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TIME DEPENDENT CIRCULAR OPERATORS
BY W. MLAK

Abstract. We consider some circular commutation relations, where the uni-
tary circulating groups are replaced by suitable one-parameter unitary valued
functions. Moreover, the circular operators depend also on the time variable.

1. Let {en}n>0 be an energetic basis of the separable complex Hilbert space .
Let t be the real parameter varying over the totality R! of all reals.

In all what follows we assume, that we are given the diagonal operators
K(t), R(t), namely:

(1.0) K(t)en, = kn(t)en, n=0,1,2,...,te R}
(1.1) R(t)en, = rn(t)en n=0,1,2,...,t € R},
and

(1.2) The real functions k,(t), rn(t) are continuous

in t all over the real line R!, for n =0,1,2,... .
Let S be the unilateral isometric shift i.e. S is a linear bounded operator iu

H such that Se, = ep4; for n =0,1,2,... . Suppose now that § satisfies for
all real ¢ the circular relation

(1.3) e K1) GeiK(t) = iR G

It follows then that for n = 0,1,2,... and all ¢

(1.4) eilha(D=knia(D g | = girmni(tle . .
Consequently, for all t, n,
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where p(n,t) is an integer valued function.

. Notice, that if K(t) = tN, where N is the quantum number operator -
Ne, = ne, (n=0,1,2,...) and R(¢) = —tI, then (1.3) holds true and we can
put p(n,t) = 0.

Let us define the linear manifold M of finite vectors i.e.

n(f)
M= {f:f: Zam(f)em, n(f)<+oo} .

We say that the linear operator V belongs to the M—class, if D(V) = M.
We are interested in the solutions V() of M—class, to equation

(1.6) e KOV (1)K f = ROV (1)

forte Rl and f € M.
We assume once for all, that (1.3) holds true; this implies the consistency
relations (1.5). Next, defining Z(t) = $*V(t) we get that

e=iK() Z(1)etK (D) = o=iK(1) S*V (1)K
= —iK(t) g iK(1) e—c’K(t)V(t)eiK(t) )

By (1.3) we derive the commutation relation e~ K(t) §*¢iK(t) g*o—iR(t) T4
follows then by (1.6) that for f € M, and all ¢,

(1.7) Z(t)e‘K(t)f = e"K“)Z(t)f .
When taking f = e,, we derive therefore, that for all ¢ and all n

(1.8) (etbnt-K) 1) Z(t)en = 0.

Let V(t)e, = E a{™(t)e, be the Fourier expansion of V(t)en with respect
m=0 '
to the energetic basis {e,}n>0. It follows then that

(1.9) Z(t)en = S*V(t)e, = i a{M(t)em_y

m=1

and consequently by (1.8)

o]
(1.10) E a{M (1) (et (O =tkm-a(t) _ 1)em_1=0.

m=1
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It follows that
(1.11) ) (t) (eH*nW=tkm-1(8) _ 1) = ¢
if n # m — 1. Let us now define the set
Apnmp = {t € R : kn(t) — km-1(t) = 2p7}

where p is an integer and n # m — 1.

We define A, m = Up Apmp wheren #m —1 . If t does not belong to A, n,
then kyn(t) — km—1(t) # 2pr for every integer p. We define B, ,, = R — A, .
It follows that if t € By, then ei(kn(t)=km—1(1)) # 1. It follows then that if
t € Bp,m then as,?)(t) = 0 - notice that n # m — 1. We conclude that:

(1.12) If n # m—1and B, y, is dense in R,
then a{")(t) = 0, provided V(t)e,
is t—continuous for each n.

It follows that:

(1.13) If sets By forn #m—1 (n,m € Z%)
are dense, then a{M(t) = 0 for n # m — 1,

provided V(t)e, is t-continuous for each n.
Consequently,

(1.14) If for all n # m — 1 the sets B, ,, are dense,
then V(t)e, = vn(t)en+1 provided that the
functions R! 3 t — V(t)e,, are continuous

for eachn =0,1,2,...

Indeed, it is sufficient to define v,(t) = a.s:zl (t).

CoROLLARY 1.0. Let N be the quantum number operator and V(t) of class
M. Then, if V(t)f is t—continuous for f € M, e NV (t)e*N = e~*V(t) for
all t, then V(t)e, = wp(t)ent1 for scalar t-continuous functions vy(t), for
n=01,23,....

CoROLLARY 1.1. Let k,(t) be polynomials in t with real coefficients such
that k,, # k., for n # m. It is plain that the union of all roots of all equations
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kn(t) — km-1(t) = 2pm (p-integers n # m — 1) is a countable set. Hence, its
~ complement is dense in R! and (1.14) applies.
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