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O rozkladzie zer \pev'nllych ‘wielomianéw ekstrgmﬁlnyc‘h

1. Wstep. Niech. ¥ bedzie brzegiem obszaru plaskiego D = D(E),
zawierajgeego punkt co w swoim wnetrzu. Niech ¢ = ¢(E) oznaeza do-
pelnienie OD. Zbiory- E i € sa oczywifeie domkniete i ogramczone, przy.
czym E C €. Niech f(2) bgdzle funkejg rzeczywista, ogramczonag i pét-
ciagly z dotu w -E. Oznaczmy przez £ = (&, &7, ..., £7) taki uklad
- n+1punktéw £, &7, ...; & zbiori , ze dla kazdego ukladu (Gos ay ey Cn)
punktéw zbioru K zachodm meréwnoéé

(1) n {lg(ﬂ) (%)lexpE f(E(ﬂ)) f(f(n))]} > |
Kc{kén S
- > [] (btloxpl= G~ 1D, n=1,2,..

0<i<k<n .

Ukla,d E(") spelnmmey Warunek (1) istnieje, poniewas funkc]a. l#—
—C|exp[—f(2)—f({)] jest.dla 2, ¢ ¢ B pélciagla z géry. Uklad S(") nazywa.
_sie n-tym ukladem ekstremah@ym zbwm E wzgl@dem funkcyz 1. '
Wiadomo, zZe clag

: N
vumn={ J] 1e0- s”’lexp[ i(E"") HEP

Coi<k<n
posiada granice = ‘ » o
(2) | v(B, f) = imVuB, 1),
przy czym liczba o(E, f) w przypadku f=0 redukuge gie do éredmcy -
poza.skonczone] zbioru E, [3] : .
Niech a™ = {a{”, ""’ ﬂ’} b@dzw takim ukladem n punktéw

plaszezyzny zespolone], ze dla dowol:nych n hczb zegpolonych ¢, ¢, ..., Cn
zachodzi nieré6wnofé : : :

(3) rzg%x{l(z—-ai"b (e~ asz'> ) exp[—nf (2)]} <
| < max{|(z—ey) ... (z—a)|exp[—n/ ()]} -

. Prace matematyczne z. §' R : : 4
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Niech b(”) o™, 5%, ..., %) bedzie takim ukladem n punktéw
zbioru E, ze dla dowolﬁych n Punktéw ¢, s, ..., ¢a zbioru E mamy

@) max(le—b") ... (— b exp[—nf ()]} < ,
" < max {[(z—e) ... (z— en) exP[—nf ()]}

- Wielomian Tau(z, B, f) = (¢—a{”) ... (¢—al”) nazywamy n-tym wielomia-
“nem Czebyszewa dla zbioru B wegledem funkeji f. Gdy =0, to Ta(z, B, f)
jest zwyklym. wielomianem Czebyszewa dla zbioru E. Wielomian Sx(z, B, f)

= (¢—b{) ... (¢—by") nazwijmy n-tym nieswobodnym wielomianem Cze-
bySZewa dla zbioru F wzgledem f. :

Przedmiotem pracy jest badanie zachowania sie asymptotycmego
trojkatnego ciagn punktéw ekstremalnych {£”, &", ..., &} okreslonych
warunkiem (1) oraz zer wielomianéw Tx(z, E, f} i Sn(z E , - W szczegél-
nofci dowodzi sie, ze jesli v(H, 0) > 0, to:

i) Dla kazdej funkcji g(2) cigglej na E 1stme]e gra.mca ciggu §rednich
~arytmetycznych (por. [5], str. 164) :

halg; f] =;b[g(§§"))+g(é‘”’)+ &, Wl f]5%[9(b§“’)+...+g(55!”’)],' N

przy czym : :

hly; f1= limhag; f] = LimAifg; 1.

o ii) Jegli ciag funkeji cigglych {fu(2)} zmierza jednostajnie na F do

f(z), to dla ka.zde] funkep ciaglej ¢ mamy hmh[g, fa] = hig; f], [1].
11) Jedli f— 0 g jest funkeja ciggla w E 1:0

A(E 0) _
hig; 0] = hm LO A(E-Z_g) u(co, H, g), s
gdzie u(z, H, g) Jest uogolmemem W sensie Kelloga, Wlenera rozwigza-
niem problemu Dirichleta dla D z oblozeniem g, a A(E, Ag) dane jest

wzorem (7) (dla f = 4g).

2. Twiefdzenia pomocnicze. W dalszym ciggu oprzemy si¢ na _nasté-
pujacych twierdzeniach udowodnionych w [3] lub [4]: . '
- 1° Liezby t(#,f) = ma,x|Tn(z E, fe-™®| oraz su(H, f) —max|8'n

(2, B, f)e®| spelniaja merownosc1

() - bnen Stulny  Smin < Smdn, m,n=1,2,..,

skad wyniké, %e ciagi {'f/tn(E ) i [VealE, )] sa zbieime.
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o J edli punkty uidadu (67, "f’ ' (”’) 52 tak ponumerowane, se..
[T e - 0 expr— e — 16 ‘“’)]} R

k=1 | ; ,, g

H (& — 5‘”’leXP [—f(§§”’)~_f( ‘"’n} , =1, LI
k=0 A
k1 .

‘to ciag An(E, f) = l/[ ][ o (")lexp[ F(E)] jest zbiezmy, priy‘ ézym -
(W A=Am,0 — lim 4a(1, /) = im V(5. ) = lim V3ulB, ) - |

W dalszym ciggu stale przy]mu]emy, ze dla EW spehiuony gest wa-
runek (6).
3° Jefli fa=f w zblorze E to A(E f,,)—»A(E f)

4° Ciag 415,, (2, B f) = l/ma.x [L(')(z E(m[e"’@‘ , gdzie L(")(z, E('"')) =

n . (n)
= J] ’;T)_Ef—m) ]est zbiezny na calej plaszczyzme do pewnejefunkeji do-

k=0 &

k#t . ) ‘
datniej : o
(8) - P B, )= 33330%(@* B,f), ”
przy czym _

9 i @@ B ) L

o Rl 4B, )
oraz ®(z, £,0) =1 dla 2 e E.
5° Jesli punkty ukladu & gg tak ponumerowane, #e zachodzi (6),

to c’ie&g {]/ | Lz, &m)| e ¢ e } posiada w kazd‘ym punkcie obsza,ru D gra- g
‘nice r6wng P(2, B, f). - : .

v 6° Ciag {]/T;.(z_ET)] je§t zbiezny w kazdym punkcie dopelmema, ‘

powloki wypuklej zbioru E do granicy AP(z, B, f).

7° Ciag {V[8a(z, B, )]} jest zbiesgny w kazdym pﬁnkcle obszara D
do 4P(z, E,f). Ogolme] mozna udowodnié, ze warunkiem koniecznym
i wystarczajacym na to, by dla ciagu tré;]kadtnego ™, ... ('"”} punktéw

e (=2 _Acb , B, f), z¢D,

zbioru B istniala granica hml/[(z ™)

- jest, by hml/ma,x{[z m(ﬂ)l Je— el 6—m’(z) A(B, ).

8° Nlech f ]est dowoln& funkc]& okresdlong i ogramezon& w zblorze H,
f—— jej regularyzacja dolng, f — ]e] regularyzacja gérn@, tzn.
' fz) = llm lnf f(z ) , f(z) =lim Supf(Z)

2>z, 2’

4%



Oznaczmy pzl'zez u,(z, E f} kres gérny uogélmonych ‘W sensie Kelloga- '

- Wienera rozwigzan problemu Dirichleta “dla D z oblozeniem cigglym

" € f(2). . Analogicznie u*(z, E,f) niech oznacza kres gérny rozwigzal -
. ,‘problemu Dinehleta dla D z oblozemem clagiym = f(2). Wtedy zachodzy -
wzory :

" o | "h" Dz, B, ). D?
(0) '“t(z =, f) m L m, y
W ke, By = —lim LLog 2 B i -
(11) u (z,E f) = “"'hm *LO\\m‘O—}—, E4 E.D . ) l’
przy czym u,,(z,E’ f) = u"(z,E f) Wtedy i tylko wtedy, gdy

' (12) ' o 7;«lim1LogA(E 29 tim Log - 42,0 0

a0t A AE, M)y  aor A(E'“‘lf)
9° Jesli f(z) jest funkcm rzeczymst@, okreélona i ciagla W zbmrze E,
to istnieje ~eciag wielomianéw w,(2) = b{z— ") ... (2 —dy)) o zerach
@2, a0, oy d leZaecych w D i modulach 3ednost;a,]me zbleznych na E
do exp f(z), ‘ . 4 ; A
s - Log]wk(z)i =>f(z 2k,
9% Jesli f(z) ]est okreélona i clagla, w &, harmbmczn& w C‘ E to

istnieje cigg wielomianéw {wi(2)} o zerach lezacych w D i o modula.c.h
jednostajnie z'bleznych w & do exp f(z) :

~ "3. Rozklad graniczny punktéw ekstremalnych i zer melomianéw :
. Tu(2, B, f) i 8u(z, B, ). Niech 2™ = (a{", ..., o), n.=1,2, .., bedzie
© takim ciagiem tréjkatnym punktéw (ré@nych lnb me) zbloru E ze w kaz-
dym punkcie obszaru D istnieje gramca. : , -

(14) - W(z)«&v(z {m(")})—hm Logl(z —a) . (z ™|, ze’.D

Lema.t Dla kazdey funkoy@g czqgley w.C, karmomczmy wé—E @stmeye
‘ gramca cmgu . : :

@) - h{g, {w‘”’}] = lim> [g(w,"’>+...+g(‘w"">]‘,

Dowéd Niech b i h .0ZDACZa odpomedmo lim inf oraz hm sup m&gu
{ [g(w‘"’)+ +g(m‘”’)]} Oczymécle h h> 0 Dmgkl 9° do kaZdeJ hozby
e>0 Jstmeje taki Wlelomlan w(z) = b(z-—dI) (zf-d,,), Ze d;\e D, P=

=1,2, ,k, oraz

e . '—-+Log|w (2)] < Long(z)H—



T hrg., m(n)}1'= +Loglb|+sv(dl)+ AP

2 dowed.

R ‘ ‘Whnio sk1 a) Jesli {m(")} i {y‘")} 89 dw0ma tréjkatnyml clqgalm punk-
. tow zbloru ¢, dla ktérydh istnieje granica (14) oraz ¥ (z, {a™}) = ¥(z, {y™},

o gdy ¢ eD, to dla kazdej funkeji g, cigglej w 6 ha.rmomcznej w (S B

mamy h{y, {&™}] = hlg; {y™}.
‘b) Jesli €* jest zb:lorem punktéw skupiema. clqgu trojkatnego {a:mi}

. zbiezny dla kazdego zo € UC“ Aby to wykaza.é wystarezy w lemacle
przyjaé g(2) = Logle—z|. '

5° i 7° otrzymamy

Tw1erdzenle 1 Dila kazdey funkcyz g -cigglej w E zstmem gramce

ciagdw hlg; 7] = {y(e‘“’)+ +y( £, hlg; b‘”’]=\;tg<bi"’>+...+

+g(b(”’)} i obw 8q Mwne, '
an . hlg; f1= hmh[g, gm)] = hmh[g, b‘”>]

Wprost z deﬁmcp hczby h[g, f] Wymka, 26 przy ustalonym f, ]est

to funkc]ona,l liniowy wzgledem g, tzn, dla dowolnych dwu liczb a; i a,
oraz dowolnych dwu funkeji ciaglych g, i g, mamy hlayg; + aygs; f] =
= ay, hgs; 1+ azh[gs; f1. Udowodnimy teraz, ze przy usta.lonym g funkcjo-
nal hlg; f] jest. ciagly Wzglgdem f

Twierdzenie 2. Jezeli ciqg funkeji omgbych {fn(z)} zmierza jedno-
stayme na E do f(z), to dla kazdey czqg!ey na B funkeji ¢ mamy

a8 . g fal->hlg; f1.

S Do Wéd N1ech £ bedme dowoln& hczbaé > 0. DZIle twierdzeniu po-
e mocniczemu 9°. istnieje - taki -wielomian w(z) = b(z dl) z——dk), e

d; e D, 'o—l 2,.. koraz

N ; N X v

a9 - Degle@)- ;i;é'y( Longmg:

“'_Za'.uwaZmy, ze dzle“kx (14) cx%g émdmeh { [g,(a: “’)—}— +g,(m$?’)]} gdzxe’

g g.(z Log iw(z)H—— lub g,,(z) 2= Log [w(«z)]-—— ]est zbmzny, pray t:zym. g

i ciag. { Log}( A "") (z— ‘"’)|} jest zbiesny w D, %o ciag ten ]estl.

e rozﬂme ser pawnych wwlonwwdw ekmomalwych ."1"453 o

il

Zatem dmgki‘ (16) mamy - b < e, 60’ wobec dowolnoécl £ > 0 kmiczy. o

Biorae pod uwage powyzsze WI'l.lOSk,l oraz tmerdzema pomoemcze h



s ey e

Wobec za&ozema, Ze j,,(z) = f(z) dla ze E oraz lele therdzemu ,po-
mocniczeru 3° 1stmege taka hczba N{(g), ze .

JCUN =& < <@+, nENE
oraz. - ‘ - ,

. V & ' . k_ .
e exp(——)A(E f < AEB fn)<exz>( )A(E N, w=K@.

Poniewaz, co mozna, udowodmé Wychodzayc z 4°, zachodzy dla dowol-,
nego z nieréwnosei . ,

gxp( )@(z B,1) <00, B, ) < exp ()0, B, ), W N,
wiec dzieki (21) d-la. Wszelkich ¢ za.chodza takZe,hieréWnoéci
(22) exp-( )A(E f)@(z E f) A(E fn)(b (2, E fn <

<exp (g )A(E f>d>(z B,

Przy]uu]my : o
Pu(z) = Log[A(E, fa)P(2, B, 1a)] oraz Wyz2) = Log[A E,)P(z, B, )].
Witedy dla dowolnegodeEmamy h[Loglz—d|; fa]l = ‘I’n(d),n =0,1,2,.,

skad dzigki (19) Log|b|+¥a(dy) + . +¥a(di)— 5 < hlg; fu] < Log|b]+ ...
+§’n(d1)+.f..—_l—!lfn(dk)+§ . Korzystajac nastepnie z. drugiej Spoéréd nie-

7

réwnosci (22) otxzymamy‘ - ‘ - :
nlg; fn] LOgle +Y’o(dl)+---+5f’o(dk) <*£+h[g; 1, n=Ne).

Analoglczme korzystag@e 7 plerwsze] sposr6d nieréwnosei - (22) inamy
Mg > hlg fl=s, n>N().
Poniewaz &> 0 ]est dowolng hezbaz wymka, st@d, ze h[g, f,,,]—»h[g, f1.

4. Zwiazek funkcjonalu h[g, 0] z uogolmonym rozwnazamem ‘problemu
Dirichleta dla obszaru D z obloZeniem g.

- Niech g bedzie obecnie dOWO]ﬂ% funk(:]ag rzeczyvnstag, okre§lona i ogra-

niczong na zbiorze E (ciagla lub nie) i-niech ™ = (@, 2, s, )

) ’b@dme n-tym ukladem ekstremalnym zbioru B odpowmdamcym funkcp

J‘(z)_O
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1 MEB0) A, 0)
TWlerdzenle 3. Jegeh Z]LI'QII_I{ZL g A, 7 )_ —,11_,0+2L gA(E )’

to zsmw)e g'ramca, ciagu { [g( w(”))+g ™) . g (”))]} przy czym

" m. R E

Dowod Ponlewaz g(z) < g(2) < §(2), wigc Wystax"czy udowodnié, ze
; 0] = h[g; 0. Niech 4> 0 bedzie dowolna ustalong liezba rzeczy-

; Wlbt& Oznaczmy przez y™ (y.‘{"’, y(”) , ¥3") n-ty ukiad ekstremalny
zbioru B wzgledem Ag oraz przez o™ ( ™™ L, ™)y n-ty uklad

' ekéiremalny zbioru F wzgledem f = 0. Niech n b@dzie dowoln@ ustalong
liczba na.tura]ney, natomiast % dowolng liczba naturalng. > n. Niech
iy, ¥, wey i beda takimi wskasnikami (zaleznymi od punktu yM), ze

0, <k, s=1,2, ,h Oraz Oy, E, 0) = ]/ iL(“) ¥, a™)| . Wtedy
(1 b ’ kl @ _ 0 ) (k;.
(23) l l LW, )| < S T EEo | —27) .. (Y — @)
sﬂi AB,0) Ly ’ C
: CEY N . :
gdzie M = sug |z —¢|. Poniewaz uklad (v5”, yin), ey yﬂ”) jerst'ekstremalny
2, €

wzgledem 1g, wige ](y(”) - (")) gy —aP) < A,,(E lg)em‘ ). Zatem
dzieki (23) mamy ,

A"“"“(E Ag)
L¥9y™, ™) < M“‘”"l) : ox [nl a‘:(") A ]
E [[I (Ys )I | JLE, 0) p éy( ) —nim

8_ .

gdzie m = inf g(2). Wyciagnijmy z ostatniej merownoscl pierwiastek
ze ™

topma nk). i niech k->oco. Wtedy, wobec tego, ze I/IL“S’ Mm%y 1

dla s=1,2,..,n otrzymamy P

liminf
k—00

A””(D lg) 1/4
[AWO) “4

Ed e
-,
T

ey

&
2
=

[ |

=
I
[
[

Zatem dla. dowolnego 2>0

AR olma 3 o)
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'Zupetme ana.logmzme otrzymamy nieréwnoéé

o A(E 0) i (k) |
' .. [A_—T’(E }.g)] g exp[ hmsu‘p % Z gy }] .
zZ osta,tmch dwu meréwnoéex oraz z za&oﬂema., ge -
o A0 . 1 A(E,0).
: : lim = L i Lo
o e AR T M‘EA 3A(E =)
mik&, e - N : - 7 :
llmmf g(w"") = hmsup g( (’") - SJ \
ska!d dzugkx meréwnoécl g g Wymka teza tmerdzema 3. i

. Udowodnilismy zatem, ze Jeéh dla funkeji ¢ rozwiazania gérne i délne
uogélmonego problemu Dirichleta 88 W obsza.rze D réwne, to Rg; 6]

= h[g; 0].=h{g;y 0] -
Wnlosek [21. Jeéh funkc]a, g Jest cl&gla na E’ i S

6(/1g) [ H l ym) ® l]"(‘"+1)

o<i<k<sin

gdzle (yf,"), yﬁ“’, ,yﬁ”) jest n- tym ukladem ekstrema,lnym zbloru B
wzgledem g, to ' , '
N : o A(E 0)]11;1
@, MJ 300) !
[A(B,0)
RZeczymécle, pomewaz 6(19) A (E, Zg)e"‘iﬂ-’ﬂl Wl e |5 (E lg -

~ A, /1) ot [AVH, 2 /1)
A(E, 0)]¥4 -
= h[g, 0], za.tem }}.ﬁ [5(E ilg)] =

5 Uwaga o zwyklych wielomianach Czebyszewa dla lemmskaty .
Nie trudno udowodmé, ze jezell w(z) = (z—ay) ... (7—a) i E jest lem-
- nigkatg

.

. {zll‘wz)l""""}, (r>0),_
Cto [w(@)It = T,.k(z), "= 1 2y e,y jest n-k-tym melommnem Czebyszewa,
- zbioru E. Obecme wykazQ, Ze . -
‘ h{kaTM, 03;&0 ' | -
whedy. 1 tylko wtedy, gdy m =n?).

. 1) J eden z recenzentow pracy zakomumkowa& mi, ﬁp fakt t.en udowodml juz. WczeémeJ '
p. Klamer . . . '

-

-~
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.

Rzeczymécm, pomewaz h:m]/ “mrdi(z E’ 0) dla zeD ch_ '

dzieki wnioskowi a) ze str. 4, dla ]mz(te] fnnkc]i g cla,glej w C {z]w(z)]
< rb}, ha.rmomczne; w C—-',E zachodzi r6wnodé :

h[g, 0] [g(ax)+ +y(ak)]

= Za.tem jesli m = n+s, to h[kaT,.,,, O}_reknh[ws(z),O] anl Zw-(a,)_

a0 Jeéh m = n, t0 h{.’l’,,.k,'l"nk, 0] = 'rm';&O c. b.d o.

4N Wydaje sig rzeczg prawdopodobng, ze jesli E jest zblorem domknie-
e tym i wypuklym, Tw(z; B, f) — 'n-tym ‘wielomianem Czebyszewa tego
B zbioru, t0 A[TaTpm; 01+ 0 wtedy i tylko wtedy, gdy m = n. Teza tego

' twierdzenia na pewno ma miejsce W przypadku, gdy zbiér F jest od- i
cinkiem. : :
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SUMMARY
T Oni the Distribution of the Z‘éros _of gome Emem Polynmniq.lg
' Let o™ (w‘”’ o, 2™) be the ™ gystem of the extreme pomts of the bound-

v ary F .of an unbounded reglon D(ooc ¢ D) with respect to the generating function
T a—gle™® @, f(z) being bounded real function defined on E. Let g(2) be an arbitrary
real contmuous function defined on E. 7

The paper exammes by the elementary methods the existence of the limit

=

Mg 1= lim Z g(w‘“’)‘

=0

B and some of its properties.
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O pacnww:uceuuu Hy/teu nekomopbtx 3KC"1peMaJleblx MHO204AEHO8

RS - Monyctum, trro " {w‘"’, m‘”) iy w("’} ABJSIETCA M- oﬁ cnc:'rcmoi‘r SKCTPEMAIIEHBIX

TOMEK T'DaHMIBI B HEOrPaHUYCHHON oGnam'u D (oo € D) orHOCHTENIBHO OOpasymolei GyHKIMH .

|e— Cle‘ﬂz) 8 rpe f (2) aBnsETCS orpamme}moﬁ Bemecmennoﬁ dyHKImei, onpeneneHnol Ha B.
Hoxycrum, urto g(z) GyAer moGoif HeNmpephIBHOH 'BeleCTBEHHON lpynxn;aeﬂ, OIIpefieIIeH~

Holt Ha E. . . ‘

, B paﬁo:re [IO/{BEPTAETCS MCCJIeAOBaHMIO npu TIOMOLIIK 3nememapnmx METOJOB CYLECTRO-

o _BaHHE NpeHena

| | h[y,f]—hm Zg(w‘“b,

. . . - =1

o a TAKyKe ero HEKOTOphIE cuoﬁcha.‘




