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ON COMPLEXIFIED NORM

BY LUuDwIiK M. DRUZKOWSKI!
AND ARKADIUSZ PLOSKI

Abstract. Let E be a real unitary space with a scalar product (z,y), let
llzlle == V<%, 2> and let E = E @ i E denote the complexification of E.
We give a short and elementary proof of the following effective formula for the
complexified norm in E‘, namely
If [lz+iyllc := inf{ Z lejllville « z+iy = Z cjvj, ¢j € C, vj € E},
finite finite

then

[l +iyllc = \/<z,z> +<y,¥> +2V<z,z><y,y> — <z,y>>.

We also show that if dim E > 2 then the norm || ||. is totally noneuclidean
and mention some applications of the above formula.

1. Introduction. Let E denote a real unitary space with a scalar product
denoted by <z,y> and a euclidean norm ||z||g := /<z,z>, when 7,y € E.
The complexification E of the space E is a space E ®iFE, where i? = —1. E
endowed with addition and multiplication by complex numbers defined in an
obvious way (cf. [D, GL, L]) is a complex vector space. Define the so called
crossnorm or complezified norm by the formula

P P P

llz +iyl|e := inf{z leillville: z+iy= ZRecj v +1 Zlmcj vj,
j=1 j=1 j=1
c;€C,v;€E, j=1,..,p, peN}, z,y€E.
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~ As we remember the necessary and sufficient condition for a norm || || on
E to be euclidean (i.e. generated by some scalar product) is to fulfil the so
called parallelogram condition

|z +w|* + ||z — w||® — 2||2|> = 2jw||> =0 for any vectors z,w € E.

The scalar product in the complex space E is then given by the formula

(12 + wll® = llz = wll* +i|lz + iw|* —i]lz — iw]*)

e e

<zZ,w>:=

for any z,w € E.

Define the so called measure of noneuclidity of the norm as the number
(cf. [GL))

llz + wlf + ||z — w||® — 2||2|” — 2|jw|]? : }
¥ 1= sup z,w e B\ {0};.
0 1= e 201 + ) MO
Obviously (|| ||) belongs to [0,1], cf. [GL]. In the case where ¥(]| ||) =1 we
call the norm || || totally noneuclidean. The aim of this note is to prove the
following

THEOREM 1.1. (i) (¢f. [D]). Keeping the above notation we have the effec-
tive formula for the complezified norm

llz +iy|lc = \/<a:,ac> + <y, y> +2V/ <z, r><y,y> — <z,y>2,
z+iyekE.

()

(11) The norm || || is totally noneuclidean, i.e. (|| |lc) =1.

The effective formula for the complexified norm was proved earlier in [D],
but the proof given there is technical (with tedious calculations) and needs
some facts from functional analysis. Therefore, we find it useful to present a
short direct proof of the mentioned formula together with the interesting and
presumable property of the complexified norm to be totally noneuclidean.
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2. Proof of Theorem 1.1.

PROOF OF (1). Denote

(0)  D(z,y):= \/<m,:c> + <y, y> +2V/<z, e ><y,y> — <z,y>2,
z,y € E.

Now we will prove two lemmas.

LEMMA 2.1 (cf.[D, p.50]). For any z,y € E there exist a couple of orthog-

onal vectors u,v € E and an orthogonal matriz A = gl gz such that
1 P2

T=a1u+av, y=PF1u+ Bav.

PROOF OF LEMMA 2.1. Assume <z,y># 0. If ¢ := Z arcctg SEE2 Y2

2<z,5>
then
= |oose —sing and u:=zcosp+ ysing, v:= —zsinp + ycos
= lsing cosg = ¢ +ysing, v:= @ +ycosp
fulfil the conditions required in Lemma 2.1. O

LEMMA 2.2. Let (v; € E: j € S) be a finite sequence of vectors. Then

i) DO Bvi, Yy 1v) <D B+ vjlle  for any B;, v; € R.

JES JES j€ES

PROOF OF LEMMA 2.2. Denote z =} .o Bjvj, Y = ) 57 vj and pre-
serve the notation used in Lemma 2.1. It is easy to see that

(1) D(z,y) = Dleru+ a0, fru+ frv) = D(u,v) = |ulle + ||v]|5.

Denote

Tﬁ’ when v # 0

and v°:= {
0, when v = 0.
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Due to (1) by the Schwarz inequality the following holds
D(z,y) =<u,u® >+ < v,0°>=<ozc+ b1y, v’ >+ <oz + Py, v°>
=< (1B + 1) v, u® > + <D (2B + ;) vjy v° >

Jj€es Jj€s
= Z(O{lﬂj + ﬂl"}’j) <U]-,u° > +Z(azﬂj -+ 52')’]') <’Uj,’U° >
JES j€S
<M \/(Ouﬂj + B1v;)? + (235 + ﬂ27j)2\/<vj,u° >2 + <wj,v°>?
JES
=Y \/ﬁf +7§\/<vj,u°>2 + <wj,v°>2
JES
<Y /B +2lvslle-
JjES

O

Now we are able to finish the proof of the formula (). Note that we can
write the definition of the complexified norm in the following way

1) o +iylle = eSS+ 2 sl 2= 3 Byos, y= 3 v}
Jj€S Jj€ESs JES

Due to (0), Lemma 2.2 and (1) we obtain

(2) D(z,y) < ||z +iylle-

In order to get the inequality opposite to (2) we fix z,y € E and put
T=0o1u+ayv,y=pLF1u+ P2v as in Lemma 2.1. Then

D(z,y) = D(ayu+ agv, B u+ B2 v)
= |ull + lloll = y/of + B2 llull + y/ a3 + BZ llvll = [l= +iylle.
and the proof of part (i) of the theorem is completed.

PrRoOOF OF (11). Take any vectors z,y € FE such that < z,y >= 0,
<z,z2>=<y,y>=1and define z :=z+iz € E, w:=y+i(-y) € E.
Then it is not difficult to calculate that ||z||? = ||w||? = 2 and ||z + w||? =
l@+y)+i(@-yllZ =8, llz+wl =z -y) +ilz+y)llZ=8,s0

Iz + w2 + |1z — wll? — 2[l2]I7 — 2llwlle _,
2(11=1Z + flwl[2) ’

hence (|| ||c) = 1. The proof of Theorem 1.1 is completed.
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3. Applications.

REMARK 1. It is worth recalling that if the series of homogeneous polyno-
mials Y o o fk(z) is convergent for every z € B := {z € E :<z,z>< 1}, then
the complexified series Y_po, fx(z +iy) is convergent for z +iy € B := {z +
iye E: ||z+iy||c < 1} (here the complexification f) of a homogeneous poly-
nomial fy is defined by the formula f(z +iy) = E;?:o (?) iz, .2,y y),

o~

where f is a unique symmetrical k-linear map such that f(z,...,z) = f(z) for
z € E), cf. [D].
In particular we get the following

THEOREM. Any harmonic function defined on a euclidean ball B = {z €
R" : ||z]| < R} in R™ can be uniquelly holomorphically extended to the holo-
morphic function F defined on the complezification B = {z € C" : ||z+iy]|, <
R} of the ball B.

The ball B is the so called Lie ball, cf. [H]. For other useful and nontrivial
applications of Theorem 1.1, cf. e.g. [D, M, MW, S].

REMARK 2. Preserving the notation of Section 2 one can check that

‘D(‘T7 y) = \/)\1(-'17,?]) + \/AQ(ws y) for any z,y € Ea
where A\;(z,y), A2(x,y) are the eigenvalues of Gramm’s matrix

<z, x> <z,Y>
<y, x> <y, y>|’

Using the above formula and properties of eigenvalues one can give another
proof of Lemma 2.2.
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