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Abstra
t. A spe
ial system of two dis
rete two-s
ale di�eren
e equations with polynomialsolutions is investigated. For the solutions, addition and subtra
tion theorems are establishedshowing in parti
ular the behaviour of the solutions for a great argument, as well as furtherrelations and inequalities. Also, 
orresponding generating fun
tions are 
onstru
ted whi
himply expli
it representations for the solutions.Keywords: Dis
rete two-s
ale di�eren
e equations, polynomials, addition theorems, generatingfun
tions, Collatz graph, Fibona

i numbersAMS subje
t 
lassi�
ation: 39A10, 39A12, 26C05, 30C101. Introdu
tionIn this paper we 
onsider the spe
ial systemZ2k = pZkZ2k+1 = q Zk + r Zk+1) (k 2 N) (1:1)of two dis
rete two-s
ale di�eren
e equations under the initial 
onditionZ1 = 1 : (1:2)The 
oeÆ
ients are assumed to be non-vanishing 
omplex numbers, and the solution isobviously a polynomial Zn = Zn(p; q; r) of the 
oeÆ
ients. In a forth
oming paper [3℄the solution of system (1.1) shall be used for an expli
it representation of solutions of
ontinuous two-s
ale di�eren
e equations at dyadi
 points. Su
h equations appear inwavelet theory and subdivision s
hemes, 
f. [4, 7℄. The spe
ial 
ase Sn = Zn(q+1; q; 1)was already 
onsidered in [2℄ in 
onne
tion with de Rham's singular fun
tion. Afterrepla
ement Zn+1 = xn, the se
ond equation of system (1.1) with q = 1
 and r = � 1
 for
 > 0 appeared also in [1, 5℄, however in another 
ontext and without its �rst equation.It is very simple to 
al
ulate the �rst polynomials Zn (
f. Table 1) as well as Z2` = p`for ` 2 N0, but our aim is to analyze the general stru
ture of Zn whi
h be
omes visible inaddition and subtra
tion theorems. We establish further relations and 
al
ulate in�niteseries. For p = q = r = 1 some Zn are the Fibona

i numbers whi
h here have anBoth authors: FB Math. der Univ., Universit�atspl. 1, D-18051 Rosto
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1000 L. Berg and M. Kr�uppelextremal property. Moreover, we 
onstru
t generating fun
tions of Zn and of relatedpolynomials and derive di�erent expli
it representations for Zn.

Table 1: The �rst polynomials Zn = Zn(p; q; r)In Table 1 it is 
onspi
uous that the non-vanishing 
oeÆ
ients of the polynomialsZn are all equal to 1. However, this is not a general property as the exampleZ21 = pr2�pq + pr + qr�+ �p2q + 2pqr + pr2 + qr2�qshows. It is possible to use the se
ond equation of system (1.1) also for k = 0 and tointrodu
e Z0 = 1� rq : (1:3)However, only in the 
ase p = 1 or r = 1, i.e.(p� 1)(r � 1) = 0 (1:4)the �rst equation of system (1.1) is 
ompatible with value (1.3) so that we shall use(1.3) only in these two 
ases.2. Addition theoremsWe begin with the 
onstru
tion of addition theorems, i.e. of formulas for Zn where n isa 
ertain sum of two terms.Proposition 2.1. Under 
onditions (1:2) and p 6= r the solution of system (1:1)with initial 
ondition (1:2) has the stru
tureZ2`k+j = qp�r �p`Xj � r`Yj�Zk + r` YjZk+1 (2:1)for 0 � j � 2` (k 2 N; j; ` 2 N0) where Xj = Zj�1; qp ; rp� and Yj = Zj�pr ; qr ; 1�.Proof. In the 
ase ` = 0 equation (2.1) is satis�ed for j 2 f0; 1g in view of X0 =p�rq , Y0 = 0 and X1 = Y1 = 1. Hen
e for ` = 0 and 0 � j � 1 the polynomials Zn havethe stru
ture Z2`k+j = X`jZk + Y`jZk+1 : (2:2)



Dis
rete Two-S
ale Di�eren
e Equations 1001We assume that (2.2) is satis�ed for a �xed ` and 0 � j � 2`. Repla
ing k by 2k undusing (1.1) we obtain Z2`+1k+j = (pX`j + qY`j)Zk + rY`jZk+1and therefore X`+1;j = pX`j + qY`jY`+1;j = rY`j ) : (2:3)Analogously, repla
ing k in (2.2) by 2k + 1 we �ndX`+1;2`+j = qX`jY`+1;2`+j = rX`j + pY`j ) ; (2:4)both equations for 0 � j � 2`. This shows that (2.2) is satis�ed for ` + 1 instead of `and for 0 � j � 2`+1. Hen
e by indu
tion (2.2) is proved for all ` 2 N0.Equations (2.3) have the general solutionsX`j = qp�r �p`Xj � r`Yj�Y`j = r`Yj ) (2:5)for every �xed j and j � 2` so that (2.2) implies (2.1). Repla
ing j in (2.1) by 2j andusing Z2`k+2j = pZ2`�1k+j for ` � 1 we obtain by 
omparison of 
oeÆ
ientsX2j = XjY2j = prYj :Analogously, repla
ing j in (2.1) by 2j+1 and using Z2`k+2j+1 = qZ2`�1k+j+rZ2`�1k+j+1we obtain X2j+1 = qpXj + rpXj+1Y2j+1 = qrYj + Yj+1:In view of the initial 
onditions the proposition is provedRemark 2.2.1. In the 
ase (1.4) at most two of the sequen
es Xn, Yn, Zn are di�erent sin
eXn = Zn for p = 1 and Yn = Zn for r = 1. Obviously, Xn = Yn = Zn for p = r = 1.2. For k = 1 equation (2.1) spe
ializes toZ2`+j = qp�rp`Xj + �p� qp�r �r`Yj (2:6)with 0 � j � 2` (` 2 N0). In view of Yj = Zj�pr ; qr ; 1� and Xj = Zj�1; qp ; rp� equation(2.6) immediately implies Y2`+j = qp�r �pr �`Xj + �pr � qp�r �Yj (2:7)X2`+j = qp�rXj + �1� qp�r �� rp�`Yj (2:8)



1002 L. Berg and M. Kr�uppeland the three equations (2.6) - (2.8) 
an be used to 
al
ulate Zn for n = 2
k+:::+2
1+2
0with integers 
k > ::: > 
1 > 
0 � 0. In Se
tion 6 we shall 
ome ba
k to this question ina spe
ial 
ase. Equations (2.5), (2.7) - (2.8) 
an also be used to 
he
k equations (2.4).3. Eliminating Xj and Yj out of (2.6) - (2.8) we obtain the relationZn = 1p�r �(p� 1)r`+1Yn � (r � 1)p`+1Xn� (2:9)for 2` � n � 2`+1 (` 2 N0).The ex
luded 
ase p = r in Proposition 2.1 
an be treated in an analogous way orby means of the limit pro
ess r ! p. For 
onvenien
e, we 
onsider the 
ase p! r andwrite afterwards on
e more p instead of r. The appearing derivatives with respe
t to pshall be labelled by means of a dash.Proposition 2.3. For p = r the solution of system (1:1) with initial 
ondition (1:2)has the stru
ture Z2`+j = p`�1 ��`q + p2�Yj � qwj� (2:10)where wj = Z 0j(p; xp; p)jp=1 (2:11)satis�es w2`+j(x) = �x`2 + `+ 1�Yj � `xwj(x) (2:12)for 0 � j � 2` (j; ` 2 N0), Yj = Zj(1; x; 1), x = qp , and w0 = � 1x , w1 = 0.Proof. Sin
e Zn is a polynomial in p; q; r it is di�erentiable and so are Xn and Ynin view of p 6= 0 and r 6= 0. Equation (2.6) 
an be written in the formZ2`+j = �pr` + q p` � r`p� r �Yj � p`q Yj �Xjp� r :For p ! r both Xj = Zj�1; qp ; rp� and Yj = Zj�pr ; qr ; 1� 
onverge to Zj(1; qp ; 1) and, bymeans of de l'Hospital's rule (whi
h is also appli
able to holomorphi
 fun
tions), weobtain Z2`+j = p`�1(p2 + `q)Yj � p`q(Y 0j �X 0j)and therefore (2.10) withwj = p�Z 0j�pr ; qr ; 1�� Z 0j�1; qp ; rp����r=p : (2:13)Obviously, wj depends on x = qp alone and it 
an be represented as (2.11). In parti
ular,(2.11) yields the initial values of wj for j = 0 and j = 1. Substituting q = px in (2.10)we obtain Z2`+j = p`�(`x+ p)Yj � xwj�and by di�erentiation with respe
t to p, 
hoosing p = 1 and 
onsidering (2.11), we alsohave proved (2.12)



Dis
rete Two-S
ale Di�eren
e Equations 1003Remark 2.4. More generally, it follows from (2.1) for p! rZ2`k+j = p`�1q(`Yj � wj)Zk + p`YjZk+1 (2:14)and in view of (2.11)w2`k+j = x(`2Yj � `wj)Yk + `YjYk+1 + x(`Yj � wj)wk + Yjwk+1 (2:15)for 0 � j � 2` (k 2 N; ` 2 N0), Yj = Zj(1; x; 1). For j = 0 this implies w2`k = `Yk + wkand for ` � 0 in parti
ular w2` = `. Moreover, for ` = 1 and j = 0 resp. j = 1 we easilysee:Corollary 2.5. The polynomials wj (j 2 N) are uniquely determined by the initialvalue w1 = 0 and the system w2j = wj + Yjw2j+1 = xwj + wj+1 + Y2j+1) ; (2:16)Yj = Zj(1; x; 1), whi
h is the inhomogeneous 
ounterpart to the homogeneous system(1:1) with p = r = 1 and q = x.By elimination of Yj in (2.16), using Y2j+1 = xYj + Yj+1, we obtain the furtherrelation w2j+1 = xw2j + w2j+2 (2:17)whi
h is also satis�ed by Yn instead of wn, and from (2.10) and (2.12) with p = 1 andq = x we get w2`+j = ` Y2`+j + Yj; (2:18)Yj = Zj(1; x; 1). All these relations 
an be 
he
ked for the �rst indi
es by means ofTable 2.

Table 2: The �rst polynomials Yn = Zn(1; x; 1) and wn(x)



1004 L. Berg and M. Kr�uppel3. Subtra
tion theoremsThere exist analogous formulas for negative j, i.e. 
orresponding subtra
tion theorems.Proposition 3.1. In the 
ase p 6= q the solution of system (1:1) with initial 
ondi-tion (1:2) has the propertyZ2`�j = rp�qp`Uj + �1�rq � rp�q �q`Vj (3:1)for 0 � j � 2` � 1 (` 2 N0) where Uj = Zj�1; rp ; qp� and Vj = Zj�pq ; rq ; 1�.The proof 
an easily be 
arried out indu
tively using the initial values Z2` = p`,U0 = p�qr , V0 = 0 and the re
ursionsU2j = UjU2j+1 = rpUj + qpUj+1) and V2j = pqVjV2j+1 = rqVj + Vj+1)so that it shall be omitted here. For j = 2` the right-hand side of (3.1) is equal to1�rq p`, and is equal to (1.3) for all ` if and only if p = 1 or r = 1.As a 
onsequen
e of (2.6) and (3.1) we �ndZ2`+j = pr`Zj�pr ; qr ; 1�+ q`Z2`�j�pq ; rq ; 1� (3:2)and this equation is not only valid for 0 � j < 2` but also for j = 2`. Owing to
ontinuity, equation (3.2) remains valid in the limit 
ase p = r. Sin
e both terms on theright-hand side of (3.2) are homogeneous polynomials we 
an 
on
lude (
f. Table 1):Corollary 3.2. For 1 � j � 2` � 1 every polynomial Z2`+j is a sum of a homoge-neous polynomial of degree `+ 1 plus su
h a polynomial of degree `.It is also possible to 
onsider the limit 
ase q ! p in (3.1) where we pro
eedanalogously as before.Proposition 3.3. For p = q the solution of system (1:1) with initial 
ondition (1:2)has the property Z2`�j = p`�1�(r(`� 1) + 1)Uj � rwj� (3:3)for 0 � j � 2` � 1 (` 2 N0) where Uj = Zj�1; rp ; 1� and wj = wj( rp ) is determined by(2:16) with x = rp and w1 = 0.Proof. By means of de l'Hospital's rule we obtain from (3.1) for p! qZ2`�j = (r`+ 1� r)p`�1Zj�1; rp ; 1�� rp`�Z 0j�pq ; rq ; 1�� Z 0j�1; rp ; qp����q=pwhere in view of (2.11)p�Z 0j�pq ; rq ; 1�� Z 0j�1; rp ; qp����q=p = wj� rp�so that (3.3) is proved



Dis
rete Two-S
ale Di�eren
e Equations 1005Analogously, in the 
ase x 6= 1 we 
an derivew2`�j(x) = `1�x (Uj � x`Vj)� x`�1Vj (3:4)for 0 � j � 2` (` 2 N0) with Uj = Zj(1; 1; x) and Vj = Zj� 1x ; 1x ; 1�, and in the 
asex = 1 w2`�j(1) = (`2 � 1)Yj � `wj (3:5)with Yj = Zj(1; 1; 1). Moreover, a simple 
onsequen
e of (2.10) with p = q = 1 as wellas `� 1 instead of ` and (3.3) with p = r = 1 isY2`�j = Y2`�1+j (3:6)for 0 � j � 2`�1 with Yn = Zn(1; 1; 1). This equation shows a lo
al symmetry of Ynwith respe
t to the points n = 3 � 2`�2 (` � 2) (
f. the later Table 3).4. Further relations and inequalitiesIn the following we also admit vanishing 
oeÆ
ients in system (1.1). In order to establishnew relations between di�erent solutions Zn we need the de�nition of a k-sequen
e.De�nition 4.1. Let k 2 N and ` 2 N0.(i) A �nite sequen
e �1; �2; :::; �k is 
alled a k-sequen
e if �1 2 f1; 3g, �j 2 f8`+1; 8`+ 3g for �j�1 = 4`+ 3 and �j 2 f8`+ 5; 8`+ 7g for �j�1 = 4`+ 1 (2 � j � k).(ii) A �nite sequen
e �1; �2; :::; �k; ��k is 
alled an extended k-sequen
e if �1; :::; �kis a k-sequen
e, ��k = 4`+ 3 for �k = 4`+ 1 and ��k = 4`+ 1 for �k = 4`+ 3.The foregoing de�nitions 
an be visualized by means of a so-
alled Collatz graph(
f. [8℄). We begin with the dire
ted Collatz graph in Figure 1 for the fun
tion g de�nedby g(4`+ 1) = g(4`+ 3) = 2`+ 1 (` 2 N0) :Inverting the dire
tions and inter
hanging the neighbouring numbers 4`+ 1 and 4`+ 3for all ` 2 N0, we obtain the inversely dire
ted Collatz graph in Figure 2 for the fun
tionf de�ned by f(8`+ 1) = f(8`+ 3) = 4`+ 3f(8`+ 5) = f(8`+ 7) = 4`+ 1) (` 2 N0) :After these preparations, the numbers of k 
onse
utive verti
es in a dire
ted path of Fig-ure 2 beginning with 1 or 3, where in the last 
ase the loop at the vertex 3 
an be passedseveral times, yield always terms of a k-sequen
e. The term ��k of the 
orrespondingextended k-sequen
e is �xed by the demand that ��k 6= �k and that an inter
hange of



1006 L. Berg and M. Kr�uppel�k and ��k again yields an extended k-sequen
e. Note that for all j we have �j < 2j+1.

Figure 1: The dire
ted Collatz graph of the fun
tion g

Figure 2: The inversely dire
ted Collatz graph of the fun
tion f
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rete Two-S
ale Di�eren
e Equations 1007Proposition 4.2. For every extended k-sequen
e the polynomials Zn satisfy therelations �kZ2n+1 = �k�1Z4n+�1 + �k�2Z8n+�2 + : : :+ �Z2kn+�k�1 + Z2k+1n+�k + Z2k+1n+��k (4:1)for arbitrary k 2 N, n 2 N0 and � = p+ q + r.Proof. From system (1.1) we easily deriveZ4k+1 = pqZk + rZ2k+1Z4k+3 = qZ2k+1 + prZk+1) : (4:2)By addition we obtain (p+ q + r)Z2n+1 = Z4n+1 + Z4n+3 (4:3)and therefore (4.1) for k = 1. If (4.1) is satis�ed for a �xed k-sequen
e, we multiplythis equation by � and regard that�Z2k+1n+4`+1 = Z2k+2n+8`+1 + Z2k+2n+8`+3�Z2k+1n+4`+3 = Z2k+2n+8`+5 + Z2k+2n+8`+7:in view of (4.3). Hen
e we obtain (4.1) with k+1 instead of k and two extended (k+1)-sequen
es, one with the old �j for j � k and one with the old �j for j � k � 1 and ��kinstead of �k, and both with suitable �k+1; ��k+1Remark 4.3.1. Further spe
ial 
ases of relations (4.1) besides of (4.3) are�2Z2n+1 = �Z4n+1 + Z8n+5 + Z8n+7�2Z2n+1 = �Z4n+3 + Z8n+1 + Z8n+3:2. Dividing (4.1) by �k and 
onsidering the 
ase k !1 we obtain the expansionZ2n+1 = 1X̀=1 1�`Z2`+1n+�` (4:4)so long as the series is 
onverging. This is always the 
ase for positive p; q; r but alsofor some 
omplex 
oeÆ
ients:Proposition 4.4. The series (4:4) 
onverges for 
omplex p; q; r provided thatC = max�jpj; jqj+ jrj; 1	 < j�j (4:5)where � = p+ q + r.Proof. 1. In order to show the 
onvergen
e of series (4.4) �rst we shall prove thatjZkj � C` (4:6)



1008 L. Berg and M. Kr�uppelfor 1 � k � 2` (` 2 N0). For this reason we shall show by indu
tion thatjZ2`+j j � C`+1 (4:7)for 0 � j � 2`. This inequality is true for ` = 0; j 2 f0; 1g a

ording to Z1 = 1 � C andjZ2j = jpj � C. Assume that (4.7) is valid for a �xed `. Then we havejZ2`+1+2j j = jpj jZ2`+j j � jpjC`+1 � C`+2jZ2`+1+2j+1j � jqj jZ2`+j j+ jrj jZ2`+j+1j � (jqj+ jrj)C`+1 � C`+2for j � 2` and j < 2`, respe
tively, i.e. (4.7) with ` + 1 instead of ` so that (4.7) isproved. This implies inequality (4.6) in view of C � 1.2. Now, from (4.6) and �` < 2`+1 we obtain jZ2`+1n+�` j � C`+m+1 for n+ 1 � 2min view of 2`+1n+�` < 2`+1(n+1) � 2`+m+1. This yields �� 1�`Z2`+1n+�` �� � Cm+1� Cj�j�`so that a

ording to (4.5) the series in (4.4) 
onvergesFor k = 2` + j we immediately obtain from (4.7) and 2` � k � 2`+1:Corollary 4.5. The polynomials Zk (k 2 N) 
an be estimated byjZkj � Ck
 (4:8)with 
 = lnCln 2 .In the 
ase p = q = r = 1 we 
an state the following 
urious 
onne
tion betweenthe numbers Yn = Zn(1; 1; 1) and the Fibona

i numbers Fk (k 2 N0):Proposition 4.6. With the notation mk = 13�2k+1+(�1)k� (k 2 N0) the numbersYmk = Zmk(1; 1; 1) are the Fibona

i numbers Fk. These have the extremal propertyYn < Ymk for n < mk and k � 2.Proof. In view of m0 = m1 = 1 and (1.2) the �rst assertion is valid for k = 0 andk = 1. A

ording to2k+1 + (�1)k = 2k + (�1)k�1 + 2�2k�1 + (�1)k�2�and (1.1) with p = q = r = 1 the numbers Ymk satisfy the di�eren
e equationYmk = Ymk�1 + Ymk�2 (4:9)for k � 2 whi
h proves the �rst assertion.In order to prove the se
ond assertion it suÆ
es to 
onsider odd indi
es sin
e Y2n =Yn and to 
onsider (4.2) in the spe
ializationY4n+1 = Yn + Y2n+1Y4n+3 = Yn+1 + Y2n+1) : (4:10)



Dis
rete Two-S
ale Di�eren
e Equations 1009The assertion is valid for n < m2 = 3 where Y3 = 2 (
f. Table 3). We assume that it isvalid for n < mk�1 with k � 3. In the 
ase that k is even we 
hoose ` = 13 (2k�1 � 2)and have mk�2 = `+ 1mk�1 = 2`+ 1mk = 4`+ 3:Hen
e 4n + 1 < 4` + 3 implies n � `, i.e. n < ` + 1 as well as 2n + 1 � 2` + 1, and4n+ 3 < 4`+ 3 implies n < `, i.e. n+ 1 < `+ 1 as well as 2n+ 1 < 2`+ 1. In the 
asethat k is odd we 
hoose ` = 13(2k�1 � 1) and obtainmk�2 = `mk�1 = 2`+ 1mk = 4`+ 1:Hen
e 4n+1 < 4`+1 implies n < ` as well as 2n+1 < 2`+1, and 4n+3 < 4`+1 impliesn+1 � ` as well as 2n+1 < 2`+1. In both 
ases equations (4.9) and (4.10) show thatthe se
ond assertion is also valid for n < mk so that it is proved by indu
tionIt 
an be shown analogously by indu
tion that Yn < Ymk for mk < n � 3 � 2k�2 andk � 3, but we 
an extend this inequality a se
ond time by means of (3.6). Introdu
ingnumbers mk (k 2 N) by 2k �mk = 2k�1 +mk, i.e. bymk = 13�5 � 2k�1 � (�1)k�we have Ymk = Ymk a

ording to (3.6). Obviously, 2k�1 � mk � 3 � 2k�2 � mk � 2kand mk = mk if and only if k = 2. Now, the foregoing remarks and equation (3.6)imply:Corollary 4.7 For a �xed k 2 N the Fibona

i number Fk is equal to the maximumof Yn for 1 � n � 2k whi
h is attained in this interval exa
tly for both n = mk andn = mk.The extremal properties in Proposition 4.6 and in Corollary 4.7 
an be 
he
ked forthe �rst indi
es by means of Table 3 where the Fibona

i numbers Ymk are underlinedand the Fibona

i numbers Ymk are labelled by an overhead bar.

Table 3: The �rst numbers Yn = Zn(1; 1; 1)



1010 L. Berg and M. Kr�uppel5. Generating fun
tionsIt is useful to 
onstru
t the generating fun
tionG(t) = 1Xn=1Zntn�1 (5:1)of the sequen
e Zn. In view of (4.8) the series 
onverges for jtj < 1. The re
ursions(1.1) easily imply the fun
tional equationG(t) = 1� r + (r + pt+ qt2)G(t2) (5:2)and therefore by iteration for arbitrary n 2 N0G(t) = (1� r) n�1Xk=0 k�1Yj=0(r + pt2j + qt2j+1) +G(t2n) n�1Yj=0(r + pt2j + qt2j+1) :As usual the produ
ts are de�ned by 1 in the 
ases k = 0 and n = 0. For jtj < 1 wehave G(t2n)! G(0) = 1 as n!1. Hen
e for jtj < 1 we get in the 
ase jrj < 1G(t) = (1� r) 1Xk=0 k�1Yj=0 �r + pt2j + qt2j+1� (5:3)and in the 
ase r = 1 G(t) = 1Yj=0 �1 + pt2j + qt2j+1� : (5:4)However, if we write (5.2) in the formG(t)� 1 = pt+ qt2 + �r + pt+ qt2� �G(t2)� 1�we get G(t) = 1 + 1Xk=0 �pt2k + qt2k+1� k�1Yj=0 �r + pt2j + qt2j+1� (5:5)for arbitrary r and again for jtj < 1. Summarizing these results we have proved:Proposition 5.1. For jtj < 1 the generating fun
tion (5:1) has the representation(5:5). In the 
ase jrj < 1 it 
an also be represented by (5:3) and in the 
ase r = 1 by(5:4).Con
erning the di�erent representations (5.4) and (5.5) in the 
ase r = 1 
f. [6: p.233℄.Moreover, we 
onsider the generating fun
tionsF (t) = 1Xn=1Yntn�1 and H(t) = 1Xn=1wntn�1 (5:6)where Yn = Zn(1; q; 1) and wn = wn(q) so that F (t) = G(t) from (5.1) with p = r = 1and (5.2) spe
ializes to F (t) = (1 + t+ qt2)F (t2) : (5:7)A

ording to (2.18) and (4.8) the series for H(t) 
onverges for jtj < 1, too.
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ale Di�eren
e Equations 1011Proposition 5.2. The generating fun
tion H from (5:6) satis�es the equationH(t) = F (t)� 1 + (1 + t+ qt2)H(t2) (5:8)and it 
an be represented by the seriesH(t) = F (t) 1Xk=0�1� 1F (t2k)� (5:9)whi
h 
onverges for jtj < 1.Proof. Equation (5.8) follows from (2.16) and (5.6) by straitforward 
al
ulations,and (5.9) follows from (5.7) and (5.8) in view of H(0) = 0 and F (0) = 1Let us mention that series (5.9) 
an be written in the formH(t) = 1Xk=0�F (t)� F (t)F (t2k)� (5:10)where the quotients F (t)F (t2k) = k�1Yj=0 �1 + t2j + qt2j+1�are polynomials. It is also possible to eliminate F (t) out of (5.7) and (5.8), but thenH(t4) appears in the equation.6. Expli
it representationsWe begin with very spe
ial representations. In our representations we need the dyadi
sum-of-digits fun
tion �(j) and its 
omplement �(k) = `� �(k) for 2`�1 � k < 2` withj 2 N0 and `; k 2 N, i.e. �(j) denotes the number of 1s and �(k) the number of 0s in thedyadi
 representation of j resp. k. Obviously, we have the initial values �(0) = �(1) = 0and the re
ursions�(2j) = �(j)�(2j + 1) = �(j) + 1) and �(2k) = �(k) + 1�(2k + 1) = �(k) ) : (6:1)Moreover, we put �(0) = 0 whi
h is 
ompatible with the last equation of (6.1). Sin
eZ2`k = p`Zk it suÆ
es to 
onsider odd k only.Proposition 6.1. For k 2 N the polynomials Z2k+1 have the representationsZ2k+1 = 8<: q�(k)r�(k) for p = 0p�(k)r�(k)+1 for q = 0p�(k)q�(k) for r = 0. (6:2)Proof. From (1.1) and (4.2) we immediately obtainZ4k+1 = ( rZ2k+1rZ2k+1pZ2k+1 and Z4k+3 = ( qZ2k+1 for p = 0pZ2k+1 for q = 0qZ2k+1 for r = 0. (6:3)In view of Z3 = pr + q equations (6.2) are valid for k = 1. If they are valid for a �xedk 2 N, then also for 2k resp. 2k + 1 instead of k in view of (6.1) and (6.3). Hen
e theproposition is proved by indu
tion



1012 L. Berg and M. Kr�uppelRemark 6.2. In view of (1.2) the �rst and last equations of (6.2) remain validfor k = 0. In the 
ase r = 0 we have Zn = p�(n)q�(n)�1 for all n 2 N. We even 
anuse Proposition 2.1 for q = 0 and Proposition 3.1 for r = 0 if for j = 0 we interpretqX0 = p� r resp. rU0 = p� q.In order to deal with the general 
ase we need some preparations. It 
an easily beseen that `�1Yj=0 �1 + pt2j� = 2`�1Xk=0 p�(k)tkand, more generally,`�1Yj=0 �r + pjt2j� = 2`�1Xk=0 r`��(k)0��(k)�1Ym=0 p
km1A tk (6:4)where the indi
es 
km 2 N0 are de�ned byk = 2
k;�(k)�1 + :::+ 2
k1 + 2
k0 (6:5)with 
k0 < 
k1 < 
k2 < ::: . For another generalization we needDe�nition 6.3. We say that the ordered pair (i; k) 2 N0�N0 belongs to the relation!(i; k), if i = 0 or if f
i0; 
i1; :::; 
i;�(i)�1g � f
k0; 
k1; :::; 
k;�(k)�1g.By means of this de�nition we �nd that�(k)�1Ym=0 �p+ qt2
km � = X!(i;k) p�(k)��(i)q�(i)ti : (6:6)Choosing pj = p+ qt2j we obtain`�1Yj=0 �r + pt2j + qt2j+1� = `�1Yj=0 �r + pjt2j� = 2`�1Xk=0 X!(i;k) sik`ti+k (6:7)a

ording to (6.4) and (6.5) where we have used the abbreviationsik` = r`��(k)p�(k)��(i)q�(i) : (6:8)Proposition 6.4. For n 2 N the solution of problem (1:1) � (1:2) has the repre-sentation Zn+1 = Xi+k=n0sik` + Xi+k=n�2`0p sik` (6:9)where 2` � n < 2`+1 (i; k 2 N0) and a prime at sums shall mean that (i; k) must belongto !(i; k) and that k � 2` � 1.
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rete Two-S
ale Di�eren
e Equations 1013Proof. Comparing (5.1) with (5.5) we see that Zn+1 is the 
oeÆ
ient of tn in thepolynomial�pt2`�1 + qt2`� `�2Yj=0 �r + pt2j + qt2j+1�+ t2` `�1Yj=0 �r + pt2j + qt2j+1� (6:10)sin
e the produ
t in (5.5) is a polynomial in t of degree Pkj=1 2j = 2k+1 � 2. It ispossible to repla
e (6.10) by�1 + pt2`� `�1Yj=0 �r + pt2j + qt2j+1�be
ause the di�eren
e is a polynomial in t of degree 2` � 2 whi
h gives no 
ontributionto the 
oeÆ
ient in question. Now, (6.7) immediately implies (6.9)Remark 6.5.1. In a

ordan
e with Corollary 3.2 the �rst sum of (6.9) is a homogeneous poly-nomial of degree ` and the last sum is su
h a polynomial of degree `+ 1.2. In view of i+k = n�2` and n < 2`+1, the restri
tion k � 2`�1 is automati
allysatis�ed in the se
ond sum of (6.9).By means of (2.11), it follows from (6.9) with q = px:Corollary 6.6. For n 2 N the polynomial wn+1 has the representationwn+1(x) = ` Xi+k=n0x�(i) + (`+ 1) Xi+k=n�2`0x�(i) (6:11)with the same restri
tions as in Proposition 6:4.Comparing (6.9) and (6.11) with (2.18) in the 
ase p = r = 1, x = q and n = 2`+j�1we obtain the simpli�
ation Yj = Xi+k=j�10q�(i) (6:12)where j 2 N, (i; k) 2 !(i; k) and Yj = Zj(1; q; 1), but a further restri
tion with respe
tto k is not required.In the spe
ial 
ase r = 1 we 
an derive another type of representations. For 
onve-nien
e we use the notation zn = zn(p; q) = Zn(p; q; 1) for n 2 N0. If we introdu
e newparameters � and � as solutions of �2 � p� + q = 0 so thatp = �+ �q = �� ) (6:13)we 
an write system (1.1) with r = 1 in the formz2k = (�+ �)zkz2k+1 = �� zk + zk+1and every zn is a symmetri
 polynomial with respe
t to � and �. The generatingfun
tion (5.4) supplies a representation for zn:



1014 L. Berg and M. Kr�uppelProposition 6.7. The polynomial zn has the representationzn = n�1Xj=0 ��(j)��(n�1�j) (6:14)where � and � are determined by (6:13) and �(j) by (6:1).Proof. In view of (6.13) we have 1 + pt + qt2 = (1 + � t) (1 + � t) so that thegenerating fun
tion (5.4) has the formG(t) = 1Yj=0 �1 + � t2j� 1Yj=0 �1 + � t2j�for jtj < 1. Owing to 1Yj=0 �1 + � t2j� = 1Xk=0 ��(k) tk (6:15)we obtain G(t) = 1Xj=0 ��(j) tj 1Xk=0 ��(k) tkand hen
e, by means of the Cau
hy produ
t and (5.1), representation (6.14)Solving (6.13) with respe
t to p and q it is possible in (6.14) to express zn expli
itlyby means of the parameters p and q.Examples 6.8.1. In the spe
ial 
ase � = 1 and therefore � = q, p = q + 1 formula (6.14) redu
esto a representation of Sn = zn(q + 1; q) in [2℄.2. In the spe
ial 
ase q = 1, i.e. � = 1� , formula (6.14) simpli�es tozn(p; 1) = n�1Xj=0 ��(j)��(n�1�j) (6:16)where � = p2 �qp24 � 1 (6:17)and, in parti
ular for p = 2, i.e. � = 1, (6.16) implies zn(2; 1) = n whi
h also followsimmediately from (1.1) with p = 2, q = r = 1 and (1.2). For p � 2 we 
an putp = 2 
osh r with real r so that � = e�r andzn(2 
osh r; 1) = n�1Xj=0 
osh �r(�(j)� �(n� 1� j))�: (6:18)For �2 � p � 2 we 
an put p = 2 
os % with real % so that � = e�i% andzn(2 
os �; 1) = n�1Xj=0 
os �%(�(j)� �(n� 1� j))�: (6:19)
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rete Two-S
ale Di�eren
e Equations 1015Of 
ourse, representations (6.18) and (6.19) are also valid for 
omplex r resp. %.3. A last spe
ial 
ase is p = 1 whi
h 
on
erns the polynomials Yn = Zn(1; q; 1) =zn(1; q). Formula (6.14) yields the representationYn = n�1Xj=0 ��(j)(1� �)�(n�1�j) (6:20)where � = 12 �q14 � q: (6:21)From (2.18) and (6.20) also a representation for wn 
an be obtained, but we do not dealwith that 
ase.Finally, we want to give a third type of representation for Yn = Zn(1; q; 1) = zn(1; q)where on
e more it suÆ
es to 
onsider odd n only. From (2.10) with p = r = 1 and(2.18) with x = q we obtainY2`+2�+j = �q(`� �) + 1�Y2�+j � qYj (6:22)for 0 � j � 2� < 2`. As in (6.5), an arbitrary positive odd integer 
an be written in theform nk = 2
k + 2
k�1 + :::+ 2
1 + 2
0with 
0 = 1 < 
1 < 
2 < ::: (k 2 N0) and 
j 2 N. For a �xed sequen
e 
j we introdu
ethe notation �j = q(
j � 
j�1) + 1 (j 2 N):Then, with ` = 
k, � = 
k�1 and j = nk�2, (6.22) 
an be written asYnk = �kYnk�1 � qYnk�2 (6:23)for k � 2. Sin
e n0 = 1 and n1 = 2
1 + 1 we have the initial values Yn0 = 1 andYn1 = q
1 + 1 = �1; 
f. (2.10) with p = j = 1 and ` = 
1.Proposition 6.9. For k 2 N0 the polynomial Yn = Zn(1; q; 1) has the representa-tion Ynk = [k=2℄Xj=0 (�q)j�i1�i2 � � ��ik�2j (6:24)where the sum runs over all indi
es with 1 � i1 < i2 < ::: � k under the 
ondition thatij is odd or even for j odd or even, respe
tively.Proof. In view of the initial values, (6.24) is valid for k = 0 and k = 1. If (6.24) isvalid up to a �xed k, then we obtain from (6.23)Ynk+1 = [k=2℄Xj=0 (�q)j�i1�i2 � � � �ik�2j�k+1 + [(k+1)=2℄Xj=1 (�q)j�i1�i2 � � � �ik+1�2jand these sums 
an be gathered up as one single sum (6.24) with k + 1 instead of ksin
e ik+1�2j � k � 1 in the se
ond sum



1016 L. Berg and M. Kr�uppelThe �rst sums (6.24) with k � 2 readYn2 = �1�2 � qYn3 = �1�2�3 � q(�1 + �3)Yn4 = �1�2�3�4 � q(�1�2 + �1�4 + �3�4) + q2:By means of (2.18) and (6.24) it is possible to derive also a representation for wnk butwe are not 
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