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A NOTE ON UNIQUENESS OF STOCHASTIC
NAVIER—STOKES EQUATIONS

BY MAREK CAPINSKI

Abstract. We give two versions of uniqueness theorems for general stochastic
Navier-Stokes equations with feedback in the forces and in the noise term.

1. Introduction

We consider the following system of stochastic Navier-Stokes equations

0 { du = [vAu+ <u, V> u+ f(t,u))dt + g(t,u)dw;,
(1) divu = 0.

This system was first considered in [1] with g(¢,u) = 1, f independent of u,
and one-dimensional Wiener process. It has been investigated since then by
many authors (see, for example, [12], [13]) but first existence results covering
the case of g depending on u appeared in 1991: (3] for dimension n = 1, [2]
for n = 2, and [5] for n < 4. The paper [5] uses the methods of nonstandard
analysis but a standard proof of a similar result is also available [7]. Note
that (1) is not covered by the existing general theory of stochastic partial
differential equations because of quadratic type of nonlinearity.

The existence results of [2] and [5] concern weak solution. For dimension
n = 2 stronger solutions are found in [7] and for the special case of periodic
boundary conditions further regularity is shown in [5], see Theorems 2.3, 2.4
below.

Uniqueness was proved in [5] for n = 2 in a narrow class od solutions with
general form of the coefficients f and g, under some Lipschitz conditions.
In [9] we find a uniqueness theorem (n = 2) in a broader class of solutions
(weak solutions) but in a more particular situation ( f independent of ¢ and u,
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g independent of ¢) and under more restrictive conditions. (in particular. the
Lipschitz condition involves a different norm).

Here we generalize both results cited above. We prove uniqueness of weak
solutions in the general situation and under the Lipschitz condition weaker
than in [9] and slightly weaker than in [5], and in the class broader than in [5].
We also show that for n = 3 we have at most one strong solution; this result
is possibly with empty content because we do not if there exist any (an open
question even in the deterministic case g = 0).

2. Preliminaries

Notations: Let D C IR™, n < 4, be a bounded domain with the boundary
of class C?.

H is the closure of the set {u € C{°(D,R"): div u = 0} in the L? norm
lu| = (u,u)!/2,

(u,v) = uw!(z)v!(z)dz.
>,

V is the closure of {u € C§°(D,IR"): div v = 0} in the norm el + el
where |jul| = (u,u)/?,

“. du v .
«U, ’U)) - ;(b_:'r_]* éz—j,v
H and V are Hilbert spaces with scalar products (+,-)and ((-, -)) respectively.
By A we denote the self-adjoint extension of the operator —A in H and
by {ex} the orthonormal basis of its eigenfunctions with the corresponding
eigenvalues Ay /" oc. Note that {{u. 1)) = Z;‘zl AkUkvg, Where ug = (u, e)).
By V' we denote the space dual to V. with the duality extending the scalar
product in H.
We put

n
. art
hu.v,z) = Z / v Ty —(x)zz)dr = i<u. V> v,z
1= D 63‘7
whenever the integrals make sense. Note that for u, 4. 2 € V we have
b(u,v,2) = —b(u, z. v), hence b(u, v, v) = 0.
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We shall need some well-known inequalities for b (see [11] for example) and
-we list them here for reference:

(2) |b(w, v, 2)| < e lufl [loll lI2]),
(3) lb(u, v,2)| < ellull |4v] |z,
(4) lb(u, v,2)| < c|Au ||o]]|2],
(5) [b(u, v, 2)] < cluf?|lul) o] 2 ||ol|}||2]] if n = 2,

for suitable u, v, and z. The inequality (2) allows us to define a V'-valued
quadratic form B(u) by

B(u)(z) = b(u, u, 2).
Wiener processes with values in H are defined as in [8] for example:

DEFINITION 2.1. Let @ : H — H be a linear, non-negative, trace class op-
erator. An H-valued square integrable stochastic process w(t), ¢t > 0, defined
on a filtered probability space (R, F,(F;)i30, P) is a Wiener process with the
covariance operator @ if

1) w(0) = 0,

2) Ew(t) = 0, Cov{w(t) — w(s)] = (t — 8)Q, for all s, t > 0,

3) w has independent increments,

4) w has continuous paths,

5) w is adapted to (F;).

Such a Wiener process has the following structure: let {d;} be an orthonor-
mal set of eigenvectors of ) with eigenvalues v;, so that trQ = Yio1 7i; then
w(t) = 572, Bi(t)di, where §3; are mutually independent real Wiener processes
with E(ﬂ?(t)) = v;t.

The stochastic integral [ g dw is defined in [8] as follows. First we introduce
the space of integrands. For any Hilbert space Y we denote by M(Y) the space
of all stochastic processes

g:[0,TIx Q — L(H,Y)

T
E ( / sgw%,,ydt) <

\

such that

and for all b € H, g(t)h is a Y-valued stochastic process measurable with
respect to the filtration F;.
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The stochastic integral fot g(s)dw(s) € Y is defined for all g € M(Y) by

t m t
=I% - 1 . dB:
/0 g(s)dw(s)=L mh_{lloo;/() g(s)d; dB;(s).

Note that if we write wi(t) = (w(t),ex) and wl™(t) = > ey wk(t)ex, then
w(™) is a Wiener process with covariance Qm = Pr,,QPr,, and

t 2 t
/ g(s)dw(™(s) -fl—»\/ g(s)dw(s) in H.
0 0

If g € L(H,H) and v € H we write (v,g) for the element of H given by
((v,9),u) = (v,gu) for v € H (i.e. (v,g) = ¢g'v), so that fot(v,g(s))dw(s)
makes sense.

We can now explain what we mean by a solution of (1).

DEFINITION 2.2. Let ug € H, f:[0,00)x V —» V' and g : [0,00) x V —
L(H,V'). A stochastic process u(t,w) is a weak solution of the stochastic
Navier-Stokes equations (1) if

(6) E (sup lu()|? + /T ||u(t)||2dt) <¢T) forallT
¢<T 0
and

t t
(7) u(t)=uo + /0 [-vAu(s) — B(u(s)) + f(s,u(s)))ds + /(; g(s,u(s))dw(s)

holds as an identity in V' (the first integral is understood in the sense of
Bochner). We say that u is a strong solution if (6) is replaced by

T
(8) P ( sup [ju(t)|)® +/ | Au(t)|%dt < oo) =1forall 7.
telo.T) 0

Note that Vp as an element of V' is equal to 0: Vp[v] = (p, divv) = 0.

For completeness of exposition we give two existence theorems, one from
[5] and one from [7]. The first is on existence of solutions for n < 4 and the
second shows additional regularity of solution in dimension 2.

We consider the set K, = {v : l|v]| < m} C V with the strong topology
of T. In the theorem below, continuity on each K, turns out to be the
appiopriate condition for the coefficients f, g. Note that this is weaker than
continuity on V in either the H-norm or the weak topology of V.
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THEOREM 2.3. [5] Suppose that uy € H and
f:00,00)x V=V g:(0,00) XV — L(H,H)
are jointly measurable functions with the following properties

(i) f(t,") € C(Km,Vyeay) for all m,
(ii) g(t,-) € C(Km, L(H,H)weax) for all m,
(iii) |f(t,u)lv + |9(t uw)lmm < a(t)(1 + |u|) where a € L2(0,T) for all T.

Then there exists a probability space  and a Wiener process w such that
equation (7) has a weak solution u on Q.

THEOREM 2.4. [7] Suppose that ug € V and f(t,u) € H, g(t,u) € L(H,V)
with

|7t ) + 192, u)lm,v < a(t)(1 + |jul))

where fOT a*(t)dt < oo, ail T.
Then (1) has a strong solution.

3. The case n = 2 — weak solutions

The theorem proved in this section: requires that the coefficients fandg
be Lipschitz continuous in u.

Al 'f(t,u) - f(t’v)!V’ < C1”U - v” + Czl’u - ’U!,
A2. |g(t,u) — g(t, 0) % m) < eallu = v)|? + eglu - vf?,
A3. ¢1 +estr @ < 2vw.

REMARK 3.1. We can replace A2 and A3 by slightly less restrictive
A2 tr((9(t.v) - 9(1,9)Qa(t,8) - (1,0))7) < esllu vl + erfu = of,
A3, C1 + Cs _/": 2.

and the proof remains virtually the same, see Remark 3.3. The conditions in

(9] were Al with ¢; = ¢; = 0 and A2’ with ¢5 = 0. In [5] we find A1-3 with
¢ =0.

THEOREM 3.2. Suppose that A1-A3 (or Al, A2, and A3’) hold. Then
there is at most one weak solution to the stochastic Navier—Stokes equation.
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PROOF. Let u; and u; be two solutions of (1) with the same initial value.
The It6 formula (see [8], for example) applied to |u;(t) — uy(t)[? vields

t
fur () ua(D)? = ~2v / lur(s) = ua(s)|Pds
W]
t
+2 /0 (B(ux(s)) ~ B(ua(s)), ur(s) - up(s))ds
t
42 / (f(su1(s)) = f(s, ua(s)), ws(s) = ua(s))ds
2 /0 (ur(s) — ua(8), g(s. us(8)) — g(s, ua(s)))dws

+ [ ex{ (0o, 109) - o6, u3()) Qo5 wa(8)) = g(s. a(e)) ] .
0

We denote 8 = 2v — ¢; — c3trQ which is positive by A3. Taking account of Al
and A2 (or Al and A2’) we have

l/O (f(sv "’1(3)) - f(sv u’?(‘?))s ul(s) - u2(3))ds|
< / |£(s,u1(8)) = £(5, ua(8))lv lus(s) = ua(s)lds
0
<o / lus(s) — ua(s)|%ds
° t
+e /0 lur(s) — ua(s)] [lua(s) — up(s)||ds
<a / lur(s) - ug(s)|?ds

t 2yt
+5 ) T = sa(e)Pas = 22 [ usco) = uatoppas

and
/0 tr| (g(s. u1(s)) - (s, ua(5))Q (9(s, wa(s) — g(s, ua(s))) "] ds
(9) S/o trQlg(s, u1(s)) — g(s, ua(s))|%(m myds

t t
(10) < c;,trQ/o [lur(s) = ua(s)||®ds + ¢4 /o |u1(s) — ua(s)|?ds.
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We use (5) and (B(u), u) = 0 to deduce that
[ (B = Bua(o), o) = ma(opas
<27 [ ua(6) = wa(o)l il s 5) = ()l

< 5 [ 1us(6) - watopieas + 2 [ TP 1ua(e) - waoas,

Inserting the last three estimates into the formula for |u1(8) — uz(s)|* above
we have

() - (0 <es [ us(s) - ua(s)ds
0
+eo / lua(s) | us(s) - ua(s)?ds

+ / (u(s) = uz(s), 9(s, ua(3)) - g(, uz(s)))duw,
o

for some constants cs, cs. Now, following the idea of the uniqueness proof of
[9] (see also [10], p.264) we consider the process

n(t) = exp (—cs /0 t Huz(s)llzds) .

Computing the differential d(n(t)|u;(t) — ua(t)|?) we obtain
t
" (t) = ua(OF Ses [ n(o)n(s) ~ wa(o)fds
0

+ /0 n(8)(ui(s) — u2(s), g(s, us(s)) — g(s, ua(s)))dw,

and taking mathematical expectation we arrive at

t
E (n(t)|us(t) - ua(t)[?) < Ees /0 n(t)]us(s) — ua(s)2ds.

Using the Gronwall lemma we get En(t)|ui(t) — up(t)]? = 0 hence since
fot lluz(s)||*ds < oo almost everywhere by (6), we find that |us(t) —uz(2)]* = 0
which finishes the proof. O

REMARK 3.3. If we assume A2’, A3’ instead of A2, A3, then the only
difference in the proof is that (9) is redundant and A2’ yields (10) directly
with ¢; = e3trQ (from that on we employ A3’ instead of A3).
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4. The case n = 3 — strong solutions

Now, to prove uniqueness of strong solutions we need the following condi-
tions.

Bl. |f(t,u) - f(t,0)| < er|lu — o]},
B2. |g(t,u) — 9(t,9)|cm,v) < eslu - vil;

REMARK 4.1. In a similar manner as in Remark 3.1 we can also relax B2:
B2 tr( A/2(g(t, ) ~ g(t,0))Qa(t,) - g(t,0))FAY?) < el = ol
with the same proof.

THEOREM. Suppose that B1, B2 (or Bl, B2’) hold. If uy and u; are solu-
tions satisfying (8) with the same initial value, then they coincide.

PRrOOF. We apply the It6 formula to ||us(t) — ua(?)||* obtaining

Il (2) = w2 (D)2

——2 /o | Aus(s) — Aug(s)Pds
+2 /0 (B(un(s)) — Blua(s)), Aus(s) — Aus(s))ds
+2 /0 (F(srua(8)) — F(52u2(5)). Atn(s) — Aug(s))ds
+2 [ {Aus(6) — Aua(o)g(5.(6)) - st ua(e) o,
+ /0 AV 2g(s,u1()) — (5, ua(2))) @ g5, 1a(5)) = a(s,uals)) A s

To estimate the term involving the operator B we use (3) and (4).

/ (B(u1(s)) — B(uz(s)), Aui(s) — Aug{s))ds
Jo
t

= / (b(ul(s).ul — ug(s). Auql(s) — Aus(s))
o
— b{uq(s) — ua(s), uals). Auy(s) — %uz(s})a}ds
t v.
< / (’Aul(s)% flug — wal )|l Auy () — Auals)
1]

+ llur(s) — ug(s)|| |Aua(s)| lAug(s) — .4u2{s)§)ds
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¢
< V/ [Aui(s) — Auy(s)|*ds
0

+ /Otcsllul - Uz(s)ilz(!Aul(s)Iz + !Auz(s)lz)ds

The estimates of the remaining non-stochastic integrals are similar as in the
proof of Theorem 3.2. Using B1 and B2, respectively, we obtain

/0 (f(s,u1(s)) = £(5, ua(s)), Aus(s) — Aua(s))ds
< / 1£(5,us(8)) = £(5,u3(8)| - |Aus(s) — Aug(s)|ds
< V/O |Auy(s) - Auz(s)lzds + /Otclo”u](s) - u2(3)|[2ds,
[ e[ 427 gt (60) - (s, ua(61) @ats, () = ats, (o)) 4172 s
< / trQlg(s, u1(5)) — 9(5, ua(s))k v ds
< /Ot curflua(s) - ug(s)llzds.

Going back to the formula for |lu;(t) — uz(t)||* we have
t
fua(t) = P < [ enlia = wa(P (JAus() + | Aua(o)l?)ds
t
+ / (e10 + en)l|ua(s) — ug(s)||*ds
0 ‘
t
+ / (Aug(s) — Aug(s}, g(s,ui(s)) — g(s, uz(s)))dw,.
Jo
We now introduce the auxiliary process
t \
£(1) = exp ("‘Cg/ (IAul(s)F + |Au2(.s)|2}ds) .
0

Computing the differential d(£(t)|u;(t) - u2(?)||?) and taking mathematical
expectation we get

t
E (€()lui(t) - ug()]1?) < Eclz/o E(s)|u1(s) = ua(s)||*ds.
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Using the Gronwall lemma we get E (£(t)[|u1(t) — ua(2)]|?) = 0. Since

/ot(lAul(sN2 + |Au1(s)l2)ds < 0o

almost everywhere by (8), we find that ||uy(¢) — u2(¢)||? = 0 which finishes the
proof. O

REMARK 4.3. Similarly as in the deterministic case, various versions of the
notion of strong solution lead to the same result.
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