

ON COMPLEXIFIED NORM

BY LUDWIK M. DRUŻKOWSKI¹
AND ARKADIUSZ PŁOSKI

Abstract. Let E be a real unitary space with a scalar product $\langle x, y \rangle$, let $\|x\|_E := \sqrt{\langle x, x \rangle}$ and let $\tilde{E} = E \oplus iE$ denote the complexification of E . We give a short and elementary proof of the following effective formula for the complexified norm in \tilde{E} , namely

$$\text{If } \|x+iy\|_c := \inf \left\{ \sum_{\text{finite}} |c_j| \|v_j\|_E : x+iy = \sum_{\text{finite}} c_j v_j, c_j \in \mathbf{C}, v_j \in E \right\},$$

then

$$\|x+iy\|_c = \sqrt{\langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle - \langle x, y \rangle^2}}.$$

We also show that if $\dim E \geq 2$ then the norm $\| \cdot \|_c$ is totally noneuclidean and mention some applications of the above formula.

1. Introduction. Let E denote a real unitary space with a scalar product denoted by $\langle x, y \rangle$ and a euclidean norm $\|x\|_E := \sqrt{\langle x, x \rangle}$, when $x, y \in E$. The complexification \tilde{E} of the space E is a space $E \oplus iE$, where $i^2 = -1$. \tilde{E} endowed with addition and multiplication by complex numbers defined in an obvious way (cf. [D, GL, L]) is a complex vector space. Define the so called *crossnorm* or *complexified norm* by the formula

$$\begin{aligned} \|x+iy\|_c := \inf \{ & \sum_{j=1}^p |c_j| \|v_j\|_E : x+iy = \sum_{j=1}^p \operatorname{Re} c_j v_j + i \sum_{j=1}^p \operatorname{Im} c_j v_j, \\ & c_j \in \mathbf{C}, v_j \in E, j = 1, \dots, p, p \in \mathbf{N} \}, \quad x, y \in E. \end{aligned}$$

¹Partially supported by KBN Grant no 2 P03A 061 08.

As we remember the necessary and sufficient condition for a norm $\| \cdot \|$ on \tilde{E} to be euclidean (i. e. generated by some scalar product) is to fulfil the so called parallelogram condition

$$\|z + w\|^2 + \|z - w\|^2 - 2\|z\|^2 - 2\|w\|^2 = 0 \quad \text{for any vectors } z, w \in \tilde{E}.$$

The scalar product in the complex space \tilde{E} is then given by the formula

$$\langle z, w \rangle := \frac{1}{4} (\|z + w\|^2 - \|z - w\|^2 + i\|z + iw\|^2 - i\|z - iw\|^2)$$

for any $z, w \in \tilde{E}$.

Define the so called measure of noneuclidity of the norm as the number (cf. [GL])

$$\gamma(\| \cdot \|) := \sup \left\{ \frac{\|z + w\|^2 + \|z - w\|^2 - 2\|z\|^2 - 2\|w\|^2}{2(\|z\|^2 + \|w\|^2)} : z, w \in \tilde{E} \setminus \{\mathbf{0}\} \right\}.$$

Obviously $\gamma(\| \cdot \|)$ belongs to $[0, 1]$, cf. [GL]. In the case where $\gamma(\| \cdot \|) = 1$ we call the norm $\| \cdot \|$ totally noneuclidean. The aim of this note is to prove the following

THEOREM 1.1. (i) (cf. [D]). *Keeping the above notation we have the effective formula for the complexified norm*

$$(*) \quad \|x + iy\|_c = \sqrt{\langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle - \langle x, y \rangle^2}}, \\ x + iy \in \tilde{E}.$$

(ii) *The norm $\| \cdot \|_c$ is totally noneuclidean, i. e. $\gamma(\| \cdot \|_c) = 1$.*

The effective formula for the complexified norm was proved earlier in [D], but the proof given there is technical (with tedious calculations) and needs some facts from functional analysis. Therefore, we find it useful to present a short direct proof of the mentioned formula together with the interesting and presumable property of the complexified norm to be totally noneuclidean.

2. Proof of Theorem 1.1.

PROOF OF (i). Denote

$$(0) \quad D(x, y) := \sqrt{\langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle - \langle x, y \rangle^2}},$$

$$x, y \in E.$$

Now we will prove two lemmas.

LEMMA 2.1 (cf. [D, p. 50]). *For any $x, y \in E$ there exist a couple of orthogonal vectors $u, v \in E$ and an orthogonal matrix $A = \begin{bmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{bmatrix}$ such that*

$$x = \alpha_1 u + \alpha_2 v, \quad y = \beta_1 u + \beta_2 v.$$

PROOF OF LEMMA 2.1. Assume $\langle x, y \rangle \neq 0$. If $\varphi := \frac{1}{2} \operatorname{arcctg} \frac{\langle x, x \rangle - \langle y, y \rangle}{2 \langle x, y \rangle}$, then

$$A := \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \quad \text{and} \quad u := x \cos \varphi + y \sin \varphi, \quad v := -x \sin \varphi + y \cos \varphi$$

fulfil the conditions required in Lemma 2.1. \square

LEMMA 2.2. *Let $(v_j \in E : j \in S)$ be a finite sequence of vectors. Then*

$$(i1) \quad D\left(\sum_{j \in S} \beta_j v_j, \sum_{j \in S} \gamma_j v_j\right) \leq \sum_{j \in S} \sqrt{\beta_j^2 + \gamma_j^2} \|v_j\|_E \quad \text{for any } \beta_j, \gamma_j \in \mathbf{R}.$$

PROOF OF LEMMA 2.2. Denote $x = \sum_{j \in S} \beta_j v_j$, $y = \sum_{j \in S} \gamma_j v_j$ and preserve the notation used in Lemma 2.1. It is easy to see that

$$(1) \quad D(x, y) = D(\alpha_1 u + \alpha_2 v, \beta_1 u + \beta_2 v) = D(u, v) = \|u\|_E + \|v\|_E.$$

Denote

$$u^\circ := \begin{cases} \frac{u}{\|u\|}, & \text{when } u \neq \mathbf{0} \\ 0, & \text{when } u = \mathbf{0} \end{cases} \quad \text{and} \quad v^\circ := \begin{cases} \frac{v}{\|v\|}, & \text{when } v \neq \mathbf{0} \\ 0, & \text{when } v = \mathbf{0} \end{cases}$$

Due to (1) by the Schwarz inequality the following holds

$$\begin{aligned}
 D(x, y) &= \langle u, u^\circ \rangle + \langle v, v^\circ \rangle = \langle \alpha_1 x + \beta_1 y, u^\circ \rangle + \langle \alpha_2 x + \beta_2 y, v^\circ \rangle \\
 &= \left\langle \sum_{j \in S} (\alpha_1 \beta_j + \beta_1 \gamma_j) v_j, u^\circ \right\rangle + \left\langle \sum_{j \in S} (\alpha_2 \beta_j + \beta_2 \gamma_j) v_j, v^\circ \right\rangle \\
 &= \sum_{j \in S} (\alpha_1 \beta_j + \beta_1 \gamma_j) \langle v_j, u^\circ \rangle + \sum_{j \in S} (\alpha_2 \beta_j + \beta_2 \gamma_j) \langle v_j, v^\circ \rangle \\
 &\leq \sum_{j \in S} \sqrt{(\alpha_1 \beta_j + \beta_1 \gamma_j)^2 + (\alpha_2 \beta_j + \beta_2 \gamma_j)^2} \sqrt{\langle v_j, u^\circ \rangle^2 + \langle v_j, v^\circ \rangle^2} \\
 &= \sum_{j \in S} \sqrt{\beta_j^2 + \gamma_j^2} \sqrt{\langle v_j, u^\circ \rangle^2 + \langle v_j, v^\circ \rangle^2} \\
 &\leq \sum_{j \in S} \sqrt{\beta_j^2 + \gamma_j^2} \|v_j\|_E.
 \end{aligned}$$

□

Now we are able to finish the proof of the formula (*). Note that we can write the definition of the complexified norm in the following way

$$(1) \quad \|x + iy\|_c = \inf \left\{ \sum_{j \in S} \sqrt{\beta_j^2 + \gamma_j^2} \|v_j\| : x = \sum_{j \in S} \beta_j v_j, y = \sum_{j \in S} \gamma_j v_j \right\}.$$

Due to (0), Lemma 2.2 and (1) we obtain

$$(2) \quad D(x, y) \leq \|x + iy\|_c.$$

In order to get the inequality opposite to (2) we fix $x, y \in E$ and put $x = \alpha_1 u + \alpha_2 v, y = \beta_1 u + \beta_2 v$ as in Lemma 2.1. Then

$$\begin{aligned}
 D(x, y) &= D(\alpha_1 u + \alpha_2 v, \beta_1 u + \beta_2 v) \\
 &= \|u\| + \|v\| = \sqrt{\alpha_1^2 + \beta_1^2} \|u\| + \sqrt{\alpha_2^2 + \beta_2^2} \|v\| \geq \|x + iy\|_c.
 \end{aligned}$$

and the proof of part (i) of the theorem is completed.

PROOF OF (II). Take any vectors $x, y \in E$ such that $\langle x, y \rangle = 0$, $\langle x, x \rangle = \langle y, y \rangle = 1$ and define $z := x + iy \in \tilde{E}$, $w := y + i(-y) \in \tilde{E}$. Then it is not difficult to calculate that $\|z\|_c^2 = \|w\|_c^2 = 2$ and $\|z + w\|_c^2 = \|(x + y) + i(x - y)\|_c^2 = 8$, $\|z + w\|_c^2 = \|(x - y) + i(x + y)\|_c^2 = 8$, so

$$\frac{\|z + w\|_c^2 + \|z - w\|_c^2 - 2\|z\|_c^2 - 2\|w\|_c^2}{2(\|z\|_c^2 + \|w\|_c^2)} = 1,$$

hence $\gamma(\| \cdot \|_c) = 1$. The proof of Theorem 1.1 is completed.

3. Applications.

REMARK 1. It is worth recalling that if the series of homogeneous polynomials $\sum_{k=0}^{\infty} f_k(x)$ is convergent for every $x \in B := \{x \in E : \langle x, x \rangle < 1\}$, then the complexified series $\sum_{k=0}^{\infty} \tilde{f}_k(x + iy)$ is convergent for $x + iy \in \tilde{B} := \{x + iy \in \tilde{E} : \|x + iy\|_c < 1\}$ (here the complexification \tilde{f}_k of a homogeneous polynomial f_k is defined by the formula $\tilde{f}(x + iy) = \sum_{j=0}^k \binom{k}{j} i^j \hat{f}(x, \dots, \overset{j}{x}, y, \dots, y)$, where \hat{f} is a unique symmetrical k -linear map such that $\hat{f}(x, \dots, x) = f(x)$ for $x \in E$), cf. [D].

In particular we get the following

THEOREM. *Any harmonic function defined on a euclidean ball $B = \{x \in \mathbf{R}^n : \|x\| < R\}$ in \mathbf{R}^n can be uniquely holomorphically extended to the holomorphic function F defined on the complexification $\tilde{B} = \{x \in \mathbf{C}^n : \|x + iy\|_c < R\}$ of the ball B .*

The ball \tilde{B} is the so called Lie ball, cf. [H]. For other useful and nontrivial applications of Theorem 1.1, cf. e. g. [D, M, MW, S].

REMARK 2. Preserving the notation of Section 2 one can check that

$$D(x, y) = \sqrt{\lambda_1(x, y)} + \sqrt{\lambda_2(x, y)} \quad \text{for any } x, y \in E,$$

where $\lambda_1(x, y)$, $\lambda_2(x, y)$ are the eigenvalues of Gramm's matrix

$$\begin{bmatrix} \langle x, x \rangle & \langle x, y \rangle \\ \langle y, x \rangle & \langle y, y \rangle \end{bmatrix}.$$

Using the above formula and properties of eigenvalues one can give another proof of Lemma 2.2.

References

- [D] Drużkowski L. M., *Effective Formula for the Crossnorm in Complexified Unitary Spaces*, Zeszyty Nauk. Univ. Jagielloń. Prace Mat. **16** (1974), 47–53.
- [GL] Glazman I., Liubitch Y., *Analyse linéaire dans les espaces de dimensions finies*, Éditions MIR, Moscou, 1972.
- [H] Hua L. K., *Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains*, Amer. Math. Soc., Providence, Rhode Island, 1963.
- [L] Lang S., *Algebra*, Addison-Wesley Publishing Company, Reading, Massachusetts, 1970.
- [M] Morimoto M., *Analytic Functionals on the Lie Sphere*, Tokyo J. Math. **3(1)** (1980), 1–35.

[MW] Morimoto M., Wada R., *Analytic Functionals on the Complex Light Cone and their Fourier-Borel Transformations*, Algebraic Analysis (vol.1), Academic Press, Inc., London, 1988, 439–455.

[S] Siciak J., *Holomorphic continuation of harmonic functions*, Ann. Polon. Math. **29**(1) (1974), 67–73.

Received February 29, 1996

Ludwik M. Drużkowski
Institute of Mathematics
Jagiellonian University
Reymonta 4/537
PL 30–059 Kraków
e-mail: druzkows@im.uj.edu.pl

Arkadiusz Płoski
Department of Mathematics
Technical University
Al. 1000 LPP 7
PL 25–314 Kielce
e-mail: mat-ap@srv1.tu.kielce.pl