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THE DIFFERENCE METHOD FOR THE
PARTIAL DIFFERENTIAL EQUATIONS
OF THE THIRD ORDER

BY ZBIGNIEW KOWALSKI

1. In our preceding papers [1] and [2] we have given the difference method
for partial differential equations of the even order. It turns out that the method
can be applied also for the equations of odd order. In this paper we solve the
equation of the third order

ou du d*u d3u
(1.1) E—f(i,xa%&,m73;(§7>

where x = (21, 23,...,2p).

2. Difference quotients.

We shall use the concise notation of the papers [1] and [3], cf. Fig. 1. The
difference quotients have the following form:
First order:

(2.1) oMi = h71 (00 M) (G=1,....0).

Second order:

(2.2) oMii = p-1. [h—l . (vj(M) _ vM) _ . (UM B v_j(M))] ,
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‘e,

(2.3) vMii = p72. (vj(M) —20M 4 v'j(M)) G=1,...,p).
t
\ (i)
—2§(M)
0n i) M (M) ()
i)

Fig. 1. The nodal points with indices M, j(M), 2j(M), —j(M), =2j(M) and w(M).
Third order:
oMiii —p-1. [h—2 . (vzj(M) _ 9pi(M) 4 vM)

(2.4) _p-2. (vj(M) —20M 4 v—j(M)) ]

ie.
(2.5) o™i = h73. (vQJ'(M) — 309 4 3pM v‘j(M)> . (G=1,...,p)

The coefficients of the difference quotients are taken from the Pascal trian-
gle, the signs are as in Fig. 2.

I . T
11 : - b
11 - 3 - 1

—j(‘M) M j(M) ZJ'(‘M)

Fig. 2. Difference quotients of the first, second and third order and the signs of correspond-
ing coefficients. All coefficients are taken from Pascal’s triangle.
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3. The boundary value problems.

We consider the equation

2. a3
(3.1) 'g—z:f<t ’ ou 0°u 3u),

X, Uy —y ——, ——
’ P 0x’ 0x?’ Ox3

where u = u(t,x), x = (¢1,...,%,) and
O'u 0w O'u O'u
. — = -, =y ey - 1 =1,2,3).
(3.2) ozt (8z1’ Oxat 8:::,,’) (6=1,2,3)
We assume that the function f (t,x, u,(},é,?;), & = (qil,qig, e ,qip)

(1 =1,2,3) is of the class C! in the set

Dl:{OStST’OS%Sa,—00<u<+00,—oo<q’j<+oo

(j:l,...,p;i:1,2,3)}

t
w(M)
tu+l
k
h
tH ® . » L)
—J((M) M 3(M) 2J(M)

Fig. 3. Basic configuration of the nodal points.

The admissible boundary problem for the differential equation (3.1) requires
some comments. We have chosen the basic configuration of the nodal points
as in Fig. 3 and as a consequence the values v at the hyperplaine z ;=0
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(j = 1,...,p) and two hyperplanes z; = a, z; = a—h (j = 1,...,p) are
needed, cf. Fig. 4. The simplest admissible boundary problem has the form:

u(0,x) = ®o(x),
u(t,x) = p;(t,x), forz; =0,

(3-3) u(t, x) = ’(,ZIJ(t, X), for z] =a,
P52 = 7)), forz;=a,
12
T=N; -k

0| A a=N:h

B ]

Fig. 4. To begin the calculations we have to know the values of the discrete function v™
on the hyperplanes t =0, z; =0,z; =a—h,z;=a,j=1,...,p.

We assume that the solution u(t,x) of the problem (3.1) (3.3) exists in the
set

D:{OStSTaosz]Sa (jzla"'7p)}7

The difference equation also requires comments. We have noted in our
previous papers [1] and [2] that the coefficients with negative signs in the
difference quotient of the highest order are decisive for the proof of convergence
of the difference method. In our case the difference quotient (2.5) of the third
order contains terms with negative signs:

(3.4) vIM) and  v~IM),
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We form the arithmetic mean of these coefficients:

(vj(M) + v—j(M)) ,

N =

-3

J=1

"GI'—‘

(35) mean -

we introduce the time difference quotient with the mean value (3.5):

(36) Kt ( (M) vmean) ’
and write the difference equation in the form:

(B7) KT (o0 <) = F (e, oM, M, M2 M)

Here, as in the previous papers [1] and [2], we denote

(3.8) oML = (VM oMz M)
(39) oM2 — (vMu’szz"”,,vM”,) ,
(310) 'UM3 — (leu , ,UM222, ey ’UM”’P) ,

the difference quotients of the first, second and third order v, vMii and
vMiii being given by (2.1), (2.3) and (2.5), respectively.
The boundary values for the difference problem correspond to the boundary

values (3.3) for the differential problem. They have the following form:

oM = po(x™), for M = (0,m),
oM = p;(t#,x™), form; =0,

oM = o;(t#,x™), form; = N,
vMi = §;(t#,x™), for m; = N,

(3.11)

for j =1,2,...,p, cf. Fig. 5.
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i a

0] 4

Fig. 5. With the aid of the discrete boundary conditions (3.11) we can calculate the values
vM on the hyperplanes ¢t = 0, z; =0,z =a—h,zj=a,j=1,...,p.

We assume that

0 .
(3.12) ,8_5‘ < L, in the set Dy
(3.13) (9{ <Ty, (s =1,2), in the set Dy
9g;
(3.14) 0<g< _3_:]_:— < G, in the set D,
9q;

(1=12,...,p)
We assume also that the mesh size h for the space coordinates z;
(7=1,...,p) and k for the time coordinate ¢ satisfy the conditions:

3 2 1
(315) g'—h3 —P2'_h2 —~I‘1-520,
3 2 1 1 1
(3. Y A A LTI
(3.16) G5 T2 -l gty o 20,
3 2 1 1
. -G = Ty - —3=.—>
(3.17) g 3 Iy 2 + k2 >0,
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We definee the error n™ by
(318) k—l (uW(M) - ugzlean) = f (t#,xm, UM, UMI, uM2,uM3) + 77M

and we have

(3.19) e(h,k) — 0, as h,k— 0,
where
(3.20) e(h, k) = max|n B

(3.19) means that the difference equation is consistent with the differential
equation.
We define also the error

(3.21) M = yM _ M,

4. The difference inequalities

(4.1) sP~ < Lr?] + e(k, k),
(4.2) 2#~ < LrC) - e(k, k),

for the equation of the third order.

Let us denote

(4.3) s* = maxr#™ = pib = pB,
m
(4.4) s#tl = max prtm = putle r“’(A),
m
and
(4.5) Y R G n e L

where a = (a1,...,ap), b = (by,...,bp), w(A) = (1 + 1, a).
The difference quotient (4.5) can be written in the form:

(4.6) = K (1) Y 4R (1, - rP).
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But from the definition (3.21) of the error #M it follows that
(47) TW(A) - 7"rl:lzean = (UW(A) - ugean) - (vW(A) - vA ) )

mean

therefore the equations (3.18) and (3.7) yield

k—l ) (Tw(A) - Trfrlzean) =77A + f (t#’xa’ uAa UAI, uA2’ uA3)

(4.8)
_ f (tu,xa’ UA, ,vAl, ’UA2,'UA3) .

The mean value theorem gives the folowing formula for s#~:
of P 1 .
u~ _ A 2l ). A 1p. . = j(A) _ B\ _ (.A__ B
s~ =7 +3u( )T +j=21 D; h[(r r) (r r)]

sz . —’;1-2- [(rj(A) - T‘B) -2 (rA — rB) + (r"j(A) - rB)]

+ 131)3..%3_[( 2i(A) _TB) —3(r4 = rB) 1 3 (r4 = 1B)
iz
— (rD )] 4 1 (hean =),
where
I e 1
. _ %5": [1 (,,,](A) _ T.B) n % (T 4y _ TB)]
i=1

because of the definition (3.5) of the mean value v}, .. In the formula (4.9)
we have introduced the value 72 at appropriate places and the derivatives at

suitable point (~ ) have been denoted shortly as

o)
SDj = ﬁ'('\' )7
k)

(4.10a) "Dj = 5(~),
'Dj = 24 (~).

9g;
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. A word concerning the difficulties inherent in the formula (4.9) is now in
order. We have already remarked that in the difference quotient of the highest
order, i.e. in the line with A3 in (4.9), there are terms

riA) _¢B and piA) _ B

with negative coefficients decisive for the proof of convergence of the difference
method.

These terms appear also in the formula (4.10) and can be rewritten jointly
in the following way:

(4.11)
of T 1
wm _ A OF N a4 i _.B),3p, . L
7= B “*J_;(’ ") Di g3
14
+3 2 -1
+Z(T"-’B)'["’Df'z‘:rJrsz'h—z““lDf'T]
i=1

P
There is no difficulty with the first and the second sum Y on the right—
J=1
hand side of the formula (4.11).

In the first sum we have
(4.12) P _ B <,
because of the definition (4.3) of the maximal value rZ, and
(4.13) ’D; >0,

because of the assumption (3.14), hence the term in the first sum is non—
positive:

2 1
(4.14) (r iy _ rB) 3D; - 5 <0,

P
and the first sum ) can be dropped.
ji=1
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In the second sum in the formula (4.11) we have

+3 -2
= h?

-1 +3 -2 -1

1

+ Dj-—}—L—Zg-F+Pz-ﬁ+P1-TZO,
for sufficiently small k, because of the assumption (3.15), and r4 — 7B < 0,
because of the definition (4.3) of the maximal value 2. Hence the second sum

in the formula (4.11) is non—positive and can be dropped.
P
The thitd and fourth sums ) in the formula (4.11) should be treater care.
;.':1
In the third sum we have )

(4.15) 3D; . — +2D;-

11 -3 1
Dy 2 D th Tyt 20,

3
(4.16) °D;- iR R E Y e o

J h3 + D
because of the assumption (3.16) (for a fixed h satisfying (3.15) there exists a
sufficiently small value k such that (3.16) holds).

In addition we have r#(4) — B < 0, because of the definition (4.3) of the
maximal value r2 so that the third sum in (4.11) is non—positive and can be
dropped.

The fourth sum in (4.11) can be dropped also since
1 1 1 1 -1

3p.. = L. —_>C.
(417)  *D;- 03 mtr 29

1 1
2p, . -T,- .= >
+ J r2 +k 2p_07

1
2
because of the assumption (3.12) and the inequality r~3(4) — #B[0 for the

maximal value 72, cf. the definition (4.3).
Thus (4.11) reduces to the form

of
p~ A ~)opAd
(4.18) s~ < +_8u( )-ro.

From the assumption (3.12) and the definition (3.20) of e(h, k) it follows
that

(4.19) s*~ < Lo |rA + e(h, k).

This ends the proof of the first difference inequality for the equation of the
third order.
In a similar way we can introduce the minimum values

(4.20) z# = min r#™ = ptd = ¢ D
m
(4.21) 2#H = mip pAtIm = petlie rc,

m
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where C' = (p,¢), D = (p,d), ¢ = (c1,...,¢p), d = (di,...,dp), and starting
from the definition
Py S (z“+1 _ z“) ;

we can repeat the argument connected with formulas (4.3) up to (4.19), the
sense of the corresponding inequalities being reserved. In particular, from
equality (4.9) and (4.10) for s#~, we obtain the corresponding equality for
z#~, if s#, A, B in (4.9) and (4.10) are replaced by z#, C, D, respectively.

P

It turns out that we can drop the sum Y in the equality for z#~ just ob-

i=1
tained, since they are non-negative, and this leads us to the second inequality
(4.23) 2> L |rC] = e(h, k).

This ends the proof of the second difference inequality for the equation of
the third order.

5. Main theorem.

THEOREM 1. Under the assumptions of section 3, the difference method is
convergent.

PROOF. We define first

(5.1) R¥ = max|rM|,  for M = (g, m)
m

and obtain

(5.2) R*~ < max (s, -2z"7),

because of Lemma 3.
On the right-hand side of the formula (5.2) we can use the difference in-
equalities (4.1) and (4.2) and this leads us to the difference inequality

(5.3) R*™ < L.R* +¢(h,k), R’ =0,

because of Lemma 4.
This yields the error estimate
ethok) o cx
e,
for M = (p,m) (0 =0,1,...,Ny), kN, = T.
The convergence of the difference method follows from the error estimate (5.4)

and the condition (3.19).
This completes the proof of the Theorem 1.

(5-4) M <
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