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EVOLUTION EQUATIONS OF SECOND
ORDER WITH PARAMETER

BY TERESA WINIARSKA

Abstract. The main object of this paper is the study of continuity and differ-
entiability with respect to both h and ¢ of a solution of a second order evolution
problem with a parameter h € Q C R™.

Introduction. Let X be a real Banach space. We consider the abstract
initial value problem with a parameter h €  C R™

(1.1) Z—Zg— = A(h,t)u + f(h,t), t€[0,T),
(1.2) u(0) = up,

du 1
(13) EZ(O) = Up,

where (A(h,t))n,¢)enx(o,17 is a family of linear operators from a real Banach
space X into itself, u: R — X, f: @ x R — X, Q is an open subset of R™,
and ug,u,l1 € X for h € Q.

We make the following assumptions.

(Z1) The domain D(A(h,t)) = D is independent of ¢t and h, D is dense
in X. For each h € Q and t € [0,T], 0 belongs to the resolvent set of A(h, 1)
and A~!(h,t) is a bounded operator.

(Z2) For each h € Q and t € [0,T], A(h,t) is the infinitesimal generator
of a strongly continuous cosine family {C(h,t,£),£ € R} of bounded linear
operators from X into itself.
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(Z3) For each h € Q and ¢t € [0,T] there exists a linear operator
B(h,t) : X — X such that B?(h,t) = A(h,t), the domain D(B(h,t)) := D(B)
is independent of h and ¢ and 0 belongs to the resolvent set of B(h,t).

(Z4) For each x € D(B) and h € Q the mapping [0,T] 3 t = B(h,t)z is of
class C*.

If the assumptions Z;—Z, are satisfied, then for each A > 0 and h € € there
exists R(\; A(h,t)) := (A — A(h,t))"! and

| RO A1) 1< 5

where M > 1 is a constant independent of \, h,t ([3] p. 61).

DEFINITION 1. We say that a function u(h,-) : [0,7] — X, for h € Qis a
solution of the problem (1.1)—(1.3) if
(i) u(h,t) € D for each h € Q and ¢ € [0, T},
(ii) wu(h,-) is of class C? on (0,T] and of class C* on [0,T7,
(iii) LoD — A(h, t)u(h,t) + f(h,t), for h € Q, ¢ € [0,T], u(h,0) = uf,

dulh0) — u} for h € Q.

DEFINITION 2. A family S, = S(h,t,s), for t,s € [0,T], h € Q is called a
fundamental solution of the equation

d?u

— =A f
7 (h,t)u for t€[0,T], heQ

if
D1) the mapping [0,T] x [0,T] 3 (t,s) = S(h,t,s)z € X is of class C* for
z€ X, he, and
a) S(h,t,t)=0for heQ,t€(0,T],
b) 28(h,t,s) |t=s = = 1, %S(h,t,s) lt=s £ = —z for t,s € [0,T] h € Q,
z € X,
D2) for any z € D, t,s € [0,T], and h € Q the following conditions are
satisfied
a) S(h,t,s)z € D,
b) the mapping [0,T] x [0,T] 3 (t,8) = S(h,t,s)z is of class C?,

)

) 2:8(h.t,s)z = A(h,t)S(h,t, 5)z,
)

)

e

(=]

2 S(h,t,s)z = S(h,t,5)A(h, s)z,

2 28(h,t,8) li=s z =0,

@
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D3) for any z € D, t,s € [0,T], h € Q the following conditions are satisfied
a) 8@ (h,t,s)z € D,
b) there exist the derivatives z?t 28(h,t,s)z and 25 atS(h t,s)z,
c) 25 28(h,t,s)x = A(h,t) 2 S(h,t,s)x,
) 59;2 aatS'(h t,s)r =2 5i5(h,t,s)A(h, s)z,
e) the mapping [0, T x [0 T) 3 (t,s) = A(h,t) 2 S(h,t,s)z is continuous,

D4) for t,s,7 € [0, T] h e Q,

S(h,t,s) = S(h,t r) L S(h,r,s) — & 5.5 (ht,m)S(h,r, 5).

Let, for a fixed hg € 2, Y be the hnear space D(B) with the norm || - ||y
given by

[=¥

Iy lly=[lyll + Il B(ho,0)y ||, for ye€ D(B).
It is obvious that the operator A(h,t) : Y x X = Y x X defined by

0 1

A(h, t) = [A(h,t) 0

] for heQ, tel0,T)

is linear with the domain D(A) x D(B). Let

0
F(h,t) := for heQ, te[0,T].
0= rrn] 0.7]
Since the problem (1.1)—(1.3) can be reduced to the following problem
au
(1.4) - = A(h,t)U 4 F(h,t) for te€[0,T)
0 uf
(L.5) oo -t = | 4],
h

we will only consider first order linear initial value problem in the space Y x X.

DEFINITION 3. A family {A(h,t)}, (h,t) € 2x[0,T] is said to be uniformly
stable approximated with respect to h € (, if there exists a sequence {A4,,(h,t)}
of bounded linear operators A, (h,t) : X —» X, n=1,2,... such that

19 the mapping Q2 x [0,T] 5 (h,t) = A, (h,t)z is continuous for z € X,
n=12...

20 limy, oo {sup || [An(h,t)— A(h,t)]A" (A, t)z ||: (h,t) € 2x[0,T]} = 0 for
z € X and the sequence {U,(h,t,s} of fundamental solutions of the problems

du
{ = Au(h)

u(s)=z 0<s<t<T
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is uniformly bounded i.e. there exists M > 0 such that
| Unlhot,s) IS M, for heQ, (ts)€Ar={(ts): 0<s<t<T})

The sequence {Ay,(h,t)} approximating the family {A(h,?)}, h € Q, t € [0,T]
has the form

(1.6) An(h,t) :== —nA(h, t)R(n; A(h, 1))

(cf [8] p. 204).
DEFINITION 4. A family {A(h,t)}, h € Q, t € [0,T] is called uniformly
stable in  if there are constants M > 1 and w such that

(w,00) C P(A(h,t)) for t€[0,T], he

and

H TR0 A1) < MO =0)™* for A>w, hen
j=1

Let the assumption Z; be fulfilled.
DEFINITION 5. ([8] p. 193). The Cauchy problem

du
(1.7) { @ = At
u(s) = zp,

is said to be uniformly correct if:

19 for each s € [0,T), zp, € D, there exists a unique solution up = u(h,t,s)
of (1.7) on the segment [s,T] for h € Q,

20 the function up and (uy)} are continuous for t,s € Ar and h € ,

3% for h € Q the solution depends continuously on the initial data.

It is well known ([8] Chapter II §2) that the problem (1.7) is uniformly cor-
rect if A(h,t) is bounded for h € Q, ¢t € [0,T] and the mapping
[0,T] > t — A(h,t) is strongly continuous. In this case there exists a fun-
damental solution of (1.7).

LEMMA 1. If the mapping Q x [0,T] 3 (h,t) = A(h,t)z is continuous for
z € D, then the mapping Q x [0,T] 5 (h,t) — A(h,t) [Zj] is continuous for
r € D,y e D(B).
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PROOF. Let (hg,t) € 2 x [0,T].

| (AR, ) — A(ho, 1)) [j] u

| acnsy o] M ol o]

0
| a1y — Aty | 11 (A0 = Alhos o)z |

—0
(h,t)—(ho,to)

LEMMA 2. If the mapping [0,T] 3 t — A(h,t)z is of class C* for h € Q,
z € D, then the mapping [0,T] 3 t — A(h,t) [Z} is of class C for h € Q,

m € D x D(B).

PrOOF. It is the same as the proof of Lemma 1.

LEMMA 3. If the assumption Z, is satisfied then the operator A=1(h,t) is
bounded.

PROOF. Let z € D(B) and y € X. By the assumption Z; we have

rama [sli=n [ 4780 2]

<NA7 0y |+ 2 1< A B iy + Il o 2] 1
Let A,(h,t): Y x X - Y x X, n=1,2,..., be defined by

Aﬂ(h,t)z[An(('),L’t) g] for heq,tel0,T],

where A, (h,t) is defined by (1.6).

LEMMA 4. If the assumptions (Z1) — (Z3) are fulfilled and the mapping
[0,T] 5 ¢t — A(h,t)z is of class C! for h € Q, z € D, then the sequence
{A,(h,t)} satisfies the following conditions:

1° A, (h,t) is a bounded operator forn € N, h € Q, t € [0,T],

20 the mapping [0,T] 3 t = Au(h,t), h € Q, is strongly continuously
differentiable,

3% || A (R, t) I< C (C does not depend on h,t,n),
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‘ 49 the sequence { A, (h,t)A; (h,t)} is strongly and uniformly convergent to
a bounded operator,
50 limp o0 {SuPo<i<r Il [An(h,t) — A(h, t)] A7 (h, 1) [Z] I} =0 forheQ,
(y,z) €Y x X.

PROOF. It is an immediate consequence of Theorem 2 in [1].

LEMMA 5. If the assumptions (Z1)—(Z4) are fulfilled, the mapping
(0,7) > t = A(h,t)z, is of dass C* for h € Q, and the family {A(h,t)},
for h € Q, t € [0,T) is uniformly stable with stability constans M > 1 and
w =0, then

(1.8) | Val(h,t,s) IS M (M does not depend on h,t,s,n),

where Vp(h,t,s) is the fundamental solution corresponding to the operator
An (B, limy,_ye0 Vn(h,t,s) = V(h,t,s) strongly in Y x X and uniformly in
Q x [0,T] x [0,T], and V(h,t,s) is the fundamental solution corresponding to
the operator A(h,t).

PROOF. It is an immediate consequence of Theorems 3 and 4 in [1].

COROLLARY. Let the assumptions of Lemma 5 be satisfied. Then the family
{A(h,t)}, h € Q, t € [0,T) is uniformly stable approzimated with respect to
h €.

THEOREM 1. Suppose that

(a) the assumptions (Z1)~(Z4) are fulfilled,

(b) the mapping Q x [0,T] 3 (h,t) = A(h,t)z is continuous for x € D,

(c) the mapping [0,T) 3t — A(h,t)z is of class C* for h € Q, z € D,

(d) the family {A(h,t)}, h € Q, t € [0,T] is uniformly stable in €1, then the
mapping

Q x [O,T] X [OaT] = (h’t’s) - V(h,t,S) [.Z]

is continuous for y € Y, x € X, where V(h,t,s) is the fundamental solution
to the problem

(1.8) &~ AU,

(1.9) U@0)=U> = [”2}:] :
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- PrOOF. From ([1], Theorem 1]) the problem (1.8)—(1.9) is uniformly cor-
rect. Using Lemma 5 and Theorem 3 in [2] we can see that the mapping

Q% [0,T] x [0,T] 5 (h,t,5) = Va(h,t,s) m
is continuous for y € Y, z € X, n € N and
le Vn(h,t,s) =V(h,t,s)
strongly in ¥ x X and uniformly in Q x [0,T] x [0, T]. This ends the proof.
DEFINITION 6. For h € Q, t,s € [0,T] we define the family of operators
S(h,t,s) : X - X by the formula
S(h,t,s)x := ;1 V(t,s) [2] for =€ X,

Z] =z for z,y € X. It folows from [7] (Theorem 4.1) that the

family {S(h,t,s)}, t,s € [0,T], h € Q is the fundamental solution of the
equation

where I1;

du
dt?
LEMMA 6. If the assumptions of Theorem 1 are fulfilled then

= A(h,t)u for te[0,T], h € Q.

.0 0 .
hl_lfx}}() 5§S(h,t,s)w = EES(ho,t,s)w and hl_lgllo S(h,t,s)x = S(ho,t,s)z

uniformly in [0,T] x [0,T] x K, where K is a compact subset of X.
PRrROOF. It folows from [7] (Theorem 4.1) that
i)
—5=S(h,t,s) S(h,t,s)
=] e st
=L —Z2sht9) 280 t,s)

By Theorem 1
lir% S(h,t,s)x = S(ho,t,s)z for z€ X

h— 0
and

.0 0
hlgg() E-S(h,t,s) = gS(ho,t,s)y for yeY

uniformly in [0, 7] x [0, T).

Similarly as in [7] (Theorem 4.1) we can prove that (1.9) holds for y € X,
not only for y € Y. -

Repeating now the reasoning of Proposition 1 in [10] we get Lemma 6.

In the sequel we assume that X is a reflexive Banach space.
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THEOREM 2. If

19 the family {A(h,t)} satisfies the assumptions of Theorem 1,

20 ud, up € D forhe Q,

30 the mappings @5 h > u) € X, Q> h > ul € X and f: O x[0,T] - X
are continuous,

40 there exists M > 0 such that || f(h,t1) — f(h,t2) | M | t; — t3 |
for t1,t2 € [0,T] then for any h € Q there exists exactly one solution of the
problem (1.1)-(1.8) and it is given by the formula

t
(1.10) u(h,t) = —gS—S(h,t,s) ls=0 uh + S(h, t,s)ur +/ S(h,t,s)f(h,s)ds
0

and
lim u(h,t) = u(hg,t)

h—hg
uniformly in [0,T).

ProOOF. It follows from [5] that there exists exactly one solution of the
problem (1.1)—(1.3) and it is given by the formula

t
lhyt) = =5 S(h ) Lo + St 0 + [ (b 5)f (1, ).

Thus

0 0
'U,(h,t) —_ u(h(),t) = [—-—é;S(h,t,S) '3:() +5;S(ho,t,8) ’5:()] ug

9
—asmo, t,3) |s=o (up — up,) + [S(h,t,0) — S(ho,t,0)]uy,

+8(ho,1,0) (s} — uh,) + / [S(h,t,5) = S(ho t, )] f (h, s)ds

+/0 S(ho,t, s)[f(h,s) = f(ho, s)]ds.

Let K be a compact neighborhood of hg. Since the mappings 3° are con-
tinuous, the sets

Klz{ug:hEK}, KZZ{U}L:}EEK},

Ks={f(h,s): he K, s€[0,T]}
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are compact in X. By Lemma 6

a ) .
|52 001:8) Lo + 2 Slhos 5) o o =0

and
[S(h,t,0) — S(ho, t,0)]u) —— 0
h—)ho

uniformly in [0, 7.

The family {%S(h, t,s)}, h € Q,t,s € [0,T] is a strongly continuous family
of bounded operators. Then by the Banach-Steinhaus Theorem it is uniformly
bounded. We have the same for the family {S(h,t,s)}. Thus

. 0
hl-}-}nf}o égs(ho,t,())(u,g - U’?Lo) =0,

: .
hlj—)nileg S(h’07 t O) (U’h u‘ho) 0,

¢
lim [ S(ho,t,0)[f(h,s) — f(ho,s)]ds =0
h-—)ho 0
uniformly in [0,7]. This ends the proof.

COROLLARY. If u is the solution of the problem (1.1)-(1.8) then the map-
ping
u:Qx[0,T] > (h,t) — u(h,t) € X

18 continuous.

Differentation with respect to a parametr.

THEOREM 3. If

1° the assumptions of Theorem 2 are fulfilled,

20 u(h,-) is the solution of the problem (1.1)-(1.3),

3% the mappings @ > h — A(h,-)z forz € D, Q3 h = f(h,:), 2> h — ud,
Q 3 h — uj, are differentiable at hy, then the mapping Q@ 3 h — u(h,-) is
differentiable at hg and

! 8 ! 7
u (ho,t) = — gS(h(),t,S) |s=0 (uﬁo) +S(h0,t,0)(u,1m)
t
ﬁ/&%mﬂﬁ%ﬁM%@+W%JW&
0

where “'” denotes the differentation with respect to the parameter h.
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PROOF. Let u(h,-) be the solution of the problem (1.1) - (1.3). The func-

tion
U(h, t) - u(h07 t)

h — hg
for h # hg, is the solution of the problem

v(h,t) =

d?v
o A(h,t)v + F(h,t)
v(0) = v}
dv
ZE(O) = v,
where
A(h7 t) - A(h07 t) f(h') t) - f(h07t)
ho, t f
F(h,t):{ hh et T or h# ho
A'(ho, t)u(ho,t) + f'(ho,t) for h=ho
0 _ 0
Up — Up,
W) = “hhe for h# ho

(“(f)m)l for h=ho

1 1
Up — Up,

’U}ll = h — h()
(uh,)’ for h = hy.

for h # hy

It follows from the assumptions of Theorem 3 that the mapping

oy | 1S
’ F'(ho, t) for h=hg

is continuous. We have

A(h” t) - A(hOat)
h — ho
A(h,t) — A(ho, t)

= 2 A7 (o, 0)A(ho, 0) A7 (ho, ) Alho, t)u(ho, ).
— 10

U(h(), t)

Since the mapping [0,T] 3 t — A(ho,t)u(ho,t) is continuous, the mapping

Mﬂﬁlu(ho,t) for h 75 ho

(hv t) - h=ho
Al(ho,t)u(ho, t) for h= h()
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is continuous. By Theorem 2 the function

o t
o(h,t) = BES(h,t,s) ls=0 v + S(h,t,s)vi +/0 S(h,t,s)F(h,s)ds

is continuous and

10.

v(h,t) for h # hy

5(h, ) =
o(h,¢) u'(ho,t) for h = hy.

Hence

, 0
U (ho,t) = — —C;);-S(ho,t,s) |3=() (Ugo)l +S(ho,t,$)(’u,1m),

+/ S(ho, t, s)[A'(ho, s)u(ho, 8) + f'(ho, s)]ds.
0
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