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EXTREMAL VALUES OF REAL FUNCTIONS
ON SUBMANIFOLDS IN R™

BY MALGORZATA ZWONEK

Abstract. In the paper we give a generalization of the Lagrange method of
finding the extremal values on submanifolds of real functions.

In this short note we want to give a method for finding extremal on a
submanifold in R™ values of a real function defined on some neighbourhood
of the submanifold. Before we state the main result of the paper we shall give
some basic notions and summarize the main results concerning the topic. In
the sequel N will denote a d-dimensional submanifold in R™ (d,m > 1) of
class C! and 2 some open set in R™ such that N C Q. We denote the tangent
space to N at some point a € N by T,N. We shall impose some additional
conditions on N, as a need arrise. We also assume that f: Q@ — R.

For our purposes we shall need the following classical characterization of a
tangent space:

LEMMA 1. A vector v € R™ belongs to T,N for some a € N if and only if:

There are: a sequence {h,} in R™, a sequence {)\,}, A, >0,
such that a+h, € N and h, = 0, A\ h, = v, (v = +00).

We know the following necessary condition for a mapping f to have an
extremum at a point @ € N.

ProposITION 2. If a function f|y: N — R has an eztremum at a and f
s differentiable at a, then

f(@)lr,n = 0.
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From now on we assume that our function f is n-differentiable at a € N,
-n > 2. Assume that f'(a) = ... = f("=(a) = 0. Define ® as the following
form of degree n:

®: T,N 3 h — f™(a)(h)™ := f (a)(h,... ,h) € R.

We say that the form @ of degree n is positive (negative) definite if ®(v) > 0
(®(v) < 0) for any v € T, N \ {0}. The form @ is said to be positive (negative)
semidefinite if ®(v) > 0 (®(v) < 0) for any v € T,N. The form ® is said
to be indefinite if there are two vectors v,w € T,N such that ®(v) > 0 and
®(w) < 0.

An easy computation based on Taylor’s formula gives the following propo-
sition.

ProrosiTION 3.

(1) If @ is positive (negative) definite, then f|n has a strict minimum (maz-
imum) at a.

(2) If ® is indefinite, then f|n has no extremum at a.

Remark that if in Proposition 3 we assume only that ® is semidefinite, then
we do not get the result as in Proposition 3.

On the other hand, if ® is not zero and n is an odd number, then in view
of Proposition 3 f|x has no extremum at a.

If f'(a) = ...= f®=1(a) = 0, then to some (relatively large) extent the
properties of f|nx are hidden in the properties of ®. Let us remark here that
this depends only on the restriction of f|y. This piece of information we also
get from the following theorem.

ProposITION 4. If in our situation f|y = 0, then ® = 0.

PROOF. One needs to show that f(™(a)(v)(® =0, if only v € T, N. Fix
v € ToN. In view of Lemma 1 there are sequences

{h}in R™, {A}, A, >0
such that
a+h, € Nand h, 50, MAh, 25v, (v— +o0).

In view of Taylor’s formula we get

0= fla+h,) = fa) = = £ (@) (h)™ + (k) A",

n!
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where
‘ n:Q—a— R, 7(0)=0, n-— continuous at 0.

We then have )
O (@) k)™ + 0 (h) Ak || =
And consequently
f™ (@) ()™ =0,
which completes the proof.
Now we are coming to the main point of the paper.

THEOREM 5. Let us assume that f: @ — R, where Q is open in R™
and N is a d-dimensional submanifold of class C* in R™, such that N C Q,
ke {1,2,...,+00}. Assume additionally that N = h=1(0), where h: @ —
R™ % is a submersion of the class C* and f is k-differentiable at a € N. Let
us assume that for some n, 1 < n < k, we have

fla)=...= f* (@) =0

and

™ (a)|z.n = 0.
Then there is a function f: Q — R, k-differentiable at a € N such that

(1) flv =flwns
(2) Ffllay=...= f™ (@) =0.

ProOOF. In the first part of our proof we show that there are homogeneous
polynomials w; of degree n — 1 such that

m—d
0 ™ (a)(e w; (e

i=1

Then we shall prove that the function f given by the formula

(I1) f(z) = f(x) ——Zwa(z—a (z)

is a function we are looking for.
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Let us begin with the proof of (I). Remark that f(™ (a)(z)™ is a ho-
‘mogeneous polynomial of degree n, vanishing on T, N. The forms Rl (a)(z)
generate the ideal of polynomials vanishing on T, N. Consequently, there are
homogeneous polynomials w;(z) of degree n — 1, as desired in (D).

Proor or (II).
Remark that f is k-differentiable at a € N (k > n). The functions f and

f are equal on N, because h|n = 0. This gives (1). For the proof of (2) let us
compare both sides of the formula,

@) = 1)~ 5 3 wila - a)hy(e).
j=1

From Taylor’s formula and the assumptions about f and h; we get

1) = @)+ 2377 @)@ - ) + Byfa - a),
where R¢(z — a) = o(||lz — a||™),

hj(z) = hj(a)(z — a) + Ry, (z - a),
where Ry (2 — a) = o(||z — a)),

forj=1,...,m—d.
Consequently

f@) =£(@ + 2™ (@)(z - )™ + Ry (o - a)
m—d
L wj(z — a) [h;-(a)(:v—a)-f-th(a:—a)] .

|
n: ji=1

Remark that
1 m—d
Bi(z—a) = — 3 wi( — a) Ry (v - @) = o[}z — a").
P

So

f(z) =uo(x——a)+u1(z——a)+...+un_1(x—a)+un(a:—a)+R(:1:—a),
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where R(a: —a) = o(||z — a||"), and u; is a homogeneous polynomial of degree
y©=0,...,n. Let us see what the polynomials u; look like.

u()(z - a’) = f(a))

u(z—a)=...=up_1(z—a) =0,
1 1 m—d
unle = @) = 2/ @)z - )~ 1S (e -y a) (e - 0
—d

= ng x—a)h’(a)a:—a)~_z wj(z — a)hj(a)(z — a) = 0

On the other hand
f@) = Fl@) + 5 F @ -0 4.+ L @)@ - ) 4 Ry(o - a)
where R7(z — a) = o(||z — a||™).
Consequently
f(z) = vo(z — a) +vi(z—a)+...4 v, (z — a) + Rs(z — a),

where v; is a homogeneous polynomial of degree i, ¢ = 0,...,n. In view of
Theorem 7.1.2. in [C], we have the following equality

wtu+...+uy=vo+v+...4v,.

The identity principle for polynomials implies that

which completes the proof.

REMARK 6. If f is (n+1)-differentiable at a € N then in view of Theorem 5,
the defiteness of form ¥ given by the formula

U:T,N 3 h— f+) (g)(p) (") ¢ R
may imply that f has an extremum at a.

Remark that in view of Theorem 4 the form ¥ depends only on f|x, and
does not depend on h and the extension of f.
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REMARK 7. Let us remark that for » = 1 Theorem 5 is the well-known the
" Lagrange Theorem. In this case we may easily find the desired modification
of a function f. We need only to solve the following system of equations

m—d
)\jh;'(a), /\jER, ji=1,...,m~-d.
i=1

The desired modification is given by the formula

m—d
f(m ’\JhJ

j=1
and we may operate it using the second derivative if only k& > 2.

EXAMPLE 8. Let N = {(z,y) € R? : 23 —smy = 0}, a = (0,0). Then
T,N = Rx{0}. Put f: R? 5 (z,y) — z*+y® € R. Then f'(a) = f"(a) =0
and f®)(a)|T,N = 0 but f®)(a) # 0 because —g—;ﬁ(a) = 6. From the proof of
Theorem 5 we get f(z,y) = f(z,y) + y?(2z3 — siny), so f'(a) = f"(a) =
f® (a) =0and ?;T{(a) = 24, which proves that f and hence f has a minimum
on N at a (see Proposition 3).

REMARK 9. It is worth underlining that the method of getting a new func-
tion f in Theorem 5 may be continued inductively in the following sense:

Assume that f'(a) = ...= f(®1)(a) = 0 and that f(" (a)|T,N =0 for some
1 < n < k, then in view of Theorem 5 we get some new function f with
fIN = f|N but such that f'(a) = ... = f(®)(a) = 0. If the form f("+1)(a)

is definite or indefinite, then we know whether at the point a the function f
has an extremum but if f(*+1)(a)|T,N = 0, then we may apply Theorem 5
to f instead of f and n + 1 instead of n (under the assumption k > n + 1).
Consequently, we see that this procedure leads us to solving the problem of ex-
tremality of f as long as the suitable forms are not semidefinite on the tangent
space.

I would like to thank Piotr Tworzewski for his help during preparing and
writing this paper.
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