

EVOLUTION EQUATIONS OF SECOND ORDER WITH PARAMETER

BY TERESA WINIARSKA

Abstract. The main object of this paper is the study of continuity and differentiability with respect to both h and t of a solution of a second order evolution problem with a parameter $h \in \Omega \subset \mathbf{R}^m$.

Introduction. Let X be a real Banach space. We consider the abstract initial value problem with a parameter $h \in \Omega \subset \mathbf{R}^m$

$$(1.1) \quad \frac{d^2u}{dt^2} = A(h, t)u + f(h, t), \quad t \in [0, T],$$

$$(1.2) \quad u(0) = u_h^0,$$

$$(1.3) \quad \frac{du}{dt}(0) = u_h^1,$$

where $(A(h, t))_{(h, t) \in \Omega \times [0, T]}$ is a family of linear operators from a real Banach space X into itself, $u: \mathbf{R} \rightarrow X$, $f: \Omega \times \mathbf{R} \rightarrow X$, Ω is an open subset of \mathbf{R}^m , and $u_h^0, u_h^1 \in X$ for $h \in \Omega$.

We make the following assumptions.

(Z_1) The domain $D(A(h, t)) = D$ is independent of t and h , D is dense in X . For each $h \in \Omega$ and $t \in [0, T]$, 0 belongs to the resolvent set of $A(h, t)$ and $A^{-1}(h, t)$ is a bounded operator.

(Z_2) For each $h \in \Omega$ and $t \in [0, T]$, $A(h, t)$ is the infinitesimal generator of a strongly continuous cosine family $\{C(h, t, \xi), \xi \in \mathbf{R}\}$ of bounded linear operators from X into itself.

(Z_3) For each $h \in \Omega$ and $t \in [0, T]$ there exists a linear operator $B(h, t) : X \rightarrow X$ such that $B^2(h, t) = A(h, t)$, the domain $D(B(h, t)) := D(B)$ is independent of h and t and 0 belongs to the resolvent set of $B(h, t)$.

(Z_4) For each $x \in D(B)$ and $h \in \Omega$ the mapping $[0, T] \ni t \rightarrow B(h, t)x$ is of class C^1 .

If the assumptions Z_1-Z_4 are satisfied, then for each $\lambda > 0$ and $h \in \Omega$ there exists $\mathcal{R}(\lambda; A(h, t)) := (\lambda - A(h, t))^{-1}$ and

$$\| \mathcal{R}(\lambda; A(h, t)) \| \leq \frac{M}{\lambda},$$

where $M \geq 1$ is a constant independent of λ, h, t ([3] p. 61).

DEFINITION 1. We say that a function $u(h, \cdot) : [0, T] \rightarrow X$, for $h \in \Omega$ is a solution of the problem (1.1)–(1.3) if

- (i) $u(h, t) \in D$ for each $h \in \Omega$ and $t \in [0, T]$,
- (ii) $u(h, \cdot)$ is of class C^2 on $(0, T]$ and of class C^1 on $[0, T]$,
- (iii) $\frac{d^2 u(h, t)}{dt^2} = A(h, t)u(h, t) + f(h, t)$, for $h \in \Omega$, $t \in [0, T]$, $u(h, 0) = u_h^0$, $\frac{du(h, 0)}{dt} = u_h^1$ for $h \in \Omega$.

DEFINITION 2. A family $\mathcal{S}_h = S(h, t, s)$, for $t, s \in [0, T]$, $h \in \Omega$ is called a fundamental solution of the equation

$$\frac{d^2 u}{dt^2} = A(h, t)u \quad \text{for } t \in [0, T], \quad h \in \Omega$$

if

D1) the mapping $[0, T] \times [0, T] \ni (t, s) \rightarrow S(h, t, s)x \in X$ is of class C^1 for $x \in X$, $h \in \Omega$, and

- a) $S(h, t, t) = 0$ for $h \in \Omega$, $t \in [0, T]$,
- b) $\frac{\partial}{\partial t} S(h, t, s) |_{t=s} x = x$, $\frac{\partial}{\partial s} S(h, t, s) |_{t=s} x = -x$ for $t, s \in [0, T]$ $h \in \Omega$, $x \in X$,

D2) for any $x \in D$, $t, s \in [0, T]$, and $h \in \Omega$ the following conditions are satisfied

- a) $S(h, t, s)x \in D$,
- b) the mapping $[0, T] \times [0, T] \ni (t, s) \rightarrow S(h, t, s)x$ is of class C^2 ,
- c) $\frac{\partial^2}{\partial t^2} S(h, t, s)x = A(h, t)S(h, t, s)x$,
- d) $\frac{\partial^2}{\partial s^2} S(h, t, s)x = S(h, t, s)A(h, s)x$,
- e) $\frac{\partial}{\partial s} \frac{\partial}{\partial t} S(h, t, s) |_{t=s} x = 0$,

D3) for any $x \in D$, $t, s \in [0, T]$, $h \in \Omega$ the following conditions are satisfied

- a) $\frac{\partial}{\partial s} S(h, t, s)x \in D$,
- b) there exist the derivatives $\frac{\partial^2}{\partial t^2} \frac{\partial}{\partial s} S(h, t, s)x$ and $\frac{\partial^2}{\partial s^2} \frac{\partial}{\partial t} S(h, t, s)x$,
- c) $\frac{\partial^2}{\partial t^2} \frac{\partial}{\partial s} S(h, t, s)x = A(h, t) \frac{\partial}{\partial s} S(h, t, s)x$,
- d) $\frac{\partial^2}{\partial s^2} \frac{\partial}{\partial t} S(h, t, s)x = \frac{\partial}{\partial t} S(h, t, s)A(h, s)x$,
- e) the mapping $[0, T] \times [0, T] \ni (t, s) \rightarrow A(h, t) \frac{\partial}{\partial s} S(h, t, s)x$ is continuous,

D4) for $t, s, r \in [0, T]$, $h \in \Omega$,

$$S(h, t, s) = S(h, t, r) \frac{\partial}{\partial r} S(h, r, s) - \frac{\partial}{\partial r} S(h, t, r)S(h, r, s).$$

Let, for a fixed $h_0 \in \Omega$, Y be the linear space $D(B)$ with the norm $\|\cdot\|_Y$ given by

$$\|y\|_Y := \|y\| + \|B(h_0, 0)y\|, \quad \text{for } y \in D(B).$$

It is obvious that the operator $\mathcal{A}(h, t) : Y \times X \rightarrow Y \times X$ defined by

$$\mathcal{A}(h, t) = \begin{bmatrix} 0 & I \\ A(h, t) & 0 \end{bmatrix} \quad \text{for } h \in \Omega, t \in [0, T]$$

is linear with the domain $D(A) \times D(B)$. Let

$$F(h, t) := \begin{bmatrix} 0 \\ f(h, t) \end{bmatrix} \quad \text{for } h \in \Omega, t \in [0, T].$$

Since the problem (1.1)–(1.3) can be reduced to the following problem

$$(1.4) \quad \frac{dU}{dt} = \mathcal{A}(h, t)U + F(h, t) \quad \text{for } t \in [0, T]$$

$$(1.5) \quad U(0) = U_h^0 = \begin{bmatrix} u_h^0 \\ u_h^1 \end{bmatrix},$$

we will only consider first order linear initial value problem in the space $Y \times X$.

DEFINITION 3. A family $\{A(h, t)\}$, $(h, t) \in \Omega \times [0, T]$ is said to be uniformly stable approximated with respect to $h \in \Omega$, if there exists a sequence $\{A_n(h, t)\}$ of bounded linear operators $A_n(h, t) : X \rightarrow X$, $n = 1, 2, \dots$ such that

1⁰ the mapping $\Omega \times [0, T] \ni (h, t) \rightarrow A_n(h, t)x$ is continuous for $x \in X$, $n = 1, 2, \dots$

2⁰ $\lim_{n \rightarrow \infty} \{\sup \|[A_n(h, t) - A(h, t)]A^{-1}(h, t)x\| : (h, t) \in \Omega \times [0, T]\} = 0$ for $x \in X$ and the sequence $\{U_n(h, t, s)\}$ of fundamental solutions of the problems

$$\begin{cases} \frac{du}{dt} = A_n(h, t) \\ u(s) = x \quad 0 \leq s \leq t \leq T \end{cases}$$

is uniformly bounded i.e. there exists $M > 0$ such that

$$\|U_n(h, t, s)\| \leq M, \quad \text{for } h \in \Omega, (t, s) \in \Delta_T = \{(t, s) : 0 \leq s \leq t \leq T\}.$$

The sequence $\{A_n(h, t)\}$ approximating the family $\{A(h, t)\}$, $h \in \Omega$, $t \in [0, T]$ has the form

$$(1.6) \quad A_n(h, t) := -nA(h, t)R(n; A(h, t))$$

(cf [8] p. 204).

DEFINITION 4. A family $\{A(h, t)\}$, $h \in \Omega$, $t \in [0, T]$ is called uniformly stable in Ω if there are constants $M \geq 1$ and ω such that

$$(\omega, \infty) \subset P(A(h, t)) \quad \text{for } t \in [0, T], h \in \Omega$$

and

$$\left\| \prod_{j=1}^k \mathcal{R}(\lambda; A(h, t_j)) \right\| \leq M(\lambda - \omega)^{-k} \quad \text{for } \lambda > \omega, h \in \Omega.$$

Let the assumption Z_1 be fulfilled.

DEFINITION 5. ([8] p. 193). The Cauchy problem

$$(1.7) \quad \begin{cases} \frac{du}{dt} = A(h, t)u \\ u(s) = x_h \end{cases}$$

is said to be uniformly correct if:

1⁰ for each $s \in [0, T]$, $x_h \in D$, there exists a unique solution $u_h = u(h, t, s)$ of (1.7) on the segment $[s, T]$ for $h \in \Omega$,

2⁰ the function u_h and $(u_h)'_t$ are continuous for $t, s \in \Delta_T$ and $h \in \Omega$,

3⁰ for $h \in \Omega$ the solution depends continuously on the initial data.

It is well known ([8] Chapter II §2) that the problem (1.7) is uniformly correct if $A(h, t)$ is bounded for $h \in \Omega$, $t \in [0, T]$ and the mapping $[0, T] \ni t \rightarrow A(h, t)$ is strongly continuous. In this case there exists a fundamental solution of (1.7).

LEMMA 1. *If the mapping $\Omega \times [0, T] \ni (h, t) \rightarrow A(h, t)x$ is continuous for $x \in D$, then the mapping $\Omega \times [0, T] \ni (h, t) \rightarrow A(h, t) \begin{bmatrix} x \\ y \end{bmatrix}$ is continuous for $x \in D$, $y \in D(B)$.*

PROOF. Let $(h_0, t_0) \in \Omega \times [0, T]$.

$$\begin{aligned} & \| (\mathcal{A}(h, t) - \mathcal{A}(h_0, t_0)) \begin{bmatrix} x \\ y \end{bmatrix} \| \\ &= \| \begin{bmatrix} 0 & I \\ A(h, t) & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 0 & I \\ A(h_0, t_0) & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \| \\ &= \| \begin{bmatrix} 0 \\ (A(h, t) - A(h_0, t_0))x \end{bmatrix} \| = \| (A(h, t) - A(h_0, t_0))x \| \xrightarrow{(h,t) \rightarrow (h_0,t_0)} 0. \end{aligned}$$

LEMMA 2. If the mapping $[0, T] \ni t \rightarrow A(h, t)x$ is of class C^1 for $h \in \Omega$, $x \in D$, then the mapping $[0, T] \ni t \rightarrow \mathcal{A}(h, t) \begin{bmatrix} x \\ y \end{bmatrix}$ is of class C^1 for $h \in \Omega$, $\begin{bmatrix} x \\ y \end{bmatrix} \in D \times D(B)$.

PROOF. It is the same as the proof of Lemma 1.

LEMMA 3. If the assumption Z_1 is satisfied then the operator $\mathcal{A}^{-1}(h, t)$ is bounded.

PROOF. Let $x \in D(B)$ and $y \in X$. By the assumption Z_1 we have

$$\begin{aligned} & \| \mathcal{A}^{-1}(h, t) \begin{bmatrix} x \\ y \end{bmatrix} \| = \| \begin{bmatrix} 0 & \mathcal{A}^{-1}(h, t) \\ I & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \| \\ & \leq \| \mathcal{A}^{-1}(h, t)y \| + \| x \| \leq \| \mathcal{A}^{-1}(h, t) \| \| y \| + \| x \| \leq C \| \begin{bmatrix} x \\ y \end{bmatrix} \|. \end{aligned}$$

Let $\mathcal{A}_n(h, t) : Y \times X \rightarrow Y \times X$, $n = 1, 2, \dots$, be defined by

$$\mathcal{A}_n(h, t) = \begin{bmatrix} 0 & I \\ A_n(h, t) & 0 \end{bmatrix} \quad \text{for } h \in \Omega, t \in [0, T],$$

where $A_n(h, t)$ is defined by (1.6).

LEMMA 4. If the assumptions $(Z_1) - (Z_3)$ are fulfilled and the mapping $[0, T] \ni t \rightarrow A(h, t)x$ is of class C^1 for $h \in \Omega$, $x \in D$, then the sequence $\{\mathcal{A}_n(h, t)\}$ satisfies the following conditions:

1⁰ $\mathcal{A}_n(h, t)$ is a bounded operator for $n \in \mathbb{N}$, $h \in \Omega$, $t \in [0, T]$,

2⁰ the mapping $[0, T] \ni t \rightarrow \mathcal{A}_n(h, t)$, $h \in \Omega$, is strongly continuously differentiable,

3⁰ $\| \mathcal{A}_n^{-1}(h, t) \| \leq C$ (C does not depend on h, t, n),

4⁰ the sequence $\{\mathcal{A}'_n(h, t)\mathcal{A}_n^{-1}(h, t)\}$ is strongly and uniformly convergent to a bounded operator,

$$5^0 \lim_{n \rightarrow \infty} \{\sup_{0 \leq t \leq T} \|[\mathcal{A}_n(h, t) - \mathcal{A}(h, t)]\mathcal{A}_n^{-1}(h, t) \begin{bmatrix} y \\ x \end{bmatrix}\| \} = 0 \text{ for } h \in \Omega, \\ (y, x) \in Y \times X.$$

PROOF. It is an immediate consequence of Theorem 2 in [1].

LEMMA 5. If the assumptions (Z_1) – (Z_4) are fulfilled, the mapping $(0, T] \ni t \rightarrow A(h, t)x$, is of class C^1 for $h \in \Omega$, and the family $\{A(h, t)\}$, for $h \in \Omega$, $t \in [0, T]$ is uniformly stable with stability constants $M \geq 1$ and $\omega = 0$, then

$$(1.8) \quad \|\mathcal{V}_n(h, t, s)\| \leq M \quad (M \text{ does not depend on } h, t, s, n),$$

where $\mathcal{V}_n(h, t, s)$ is the fundamental solution corresponding to the operator $\mathcal{A}_n(h)$, $\lim_{n \rightarrow \infty} \mathcal{V}_n(h, t, s) = \mathcal{V}(h, t, s)$ strongly in $Y \times X$ and uniformly in $\Omega \times [0, T] \times [0, T]$, and $\mathcal{V}(h, t, s)$ is the fundamental solution corresponding to the operator $\mathcal{A}(h, t)$.

PROOF. It is an immediate consequence of Theorems 3 and 4 in [1].

COROLLARY. Let the assumptions of Lemma 5 be satisfied. Then the family $\{\mathcal{A}(h, t)\}$, $h \in \Omega$, $t \in [0, T]$ is uniformly stable approximated with respect to $h \in \Omega$.

THEOREM 1. Suppose that

- (a) the assumptions (Z_1) – (Z_4) are fulfilled,
- (b) the mapping $\Omega \times [0, T] \ni (h, t) \rightarrow A(h, t)x$ is continuous for $x \in D$,
- (c) the mapping $[0, T] \ni t \rightarrow A(h, t)x$ is of class C^1 for $h \in \Omega$, $x \in D$,
- (d) the family $\{A(h, t)\}$, $h \in \Omega$, $t \in [0, T]$ is uniformly stable in Ω , then the mapping

$$\Omega \times [0, T] \times [0, T] \ni (h, t, s) \rightarrow \mathcal{V}(h, t, s) \begin{bmatrix} y \\ x \end{bmatrix}$$

is continuous for $y \in Y$, $x \in X$, where $\mathcal{V}(h, t, s)$ is the fundamental solution to the problem

$$(1.8) \quad \frac{dU}{dt} = \mathcal{A}(h, t)U,$$

$$(1.9) \quad U(0) = U_h^0 = \begin{bmatrix} u_h^0 \\ u_h^1 \end{bmatrix}.$$

PROOF. From ([1], Theorem 1) the problem (1.8)–(1.9) is uniformly correct. Using Lemma 5 and Theorem 3 in [2] we can see that the mapping

$$\Omega \times [0, T] \times [0, T] \ni (h, t, s) \rightarrow \mathcal{V}_n(h, t, s) \begin{bmatrix} y \\ x \end{bmatrix}$$

is continuous for $y \in Y$, $x \in X$, $n \in \mathbf{N}$ and

$$\lim_{n \rightarrow \infty} \mathcal{V}_n(h, t, s) = \mathcal{V}(h, t, s)$$

strongly in $Y \times X$ and uniformly in $\Omega \times [0, T] \times [0, T]$. This ends the proof.

DEFINITION 6. For $h \in \Omega$, $t, s \in [0, T]$ we define the family of operators $S(h, t, s) : X \rightarrow X$ by the formula

$$S(h, t, s)x := \Pi_1 \mathcal{V}(t, s) \begin{bmatrix} 0 \\ x \end{bmatrix} \quad \text{for } x \in X,$$

where $\Pi_1 \begin{bmatrix} x \\ y \end{bmatrix} := x$ for $x, y \in X$. It follows from [7] (Theorem 4.1) that the family $\{S(h, t, s)\}$, $t, s \in [0, T]$, $h \in \Omega$ is the fundamental solution of the equation

$$\frac{d^2u}{dt^2} = A(h, t)u \quad \text{for } t \in [0, T], h \in \Omega.$$

LEMMA 6. *If the assumptions of Theorem 1 are fulfilled then*

$$\lim_{h \rightarrow h_0} \frac{\partial}{\partial s} S(h, t, s)x = \frac{\partial}{\partial s} S(h_0, t, s)x \quad \text{and} \quad \lim_{h \rightarrow h_0} S(h, t, s)x = S(h_0, t, s)x$$

uniformly in $[0, T] \times [0, T] \times K$, where K is a compact subset of X .

PROOF. It follows from [7] (Theorem 4.1) that

$$\mathcal{V}(h, t, s) = \begin{bmatrix} -\frac{\partial}{\partial s} \mathcal{S}(h, t, s) & \mathcal{S}(h, t, s) \\ -\frac{\partial}{\partial t} \frac{\partial}{\partial s} \mathcal{S}(h, t, s) \frac{\partial}{\partial t} \mathcal{S}(h, t, s) \end{bmatrix}.$$

By Theorem 1

$$\lim_{h \rightarrow h_0} \mathcal{S}(h, t, s)x = \mathcal{S}(h_0, t, s)x \quad \text{for } x \in X$$

and

$$\lim_{h \rightarrow h_0} \frac{\partial}{\partial s} \mathcal{S}(h, t, s) = \frac{\partial}{\partial s} \mathcal{S}(h_0, t, s)y \quad \text{for } y \in Y$$

uniformly in $[0, T] \times [0, T]$.

Similarly as in [7] (Theorem 4.1) we can prove that (1.9) holds for $y \in X$, not only for $y \in Y$.

Repeating now the reasoning of Proposition 1 in [10] we get Lemma 6.

In the sequel we assume that X is a reflexive Banach space.

THEOREM 2. If

- 1⁰ the family $\{A(h, t)\}$ satisfies the assumptions of Theorem 1,
- 2⁰ $u_h^0, u_h^1 \in D$ for $h \in \Omega$,
- 3⁰ the mappings $\Omega \ni h \rightarrow u_h^0 \in X$, $\Omega \ni h \rightarrow u_h^1 \in X$ and $f: \Omega \times [0, T] \rightarrow X$ are continuous,
- 4⁰ there exists $M > 0$ such that $\|f(h, t_1) - f(h, t_2)\| \leq M |t_1 - t_2|$ for $t_1, t_2 \in [0, T]$ then for any $h \in \Omega$ there exists exactly one solution of the problem (1.1)–(1.3) and it is given by the formula

$$(1.10) \quad u(h, t) = -\frac{\partial}{\partial s} \mathcal{S}(h, t, s) \Big|_{s=0} u_h^0 + \mathcal{S}(h, t, s) u_h^1 + \int_0^t \mathcal{S}(h, t, s) f(h, s) ds$$

and

$$\lim_{h \rightarrow h_0} u(h, t) = u(h_0, t)$$

uniformly in $[0, T]$.

PROOF. It follows from [5] that there exists exactly one solution of the problem (1.1)–(1.3) and it is given by the formula

$$u(h, t) = -\frac{\partial}{\partial s} \mathcal{S}(h, t, s) \Big|_{s=0} u_h^0 + \mathcal{S}(h, t, 0) u_h^1 + \int_0^t \mathcal{S}(h, t, s) f(h, s) ds.$$

Thus

$$\begin{aligned} u(h, t) - u(h_0, t) &= \left[-\frac{\partial}{\partial s} \mathcal{S}(h, t, s) \Big|_{s=0} + \frac{\partial}{\partial s} \mathcal{S}(h_0, t, s) \Big|_{s=0} \right] u_h^0 \\ &\quad - \frac{\partial}{\partial s} \mathcal{S}(h_0, t, s) \Big|_{s=0} (u_h^0 - u_{h_0}^0) + [\mathcal{S}(h, t, 0) - \mathcal{S}(h_0, t, 0)] u_h^1 \\ &\quad + \mathcal{S}(h_0, t, 0) (u_h^1 - u_{h_0}^1) + \int_0^t [\mathcal{S}(h, t, s) - \mathcal{S}(h_0, t, s)] f(h, s) ds \\ &\quad + \int_0^t \mathcal{S}(h_0, t, s) [f(h, s) - f(h_0, s)] ds. \end{aligned}$$

Let K be a compact neighborhood of h_0 . Since the mappings 3⁰ are continuous, the sets

$$K_1 = \{u_h^0 : h \in K\}, \quad K_2 = \{u_h^1 : h \in K\},$$

$$K_3 = \{f(h, s) : h \in K, s \in [0, T]\}$$

are compact in X . By Lemma 6

$$\left[-\frac{\partial}{\partial s} \mathcal{S}(h, t, s) |_{s=0} + \frac{\partial}{\partial s} \mathcal{S}(h_0, t, s) |_{s=0} \right] u_h^0 \xrightarrow[h \rightarrow h_0]{} 0$$

and

$$[\mathcal{S}(h, t, 0) - \mathcal{S}(h_0, t, 0)] u_h^1 \xrightarrow[h \rightarrow h_0]{} 0$$

uniformly in $[0, T]$.

The family $\{\frac{\partial}{\partial s} \mathcal{S}(h, t, s)\}$, $h \in \Omega$, $t, s \in [0, T]$ is a strongly continuous family of bounded operators. Then by the Banach–Steinhaus Theorem it is uniformly bounded. We have the same for the family $\{\mathcal{S}(h, t, s)\}$. Thus

$$\lim_{h \rightarrow h_0} \frac{\partial}{\partial s} \mathcal{S}(h_0, t, 0)(u_h^0 - u_{h_0}^0) = 0,$$

$$\lim_{h \rightarrow h_0} \mathcal{S}(h_0, t, 0)(u_h^1 - u_{h_0}^1) = 0,$$

$$\lim_{h \rightarrow h_0} \int_0^t \mathcal{S}(h_0, t, s)[f(h, s) - f(h_0, s)]ds = 0$$

uniformly in $[0, T]$. This ends the proof.

COROLLARY. *If u is the solution of the problem (1.1)–(1.3) then the mapping*

$$u : \Omega \times [0, T] \ni (h, t) \longrightarrow u(h, t) \in X$$

is continuous.

Differentiation with respect to a parametr.

THEOREM 3. *If*

1^0 *the assumptions of Theorem 2 are fulfilled,*

2^0 *$u(h, \cdot)$ is the solution of the problem (1.1)–(1.3),*

3^0 *the mappings $\Omega \ni h \rightarrow A(h, \cdot)x$ for $x \in D$, $\Omega \ni h \rightarrow f(h, \cdot)$, $\Omega \ni h \rightarrow u_h^0$, $\Omega \ni h \rightarrow u_h^1$ are differentiable at h_0 , then the mapping $\Omega \ni h \rightarrow u(h, \cdot)$ is differentiable at h_0 and*

$$\begin{aligned} u'(h_0, t) = & -\frac{\partial}{\partial s} \mathcal{S}(h_0, t, s) |_{s=0} (u_{h_0}^0)' + \mathcal{S}(h_0, t, 0)(u_{h_0}^1)' \\ & + \int_0^t \mathcal{S}(h_0, t, s)[A'(h_0, s)u(h_0, s) + f'(h_0, s)]ds, \end{aligned}$$

where “ $'$ ” denotes the differentiation with respect to the parameter h .

PROOF. Let $u(h, \cdot)$ be the solution of the problem (1.1) - (1.3). The function

$$v(h, t) = \frac{u(h, t) - u(h_0, t)}{h - h_0}$$

for $h \neq h_0$, is the solution of the problem

$$\begin{cases} \frac{d^2 v}{dt^2} = A(h, t)v + F(h, t) \\ v(0) = v_h^0 \\ \frac{dv}{dt}(0) = v_h^1 \end{cases}$$

where

$$F(h, t) = \begin{cases} \frac{A(h, t) - A(h_0, t)}{h - h_0}u(h_0, t) + \frac{f(h, t) - f(h_0, t)}{h - h_0} & \text{for } h \neq h_0 \\ A'(h_0, t)u(h_0, t) + f'(h_0, t) & \text{for } h = h_0 \end{cases}$$

$$v_h^0 = \begin{cases} \frac{u_h^0 - u_{h_0}^0}{h - h_0} & \text{for } h \neq h_0 \\ (u_{h_0}^0)' & \text{for } h = h_0 \end{cases}$$

$$v_h^1 = \begin{cases} \frac{u_h^1 - u_{h_0}^1}{h - h_0} & \text{for } h \neq h_0 \\ (u_{h_0}^1)' & \text{for } h = h_0. \end{cases}$$

It follows from the assumptions of Theorem 3 that the mapping

$$(h, t) \longrightarrow \begin{cases} \frac{f(h, t) - f(h_0, t)}{h - h_0} & \text{for } h \neq h_0 \\ f'(h_0, t) & \text{for } h = h_0 \end{cases}$$

is continuous. We have

$$\begin{aligned} & \frac{A(h, t) - A(h_0, t)}{h - h_0}u(h_0, t) \\ &= \frac{A(h, t) - A(h_0, t)}{h - h_0}A^{-1}(h_0, 0)A(h_0, 0)A^{-1}(h_0, t)A(h_0, t)u(h_0, t). \end{aligned}$$

Since the mapping $[0, T] \ni t \longrightarrow A(h_0, t)u(h_0, t)$ is continuous, the mapping

$$(h, t) \longrightarrow \begin{cases} \frac{A(h, t) - A(h_0, t)}{h - h_0}u(h_0, t) & \text{for } h \neq h_0 \\ A'(h_0, t)u(h_0, t) & \text{for } h = h_0 \end{cases}$$

is continuous. By Theorem 2 the function

$$\tilde{v}(h, t) = \frac{\partial}{\partial s} \mathcal{S}(h, t, s) |_{s=0} v_h^0 + \mathcal{S}(h, t, s) v_h^1 + \int_0^t \mathcal{S}(h, t, s) F(h, s) ds$$

is continuous and

$$\tilde{v}(h, t) = \begin{cases} v(h, t) & \text{for } h \neq h_0 \\ u'(h_0, t) & \text{for } h = h_0. \end{cases}$$

Hence

$$\begin{aligned} u'(h_0, t) &= -\frac{\partial}{\partial s} \mathcal{S}(h_0, t, s) |_{s=0} (u_{h_0}^0)' + \mathcal{S}(h_0, t, s) (u_{h_0}^1)' \\ &\quad + \int_0^t \mathcal{S}(h_0, t, s) [A'(h_0, s) u(h_0, s) + f'(h_0, s)] ds. \end{aligned}$$

References

1. Bochenek J., *Existence of fundamental solution of a second order evolution equation*, Ann. Polon. Math. LXIV. (in print).
2. Bochenek J., Winiarska T., *Evolution equations with parameter in the hyperbolic case*, Ann. Polon. Math. (1966), 47–60.
3. Fattorini O. H., *Second order linear differential equations in Banach spaces*, New York (1985).
4. Kato T., *Perturbation Theory for Linear Operators*, Springer-Verlag, 1966, pp. 47–60.
5. Kozak M., *A fundamental solution of a second-order differential equation in Banach space*, Univ. Iagel. Acta Math. 32 (1995), 275–289.
6. Kozak M., *An abstract linear second-order temporally inhomogeneous differential equation I*, Univ. Iagel. Acta Math. 31 (1994), 21–30.
7. Kozak M., *An abstract second-order temporally inhomogeneous linear differential equations II*, Univ. Iagel. Acta Math. 32 (1995), 263–274..
8. Krein S. G., *Linear differential equations in Banach space*, Translations Amer. Math. Soc. 29, Providence, R. I., 1971.
9. Pazy A., *Semigroups of Linear Operators and Applications to Partial Differential Equations*, Springer-Verlag, 1983.
10. Winiarska T., *Evolution equation with parameter*, Univ. Iagel. Acta Math. 27 (1987), 219–227.

Received June 5, 1996