special case 8 = 1 and therefore &« = ¢, p = ¢ + 1 formula (6.14) reduces
to a representation of S,, = z,(q + 1, ¢) in [2].

2. In the special case ¢ =1, i.e. B = é, formula (6.14) simplifies to

— nz_:l v 9)—v(n=1-j) (6.16)
=0
where
— o4 /21 (6.17)
and, in particular for p = 2, i.e. « = 1, (6.16) implies z,(2,1) = n which also follows

immediately from (1.1) W1th p=2,qg=r=1and (1.2). For p > 2 we can put
= 2 coshr with real r so that o = Pi’" nd

zn(2coshr, 1) = Z cosh [r(v(j) —v(n—1—j))]. (6.18)

2a(2c0sp,1) = 3 cos [o(v(j) — v(n —1- j))]. (6.19)
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Of course, representations (6.18) and (6.19) are also valid for complex r resp. p.

3. A last special case is p = 1 which concerns the polynomials Y,, = Z,,(1,q4,1) =
zn(1,q). Formula (6.14) yields the representation

n—1
Yo=Y o'W —ap1-9 (6.20)
=0

where

a=31+t4/1q (6.21)

From (2.18) and (6.20) also a representation for w,, can be obtained, but we do not deal
with that case.

Finally, we want to give a third type of representation for Y,, = 7,,(1,¢,1) = z,(1,q)
where once more it suffices to consider odd n only. From (2.10) with p = r = 1 and
(2.18) with 2 = ¢ we obtain

Yorporgy = (a(£ = X) +1)Yary; — qYj (6.22)

for 0 < j < 2* < 2%, Asin (6.5), an arbitrary positive odd integer can be written in the
form
ng =27 4 27k1 44 270 4 270

with 9 =1 <71 <72 <... (k € Ng) and v; € N. For a fixed sequence 7; we introduce
the notation

nj=q(y;—v-1)+1  (GEN).
Then, with £ = g, A = v,_1 and j = ng_s, (6.22) can be written as

Yo, = Y,y — a¥n, . (6.23)

for £ > 2. Since ng = 1 and ny; = 27 4+ 1 we have the initial values Y,,, = 1 and
Yo, =qy1+1=m; cf. (2.10) withp=7=1and £ = .

Proposition 6.9. For k € Ny the polynomial Y,, = Z,(1,q,1) has the representa-
tion

L2
Yo, = Z (=) My Miy =+ Mo, (6.24)
J=0

where the sum runs over all indices with 1 <1, < 19 < ... < k under the condition that
ij is odd or even for j odd or even, respectively.

Proof. In view of the initial values, (6.24) is valid for k¥ = 0 and k = 1. If (6.24) is
valid up to a fixed k, then we obtain from (6.23)

k2 (b+1)/2)
Yo = 3 0V mia Wi e+ Y (0 Wi iy iy,
=0 =1

and these sums can be gathered up as one single sum (6.24) with k& + 1 instead of k&
since ig41—2; < k — 1 in the second sum B
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The first sums (6.24) with k£ > 2 read

Yo, =mmn2 —q
Yo, = mm2nz — q(n1 + 13)
Yoo = mnanana — q(mne + mna + nana) + ¢>.

By means of (2.18) and (6.24) it is possible to derive also a representation for w,, but
we are not concerned with that.
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