

TIME DEPENDENT CIRCULAR OPERATORS

BY W. MLAK

Abstract. We consider some circular commutation relations, where the unitary circulating groups are replaced by suitable one-parameter unitary valued functions. Moreover, the circular operators depend also on the time variable.

1. Let $\{e_n\}_{n \geq 0}$ be an energetic basis of the separable complex Hilbert space H . Let t be the real parameter varying over the totality \mathbf{R}^1 of all reals.

In all what follows we assume, that we are given the diagonal operators $K(t)$, $R(t)$, namely:

$$(1.0) \quad K(t)e_n = k_n(t)e_n \quad n = 0, 1, 2, \dots, t \in \mathbf{R}^1$$

$$(1.1) \quad R(t)e_n = r_n(t)e_n \quad n = 0, 1, 2, \dots, t \in \mathbf{R}^1 ,$$

and

$$(1.2) \quad \text{The real functions } k_n(t), r_n(t) \text{ are continuous} \\ \text{in } t \text{ all over the real line } \mathbf{R}^1, \text{ for } n = 0, 1, 2, \dots .$$

Let S be the unilateral isometric shift i.e. S is a linear bounded operator in H such that $Se_n = e_{n+1}$ for $n = 0, 1, 2, \dots$. Suppose now that S satisfies for all real t the circular relation

$$(1.3) \quad e^{-iK(t)}Se^{iK(t)} = e^{iR(t)}S .$$

It follows then that for $n = 0, 1, 2, \dots$ and all t

$$(1.4) \quad e^{i(k_n(t) - k_{n+1}(t))}e_{n+1} = e^{ir_{n+1}(t)}e_{n+1} ;$$

Consequently, for all t, n ,

$$(1.5) \quad k_n(t) - k_{n+1}(t) = r_{n+1}(t) + 2n(n, t)\pi$$

where $p(n, t)$ is an integer valued function.

Notice, that if $K(t) = tN$, where N is the quantum number operator $-Ne_n = ne_n$ ($n = 0, 1, 2, \dots$) and $R(t) \equiv -tI$, then (1.3) holds true and we can put $p(n, t) \equiv 0$.

Let us define the linear manifold M of finite vectors i.e.

$$M = \left\{ f: f = \sum_{m=0}^{n(f)} a_m(f) e_m, \ n(f) < +\infty \right\} .$$

We say that the linear operator V belongs to the M -class, if $D(V) = M$.

We are interested in the solutions $V(t)$ of M -class, to equation

$$(1.6) \quad e^{-iK(t)} V(t) e^{iK(t)} f = e^{iR(t)} V(t) f ,$$

for $t \in \mathbb{R}^1$ and $f \in M$.

We assume once for all, that (1.3) holds true; this implies the consistency relations (1.5). Next, defining $Z(t) = S^* V(t)$ we get that

$$\begin{aligned} e^{-iK(t)} Z(t) e^{iK(t)} &= e^{-iK(t)} S^* V(t) e^{iK(t)} \\ &= e^{-iK(t)} S^* e^{iK(t)} e^{-iK(t)} V(t) e^{iK(t)} . \end{aligned}$$

By (1.3) we derive the commutation relation $e^{-iK(t)} S^* e^{iK(t)} S^* e^{-iR(t)}$. It follows then by (1.6) that for $f \in M$, and all t ,

$$(1.7) \quad Z(t) e^{iK(t)} f = e^{iK(t)} Z(t) f .$$

When taking $f = e_n$, we derive therefore, that for all t and all n

$$(1.8) \quad \left(e^{i(k_n(t) - K(t))} - 1 \right) Z(t) e_n = 0 .$$

Let $V(t)e_n = \sum_{m=0}^{\infty} a_m^{(n)}(t) e_m$ be the Fourier expansion of $V(t)e_n$ with respect to the energetic basis $\{e_n\}_{n \geq 0}$. It follows then that

$$(1.9) \quad Z(t) e_n = S^* V(t) e_n = \sum_{m=1}^{\infty} a_m^{(n)}(t) e_{m-1}$$

and consequently by (1.8)

$$(1.10) \quad \sum_{m=1}^{\infty} a_m^{(n)}(t) \left(e^{i(k_n(t) - k_{m-1}(t))} - 1 \right) e_{m-1} = 0 .$$

It follows that

$$(1.11) \quad a_m^{(n)}(t) (e^{ik_n(t)-ik_{m-1}(t)} - 1) = 0$$

if $n \neq m - 1$. Let us now define the set

$$A_{n,m,p} = \{t \in \mathbf{R}^1 : k_n(t) - k_{m-1}(t) = 2p\pi\} ,$$

where p is an integer and $n \neq m - 1$.

We define $A_{n,m} = \bigcup_p A_{n,m,p}$ where $n \neq m - 1$. If t does not belong to $A_{n,m}$, then $k_n(t) - k_{m-1}(t) \neq 2p\pi$ for every integer p . We define $B_{n,m} = \mathbf{R}^1 - A_{n,m}$. It follows that if $t \in B_{n,m}$, then $e^{i(k_n(t)-k_{m-1}(t))} \neq 1$. It follows then that if $t \in B_{n,m}$ then $a_m^{(n)}(t) = 0$ - notice that $n \neq m - 1$. We conclude that:

$$(1.12) \quad \begin{aligned} &\text{If } n \neq m - 1 \text{ and } B_{n,m} \text{ is dense in } \mathbf{R}^1, \\ &\text{then } a_m^{(n)}(t) \equiv 0, \text{ provided } V(t)e_n \\ &\text{is } t\text{-continuous for each } n. \end{aligned}$$

It follows that:

$$(1.13) \quad \begin{aligned} &\text{If sets } B_{n,m} \text{ for } n \neq m - 1 \text{ } (n, m \in \mathbf{Z}^+) \\ &\text{are dense, then } a_m^{(n)}(t) \equiv 0 \text{ for } n \neq m - 1, \\ &\text{provided } V(t)e_n \text{ is } t\text{-continuous for each } n. \end{aligned}$$

Consequently,

$$(1.14) \quad \begin{aligned} &\text{If for all } n \neq m - 1 \text{ the sets } B_{n,m} \text{ are dense,} \\ &\text{then } V(t)e_n = v_n(t)e_{n+1} \text{ provided that the} \\ &\text{functions } \mathbf{R}^1 \ni t \rightarrow V(t)e_n \text{ are continuous} \\ &\text{for each } n = 0, 1, 2, \dots \end{aligned}$$

Indeed, it is sufficient to define $v_n(t) = a_{n+1}^{(n)}(t)$.

COROLLARY 1.0. *Let N be the quantum number operator and $V(t)$ of class M . Then, if $V(t)f$ is t -continuous for $f \in M$, $e^{-itN}V(t)e^{itN} = e^{-it}V(t)$ for all t , then $V(t)e_n = v_n(t)e_{n+1}$ for scalar t -continuous functions $v_n(t)$, for $n = 0, 1, 2, 3, \dots$.*

COROLLARY 1.1. *Let $k_n(t)$ be polynomials in t with real coefficients such that $k_n \neq k_m$ for $n \neq m$. It is plain that the union of all roots of all equations*

$k_n(t) - k_{m-1}(t) = 2p\pi$ (p -integers $n \neq m-1$) is a countable set. Hence, its complement is dense in \mathbf{R}^1 and (1.14) applies.

REFERENCES

- I. Ifantis E.K., *Abstract formulation of the quantum mechanical oscillator phase problem*, J. Math. Phys. **12** 6 (1971), 1021-1026.
- II. Mlak W., *Notes on quantum circular operators*, Preprint 13 (1984), IMPAN, Warszawa.

Received July 1, 1989

Instytut Matematyczny PAN
Kraków ul. Solskiego 30