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DYNAMICAL PERSISTENCE
PRINCIPLES AND BIFURCATION

BY PETER SEIBERT

1. Introduction. The problem considered in this paper concerns the con-
nections between the following two types of phenomena in families of dynami-
cal (or semidynamical) systems, depending on a parameter A, with respect to
an equilibrium point or compact invariant set M independent of X:

1. Change of the stability behaviour of M as the parameter A reaches or
surpasses a certain “critical” value Ag;

2. Bifurcation of M in the sense of “splitting” into more than one invariant
sets as A reaches or surpasses a value A\g. This bifurcation may be extracritical
(or ultracritical, supposing A is a scalar parameter), i.e., there appear compact
invariant sets M,, for values )\, of X such that \, — X\g, M, " M = @, and
the maximal distances of M,, from M converge to 0; or it may be critical (also
called vertical) in the sense that for Ay the set M is not isolated from compact
invariant sets.

Experience has shown that bifurcations (in the above sense) are typically
connected with a change (“loss” or “gain”) of stability, the most well-known
case being the Poincaré-Andronov-Hopf bifurcation which occurs when a pair
of eigenvalues of the linear parts of the systems considered cross the imaginary
axis, for A = )¢, causing an abrupt “extracritical” change from asymptotic
stability to complete instability. (We are now assuming, for simplicity, that
the system considered is two-dimensional.) Then [4, 8], the asymptotically
stable equilibrium point (the origin) “splits” into an unstable equilibrium and
a stable limit cycle (or several limit cycles, under weaker conditions) for values
of A beyond A\g. These limit cycles recede into the origin as A — Ag. {The
simplest case is the so-called pitchfork, given by the equation & = z(\ — z?2).
Here the limit cycles reduce to critical points.}
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It has first been observed by Marchetti, Negrini, Salvadori and Scalia [7],

that the occurrence of bifurcation is a general consequence of the change of
asymptotic stability to complete instability, independent of what happens with
the linear part of the system. (We are leaving aside here the question of
whether the invariant sets emerging from the bifurcation are periodic orbits.)
For this type of bifurcations we will use the term ASCI-bifurcations.

The authors of the paper [7] also observed that the deeper reason for the
connection between loss of (asymptotic) stability and bifurcation is to be found
in what we call persistence principle for asymptotic stability, which states that
when a dynamical system containing an asymptotically stable invariant set,
or stable attractor, is subjected to a sufficiently small perturbation, then the
perturbed system exhibits a stable attractor arbitrarily close to the one of
the original system. {In its complete form, this principle was first given by
T. Yoshizawa ([13], theorem 25.3); in a preliminary, but more general form, it
was proved by the author in [10].}

In [11], J.S. Florio and the author extended the results of [7] mainly in two
directions:

1. Eliminating the condition of local compactness of the state space and as-
suming, instead, that the system be asymptotically compact. Also, for most
of the results, the system need only be assumed semidynamical.

2. Weakening the requirement of complete instability, as in the ASCI-bifurca-
tions, by assuming, for instance, that M be a saddle set [the trivial proto-

type being the node-saddle transition £ = —z(z? — X), § = —y].

More recently, the following variant of the problem outlined above has been
considered:

Instead of relaxing, with respect to the class of ASCI-bifurcations, the com-
plete instability condition for extracritical values, we now relax, after inverting
the time scale, the complete instability assumption for critical A to simple in-
stability, while preserving the requirement of stability for extracritical values
[the trivial prototype (saddle-node transition) being z = z(z% — X), y = —y].
In this case, the existence of a bifurcation is in general less easy to prove than
in the first case, because no such convenient tool as the persistence princi-
ple for asymptotic stability is available. Instead, we have a different kind of
persistence principle, which we may call persistence of instability: If a system
exhibits a certain degree of instability, this situation cannot be substantially
improved by arbitrary small changes of the system parameters, though it may
be worsened. This fact, which is a simple consequence of continuity, serves as
basis for the proof of the existence of (“extracritical”) bifurcations, provided
a certain condition of equistability (CRES) is satisfied. If this condition fails,
it can be proved by arguments of the kind used in Wazewski’s topological



67

method, that M is not isolated from compact invariant sets for A = X\ (“weak
critical bifurcation”).

We may summarize the results as follows: Whenever a compact invariant set
M undergoes a gain or loss of stability as a parameter reaches or surpasses a
critical value for which M is isolated from compact invariant sets, a bifurcation
of M occurs, except in the very special case of an extracritical transition from
a stable attractor to a saddle set surrounded entirely by homoclinic orbits.

2. Persistence of asymptotic stability and generalized Hopf bifur-
cation.
2.1. Persistence of asymptotic stability.

2.1.1. A family of semidynamical systems (X, T, A, F), consists of a metric
space (X,d) (state space), an ordered topological semigroup (time scale T, in
particular, R%), a metric space A (parameter space), and a mapping

F:XxTxA—=X
(the dynamics).

We introduce the following notations:

B (z) :={y € X|d(z,y) <r} (r>0, z€X),
B,(A) :={y € X|d(z,A) <r} (ACX).
Here d(z, A) := inf{d(z,y)|y € A}.
By V., we denote the neighbourhood filter of z and by V4 (A C X) the
filter generated by the neighbourhoods B,.(A), r > 0, of A. Finally, we denote

the neighbourhood filter of the point Ag € A by Nj,.
By F) : X x T = X, we denote the A-system defined by

Fy(z,t) := F(z,t, ),
by F}: X — X, the transformation of the space X defined by

and by F; » : X = X, the truncated \-orbit,

Fi(z) = {Fil(x)[t' > t}.
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. In particular, the positive A\-semiorbit will be denoted by v (z) :

(
I

'y;’(a:) = Fy ().

We assume that the family F' satisfies the following axioms:

(I) FY is the identity mapping for every A € A.
) FIFY = Fi*Y (¢t € T, A€ A).
)
)

II) F is continuous for every A.

(IV) The motions depend in a uniformly continuous manner on the parameter \:

(VT €T, e>0)(3N e N,,)(Vz € X, t€[0,7], A€ N)
d(Fy(z), F,(z)) <e.

2.1.2. In what follows, the metric space X will be assumed to be complete.

DEFINITION 2.1.1. A system F) is said to be asymptotically compact
(abbreviated AC) on a set A C X, if every sequence {F}*(z1)}32,, where
{zr} C A and ¢ — +o00, is relatively compact.

The class of AC systems is of great importance in the study of evolution
equations [5].

DEFINITION 2.1.2. The A-limit set L} (A) of a set A C X is the set of the
limits of all convergent sequences of the form {F}*(zy)}, where z € A and
ty — +oo.

PROPOSITION 2.1.3. [5, 11]. If Fy is AC on the bounded set A, LT (A) is
a nonempty, compact, positively A-invariant set attracting A uniformly for A
[in the sense that, given € > 0, there exists a t > 0 such that Fi A =
{For(@)lz € A} C B.(LE(A)].

If, in particular, A is a neighbourhood of LY (A), the latter is A-stable. (The
terms A-invariant and A-stable refer to the system F)).

The persistence principle for asymptotic stability may then be stated as
follows.

THEOREM 2.1.4. [11] Suppose each member of a family {F\} of semidy-
namical systems is AC on a bounded set A, and that A is uniformly attracted
for A = Ao to a set M of which A is a neigbourhood. Then, for any neig-
bourhood U € Vi, there exists a neighbourhood N € Ny, such that, for all
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A€ N, U contains a compact, X\-stable set My which attracts A uniformly for
A. Moreover, the smallest sets My with this property are the limit sets L} (A).

The proof given in [11] is based on an induction argument which first ap-
pears in [10] (see also [12]). Other proofs, along more traditional lines using
Lyapunov functions and limited to systems in locally compact spaces, were
given in [7] and [13].

The theorem also says that, in a sense, the region of attraction cannot
suddenly shrink; on the other hand, it may “explode”, as exemplified by the
equation

t=—z((x —1)% 4+ \).

Here, for A = 0, the region of attraction of the origin is (—oo,1); for A > 0 it
is R.

2.2. Generalized ASCI-bifurcations. In what follows, it will always be
assumed that there exists a compact set M which is A-invariant for all A\. By
invariance of M, in the case of a semidynamical system, we mean that both
M and its complement are positively invariant.

DEFINITION 2.2.1. Let the compact set M be A-invariant for all A € A.
We say, M undergoes an eztracritical bifurcation at Ao if, for any pair of
neigbourhoods, U € Vyy and N € N, there exist a A € N, A # )Xy, and a
compact positively A-invariant set M} such that M{NM =0 and § # M| C U.
In the remainder of this section, we will omit the adjective “extracritical”,
because no critical bifurcations will be considered.

The principle theorem, of which all the others are consequences, is the
following;:

THEOREM 2.2.2. [11] Let M be a compact subset of the complete metric
space X, which is A-invariant for all X, attracts a neighbourhood A € Vs
uniformly for X = Ao, and suppose that the systems F have the property AC
on A. Furthermore, assume that there exist o sequence of values A, such that
An — Ao, and a sequence of points x, € A such that Lj\'n (zp) N M =10.

Then M undergoes a bifurcation at N, and the sets M} of Definition 2.2.1
exist for A = A,, and they may be defined by

M, = Lj\Ln(a:n).

These last sets are obviously contained in the limit sets Lj\“n (A) which have
all the properties stated in proposition 2.1.3.
If the set A is compact, the property AC is redundant.

The idea of the proof is the following:
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~ We take a fundamental system of neighbourhoods U,, of M and a corre-
sponding sequence of neighbourhoods N,, of )y, according to Theorem 2.1.4.
Replacing {z,} and {\,} by subsequences if neccesary, we may assume
An € N,. Denote by M), _ the A,-attractor corresponding to M), for A = \,,
in the same theorem. It is contained in U,. Then the limit sets Lj\'n (zn)
are contained in M), hence in U, but (by hypothesis) not in M. They are
compact and positively A,-invariant (A,-invariant if the system is dynamical),
and thus have the properties of the sets M} in definition 2.2.1.

The theorem clearly covers the case of the ASCI-bifurcations, if we define
complete instability of M for semidynamical systems as the existence of a
neighbourhood of M devoid of positive semiorbits, except those contained in
M. If M is completely unstable for a certain value A of the parameter, we say
also that M is a A-repeller, and denote by Ry the region of A-repulsion, defined
as the union of all the neighbourhoods which figure in the above definition of
complete instability.

As a direct generalization of the principal theorem of [7], we have the fol-
lowing:

THEOREM 2.2.3. (GENERALIZED POINCARE-ANDRONOV-HOPF BIFURCA-
TION.). [11] The hypotheses are the same as in the preceding theorem, except
that the last one is replaced by the condition that for a certain sequence of
values of A\, € A, with A, — Ao, M is a A,-repeller. Then M undergoes a
bifurcation at Xg; in particular, there appears a set of compact positively in-
variant Ap-attractors, My , which are disjoint from M, and attract A\M for
A=\, The sets My may be chosen as

My, =LY (A)\Ra,,

where Ry, are the regions of A,-repulsion of M, and they are contained in
any neighbourhood of M for X\, sufficiently near X.
If the systems Fy are dynamical, the sets My are \,-stable and separate

M from the complement of LY (A).

(The question whether the last part of the theorem also holds for semidy-
namical systems remains open.)

In another paper [6], Marchetti extended the main result of [7] in two direc-
tions: a) by developing his theory within the context of a continuous mapping
of an arbitrary topological space onto itself; b) by replacing the hypothesis of
asymptotic stability at the critical value by a weaker one which is equivalent
to total stability. A similar result was also obtained by Bertotti and Moauro
in [2], in the context of dynamical systems in R™.
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~ Another direct consequence of Theorem 2.2.2, covering a wider class of
systems, is the following, involving the concept of weak attractor:

M is a weak attractor if, for some neighbourhood U, every z € U has the
property
Lt (z)Nn M # 0.

COROLLARY 2.2.4. The hypotheses are those of Theorem 2.2.2, except for
the last one which is replaced by the condition that M is not a weak )\, -attractor
for any n. Then the conclusions of Theorem 2.2.2 hold unchanged if the points
T, are chosen in A, and such that the sets L;’n (z,,) do not intersect M.

One of the most important potential consequences of Theorem 2.2.2 con-
cerns extracritical transitions from stable attractors to saddle sets. These pro-
duce bifurcations unless all outside orbits of the saddle set M have positive
limit sets on M.

We conclude this section by the following example concerning a family of
differential systems in the plane.

EXAMPLE. Consider the family of dynamical systems in R? given by the
equations

=y, §=—x+y3(\—z?).

Here the eigenvalues of the linear part are constant and equal to +i. (The
parameter A\ acts only on the nonlinear terms). The linear part therefore gives
no information about the behaviour of the system for any value of A. Use of
the Lyapunov function V(z,y) = %(mz + y2) however yields

V =yt(\ —z2).

For A < 0, applying the LaSalle invariance principle (or the Barbashin-Kra-
sovskii theorem), we find that the origin is globally asymptotically stable.

In the case where A > 0, we have V > 0 for |z| < VX, y # 0. Using
again the invariance principle, we find that the origin is completely unstable.
Considering that there are no equilibrium points except the origin, we conclude
from Theorem 2.2.3 and the Poincaré-Bendixson theorem that, for every A > 0,
there exists at least one stable limit cycle, and that these shrink to the origin
as A — 0.
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3. Persistence of instability and bifurcations arising from unstable
" invariant sets.

3.1. Persistence of instability. We will first consider the case of a dy-
namical system, defined on a locally compact metric space X, and a compact
invariant set M which we assume to be unstable. In order to specify the type
of instability, we use the prolongation D* (M) of M defined as follows:

D (z) ={y € X |Fzn 92, Yn—2Yy:yn €7 (2n)}
=n{y+*(0) | U eV},
D¥(M) :=U{D*(z) | & € M}

and the set
I* (M) := D* (M)\M,

which we will call set of instability of M (region of instability [3], though in
general it is not a region; unstable manifold in the case of hyperbolic saddle
points or sets, although it is actually stable). I*(M) is the set of all points
which can be approximated from points arbitrarily close to M.

PROPOSITION 3.1.1. [Ura] The set M is stable if and only if
(M) = 0.

We consider a family of dynamical systems depending on a parameter X
and denote the corresponding sets by a subscript A. It will be assumed that
M is compact and A-invarant for all A. Under these assumptions we have the
following:

PERSISTENCE PRINCIPLE FOR INSTABILITY. For any compact set C,
Ao € A, and € > 0, there exists a neighbourhood N of Ao such that

Y (Be(M)) s e-dense in Ijo (MYNC, forany XA € N.

An inmediate consequence of the e-density property is the following inclu-
sion:

B(If (B(M)) D I (M) n C. (3.1)

This gives rise to a succinct formulation of the persistence principle. Asso-
ciating to every € a A(e) such that (3.1) holds, the set-valued function of e,
I;L(G)(BE(M)), is lower semicontinuous at € = 0.

ExXAMPLE 1. 2 =z(z —A)(1 - A —z), M ={0}.
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Here, I (0) = (0,1] and I (Bx(0)) = (A\,1 — A] (A > 0), which is a con-
tinuous set-valued function, while IJ(O) = (0, A], for A > 0, which fails to be
lower semicontinuous at A = 0. In this example, one may take A(e) = e.

EXAMPLE 2. z =z2((z — 1)2 + )\), M = {0}.
Here I3 (0) = (0,1], for A = 0, and R* for A > 0. The set of instability
“explodes” when passing from A =0 to A > 0.

We now consider the case of a semidynamical system on an arbitrary metric
space. Here one cannot work with the set of instability of an unstable invariant
set M, because it may be empty. Instead, one has to use the semiorbits
themselves. The corresponding persistence principle can then be formulated
as follows.

General persistence principle for instability. Let M be an unstable
compact invariant set and C an arbitrary compact set. Then

(Ve > 0)(3N € N )(VA € N) Be(vy (Be(M))) D 73, (B«(M))NC;  (3.2)

in other words, vy (Be(M)) is e-dense in 'y;ro (Be(M))nC.

Considering that instability of a small neighbourhood, from a practical
point of view, is like instability of the set itself, (3.2) means that instability
cannot suddenly diminish, though it can suddenly increase, as the second above:
example shows.

3.2. Bifurcations arising from unstable compact invariant sets.
We consider a family Fj of semidynamical systems on an arbitrary met-
ric space X endowed with a compact set M which is A-invariant for all
A € A. Throughout this section we will assume that M is Ag-unstable, but
not necessarily completely unstable, and that for certain values A,(# Ag),
An = Ag, M is A,-stable. We want to find out under what further conditions
an extracritical bifurcation of M arises at \Ag.

It will be assumed that the systems F) are asymptotically compact (AC)
on certain neighbourhoods of M (which is reasonable because M is A,-stable).
Then we may limit ourselves to the case where M is A\,-asymptotically stable,
since in the opposite case, every neighbourhood of M would contain A,-limit
points outside of M. Actually, every neighbourhood would contain entire A,,-
limit sets disjoint from M, because the case of weak attraction (as defined
in section 2.2) without attraction is excluded by A,-stability of M. (Stable
weak attractors are attractors [9].) We may then choose neighbourhoods U,
such that each U, contains a A,-limit set disjoint from M and shrinks to M
as n — o0o. Since these limit sets are compact (because of the AC property)
and positively \,-invariant [9], they constitute an extracritical bifurcation of
M (as defined in section 2.2).
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So the only dubious case, on which we may therefore concentrate our at-
tention, is the transition

Ao —unstable — A, — asymptotically stable.

In order to be able to formulate a criterion for the occurrence of an extracritical
bifurcation, we have to introduce the following concepts:

DEFINITION 3.2.1. The set M is equistable (ES) for the family {F) | A €
A C A} if Ve > 0, 30 > 0 such that V' € A', z € Bs(M) = v, (z) C B(M).

DEFINITION 3.2.2. The family of attractors (M,A’, Fpr,Apxs), where
A C A, M is a N-attractor (VA" € A’), Ay is the region of N -attraction,
is relatively equistable (RES) if

(Ve > 0)(30 > 0) (YN € A') 4} (Bs(M) N Ay) C B(M).

A simple example where the condition RES, but not ES, holds is = z(z%—\),
y = —y. The origin is a saddle point for A = 0 and a stable node for A > 0.
We refer to this situation as saddle-node transition.

DEFINITION 3.2.3. The family of attractors (M, A’, Fy,, Ap+) is connected
relatively equistable (CRES) if
(Ve > 0)(36 > 0) (VX' € A) ~§ (43 5) C Be(M),
where A3, ; denotes the component of Bs(M)N A, which contains M (assumed
to be connected).

We give the following example of a family of attractors which is CRES but
not RES (in polar coordinates):

) : .0 . 8-
r_r(l—r),H—-smEsm 5

(forr>0).

The point r = 1, # = 0 is asymptotically stable and attracts the whole plane
except the ray # = X (including the origin). We denote the attractor by pg
and fix two constants e > 0 and 6 > 0. For A small, some of the semiorbits
issuing from Bs(pg)NAy do not remain within B,(py). However, the semiorbits
starting in A3 s (which lies below the ray 6 = A) do remain within B. (po)-

We finally give an example of a family of attractors which fails to be CRES.
Consider the family of linear systems

=12z 2=- y—X (y,z€R; X€R™).
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For small positive values of A, the origin is a stable focus. Moreover, routine
calculations reveal that as A — 0, the spirals flatten out in the direction of the
z-axis, while being elongated in the direction of the y-axis. As a consequence,
for any given § > 0, there exist, for A sufficiently small, positive A-semiorbits
originating in Bs(o) and leaving B.(0). Since, for all small A > 0, the region
of attraction is R?, which is connected, the sets A3 s are the balls Bs(o). It
follows that the origin is not CRES.

We now formulate a sufficient condition for the occurrence of a bifurcation.

THEOREM 3.2.4. [1] Given a family Fa of semidynamical systems defined
on a metric space X and suppose the compact connected set M C X is \-
invariant for all A € A. Let the following hypotheses be satisfied:

(i) The space X s locally connected.
(11) The set M is Ag-unstable.
(iii) M is a \-attractor for all X in a certain set A' C A such that \o € A'. The
regions of A-attraction will be denoted by Ay.
(1) The family of attractors (M,A', Frr, Aps) is CRES.
(v) For every X € A', Fy. is AC on Ay.
Then M undergoes an extracritical bifurcation at Ag.

The proof is a direct consequence of the persistence principle for instability.

If the sets Ay are relatively compact, the AC property is redundant.

In the case of the saddle-node transition, the conditions (i) through (v) are
obviously satisfied and the existence of the bifurcation is also obvious.

In the example following Definition 3.2.3, the hypotheses of the theorem are
satisfied if M is taken as the point » = 1, # = 0, and indeed, the equilibrium
points » = 1, 6 = X “split off” from M.

In the last example, condition (iv) is not satisfied. Actually, no extracritical
bifurcation occurs, because all nontrivial positive semiorbits have diameters
which are unbounded as A — Ag.

Theorem 3.2.4. is complemented by the following one.

THEOREM 3.2.5. In the same general context as in the preceding theorem,
we make the following assumptions: (i1), (iit) and (v) [allowing also variation
of X in the sequence] as before; (iv) is replaced by its opposite:

(iv') The family of attractors which figures in condition (iv) fails to be CRES.

Then every neighbourhood of M contains a weakly Ag-invariant (in the case
of a dynamical system, invariant) set not contained in M.

(A set is called weakly invariant if through each of its points there exists
an orbit which lies entirely in the set; see [9].)
In this case we say that there occurs a critical weak bifurcation.
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The proof of the theorem is based on an argument which forms the core of
Wazewski’s topological method.

The last example given above falls into the range of this theorem: All the
hypotheses are satisfied, and actually, for A = 0, a critical (or “vertical”)
bifurcation occurs, because the system reduces to © =y, § = 0.

The last two theorems, together with the introductory remark of this sec-
tion, can be summarized as follows.

COROLLARY. In the general context of Theorem 8.2.4, including conditions
(i) and (v) and assuming that M be isolated from (weakly) \g-invariant sets, an
extracritical gain of stability of M at Ao results in an extracritical bifurcation

of M at Ap.

An application of the theory presented here to a semidynamical system on
an infinite-dimensional space (argument-delayed differential system) can be
found at the end of the paper [11].

This work was partially supported by CONACyT Grant 400200-5-3255E.
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