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Another Generalization of Strong Unicity

Jan SupoLski and Adam WoicCIk

Abstract. In this note another concept of generalization of strong unicity is considered. Some -
properties and examples are given.

1. Introduction. The notion of strong unicity of best approximation was introduced
by Newman and Shapiro, who proved the following

THEOREM 1.1, [11). Given a Haar subspace V of the Banach space C [0, 1] of real- or
complex-valued continuvous functions on the interval [0, 1] and an element [ € C[0, 1], there
exist g€V and a constant r>0 such that for every heV

(L.1) Hf=hll Z || f—gll+r[lh—gll
in the real case or ’
(1.2) I f=AE 2 f=gll*+rllh—gll®

- in the complex one.

In the real case the element g satisfying (1.1) is called the strongly unique element
of best approximation for f with respect to V. The strong unicity problem can be con-
sidered in an arbitrary normed linear space but, by Wulbert’s remark [17], in a smooth
space E there are no strongly unique elements of best approximation in the above sense
with respect to any subspace of E. | |

The first concept of generalization of the strong unicity was given by McLaughlin
and Somers [10]. If E is a real normed linear space and V'is its subspace then, for a given
fe E; denote by P,(f) the set of all elements of best approximation to f in V. The strong
‘unicity inequality is defined as follows: there exists r >0 such that for every ie V

(1.3) || f=hl| = dist(f, V)+rdist(h, Py(f)).

In the real space C]0, 1] the only subspaces with the property that for every fe C[0, 1]
the inequality (1.3) holds are Haar subspaces. In general, (1.3) can be satisfied even in the
case where J is not a Chebyshev subspace.

The aim of our paper is to generalize the notion of strong unicity in another way to
include both real and complex cases of Theorem 1.1. Most of important properties of
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the strongly unique clements of best approximation ate preserved and, as is shown by

examples, this notion can be discussed in Hilbert spaces and L spaces. Notions which
are not defined in the paper can be found in [13].

2. Definitions. Throughout the paper E will denote a normed linear space and G its
closed subset.

DEFINITION 2.1. Let f be an element of the space E and p> 1. An element ge G is
called the p-strongly unique element of best approximation for f with respect to G (briefly:
p-SUBA) iff there exists a positive constant » such that for every s e G the following
inequality holds

2.1) Lf=AP = f—gllP+rllg —hlI”.

It is clear that if g is p-SUBA for f (with any p) then g is also the unique element of
best approximation for f with respect to G.

Remark 2.2. If g is p-SUBA for f and ¢ > p then g is also g-SUBA for f.

DerINITION 2.3, If for every fe E there exists p-SUBA with respect to G then G is
~called the strongly Chebyshev set (briefly: SCS). If p does not depend on f, then G is called
the p-strongly Chebyshev set (briefly: p-SCS).

Observe that Theorem 1.1 can be reformulated as follows:

Every Haar subspace of C[0, 1] i1s a p-SCS, where p = 1 in the real case and p = 2
in the complex case.

3. Characterizations. For xe E and d>0, let B(x,d) denote the closed ball
{yeE: ||lx—yll<d} and B(x,d) the open ball {yec E: |{|[x—y|| <d}. In the sequel we
assume that fe ENG and g€ G. , |

We start with some conditions cquivalent to (2.1). We need two lemmas.

LEMMA 3.1. Let p,g>=1 and d > 0. The Jollowing conditions are equivalent:
© there exists r >0 such that for every he G n B(g, d) the inequality

3.1) Lf=nll = =gl +rllg—All"
holds,
there exists r' >0 such that for every he G n B(g, d) the inequality
32 R gl llg - Rl
holds. .

Proof. 1t is clear that if B< 4 then

gB" {(A—B) < A1~ BI< g A" (A —B).
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Hence by (3.1) we obtain

Hf—kllq—llf—gllq>q||f—g||‘1 Q1A= M1 =1l f =gl > rall -l Mg - h”p
Conversely, by (3.2)

[4 ’

r
llg —AlIP = |lg—All?.

r
_hll~11f—gll >
I =h=17=gll > o e (=gl

LEMMA 3.2. If G is boundedly compact and g is the unique element of best approximation
for fin G then for every q =1 and every d >0 there exists a positive constant r such that
for every he G\B(g, d)

(3.3) | Lf=hl* = [|f—gli*+rllh—g]I%

Proof. Fix g1 and d>0. Let us consider the continuous positive function

F(hy == ([Lf=hlI*=11/—glID)-1lg—Al

defined on G\B(g, d). If G is bounded then the set K := G\B(yg, d) is compact and F
attains its minimum m on K, whence (3.3) is satisfied with r = m. If G is unbounded, it
is evident that

Iim F(hy=1.

g=hii=
Hence there exists M > 0 such that F(h) =1 for he G\B(g, M). Then (3.3) holds for
r = min(n, 1/2) where n is the minimum value of F on the compact set
{heG: d<|lh—gll < M}.
For a fixed number p=1, put

7, if 0<r<1
Rf’(’)‘“{r, it > 1.

PROPOSITION 3.3. Let fe ENG and geG. The following statements are equivalent:
() there exists ry >0 such that for every he G

|| f=H" = | f—gllP+rillg—hll*
(ii) for every d> 0 there exists r, >0 such that for every he G 0 B(g, d)

L f=hll = 1 f—gll+rallg —All%,
(iii) there exists r3 >0 such that for every he G

/=il = IIf~gli+r3R, (:}ij :D

(iv) there exists ry >0 such that for every he G

' ' |lg —Al|
—h p/ - P R .
1= h? = 11 f= gl + s p(”f_g”)

If moreover
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(@) G Is Starlike with_ respect 10 g

or _
(b) G is boundedly compact and g is the unigue element of best approximation for f in G
then (1)—(@iv) are equivalent to each of the following conditions:

(V) there exist D >0 and rs> 0 such that for every he G n B(g, D)

1 f=hl| Z || f—gll+rsllg—hil%,
(vi) there exist D> 0 and rg >0 such that for every he G n B(g, D)
Lf=hIIP 2 [1f—glIP+rellg —All”.

Proof. (i) = (1) follows from Lemma 3.1. |
(1) = (iii). By the argument of the proof of Lemma 3.2 there exists d> || f—gl| such

that for every he G\B(g,d)

1 y llg —Al|
WS=hll—1lf—gll = llg—hl| =-z-llf—gHRp( )
| | f—gll

By (i), for every he G n B(g, d)

L =Hll= 1=l = rall f—glI7R (”g“h”),
P ||fjg||

Hence (ii1) holds with r; = minG{| f—gll, r,2ll f—gl|?).
(iii) = (iv) follows from the first part of the proof of Lemma 3.1.
(iv) = (i). Again by the argument of the proof of Lemma 3.2 there exists M > || f—gl||

such that for every he G\B(yg, M)
Ilf—h!l"mllf—gll*">%Ilg-—hll"-

Let he G n B(g, M). If ||lg—1|| <|lg—f]| then

— Pl f—all? >
Nf=allP—Il/—gll” = ||f— P

If |lg—hll =11 f—gl| then

g—hll®.

”g“ “ =

' . Fa )
L= hiP =11 f=gli” = ]
. Lf~gllllg =P~ Ilf—g IIM" .
Thus we can take ry = min(1/2, ry/MP).
(v) < (vi) follows from Lemma 3.1.
(i) = (vi) is obvious.
(a) and (v) = (ii). Fix d> D and take he G n B(g, d). Since G is starlike,

D .
h = g+E(h—g)eG and || —gll< D
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Hence

D D
rsllg—h WP <l f-HII-lIf=gll = (1—E>(f~“g_)+g(f~*h)" —llf=gll<

D
< Z(l/=hll=11f=glD-

So we obtain ‘

D\?-1 ’ -
”5(}) Ha—gllP < || f—hll—I1/—4ll

“what gives (ii). |
(b) and (vi) = (i) follows from Lemma 3.2.

- Remark 3.4. By a slight modification of the well known Kolmogorov criterion [6]
we obtain the p-strong Kolmogorov criterion: if for fe ENG and g € G there exists a posi-
tive constant r such that for every he G |

(.4) sup{ReL(g—h): L& M(f~g)}>r (”g h”)
| 1 f—gll

where M(f—g) := {Le E*.||L|]| = 1, L(f—g) = || f—gl|}, then g is p-SUBA for f with
respect to G. ' 7

" By [16], if p = 1, and G is starlike with respect to g then (3.4) is also a necessary con-
dition for the strong uniqueness. On the other hand, for p > 1 the necessity of (3.4) fails.
to hold in a large class of spaces (e.g. if £ is smooth and G is its subspace then by Theo-
rem 1.1.1, [13], the left-hand side of (3.4) is less than or equal to zero while, as is shown.

in Examples 5.3 and 5.4, p-strongly unique elements of best approximation can occur)
' We define (set-valued) metric projection onto G as the mapping

Pg: Eax »Pg(x) = {zeG: ||x—z|| = dist(x, G} .

If G is a Chebyshev set then Pg is a vector-valued function.

Problem 3.5. Given fe ENG and g € Pe(f), find a necessary and sufficient condition
on g to be the p-strongly unique element of best approximation to f in G ( for some p).

-

4. Properties. In Theorem 4.2 some basic properties of strongly Chebyshev sets are
gathered. It is seen that such sets must be “very good” and that the property “to be
a strongly Chebyshev set” is rather rare, e.g. the only strongly Chebyshev subspaces of
Cla, b] are Haar subspaces (see [9]) and the only strongly Chebyshev sets in a Hilbert
space are closed convex subsets (see Corollary 5.5). The following lemma is a generali-
zation of the known theorem of Freud (see, e.g. [12], Corollary 2.4.7).

LEMMA 4.1. Let G be a closed subset of E and fe ENG. If g is p-SUBA for f with
respect to G then there exist a neighbourhood U of f and a constant M such that for every
ke U and h e Pyk)

g —hll < MI!f—kII””
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Proof. For a fixed ke F and hePG(k), by Proposition 3.3 we get

—h
"Rp(”g ”) <f=Hl=f=gll <USf=Kl+lk—hl=|lf—gll <
|1/ —4ll

<US=kll+ k=gl =1l /—gll <2f—K]l.
Hence for every ke B(f,rf2)

llg ~AlIP < ~—Hf—g||"llf k|l .

Observe that s need not be the unique element of best approximation.

THEOREM 4.2. Let G be a strongly Chebyshev. set in the space E. Then the Sfollowing
.conditions are satisfied.

(1) G is approximatively compact (i.e. for every fe E and for every sequence (g,) =G
with lim ||g,—f|| = dist(f, G) there exist g ePG( f) and (gnk)c(gn) such z‘hat Grie = q).

n-¥oo

(ii) The metric projection Pg is continuous.
(i) G is B-connected (i.e. the intersection of G with any open ball is connected).
(iv) G is B-connected (i.e. the-intersection of G with any closed ball is connected).

(v) If E is complete and G is locally compact then G is a sun (i.e. if g= Pg([f) for
any fe E then g = P(g+1t(f—g)) for every t>0).

(vi) If E is an MS-space ( for definition and some properrzes see {1}, [4], [5]) then G
is a sun. |
(vii) If E is a smooth, uniformly convex Banach space'then G is convex.
(viii) If E is smooth and G is a sun then G is convex.

Proof. (i). Fix fe E\G and choose (g,) = G such that {|g,—f || = dlst(f G). If g 1s
p-SUBA for f then by (2.1)

1
lg—aall”< - WS =gllP =1l f=gll") = 0,

as n — 0o,

(ii) is a consequence of Lemma 4.1. (iii) follows from Theorem 4 1, [15]. By (1), (i)
and Theorem 8, [8], we obtain (iv). (v) follows from (ii) and Theorem 4.13.b, [15]. (vi)
follows from (ii) and Theorem 2.3, [4]. Theorem 4.31, [15] and (i) imply (vii). By Theo-
rem 3.9, [15], we get (viii). | | |

In connection with properties (v), (vi), (vii) of Theorem 4.2 we state the following

Problem 4.3. Is every strongly Chebyshev set a sun? :
Note that the old problem of whether every Chebyshev set is a sun was negatively
solved by Dunham [7], who constructed a counterexample in the space C[0, 1]. But
this space is an MS-space (see [1]), therefore, by Theorem 4.2, (vi), every strongly Cheby- ._
shev set in C[0, 1] has to be a sun.
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5. Examples. Some exémples of 1-strongly ChebysheV sets can be found in [2] and [3].
We are going to construct some examples of p-strongly Chebyshev sets for p > 1.

" DEFINITION 5.1. Let G be an n-dimensional. subspace of a normed linear space E.
If for every system of linearly independent functionals L, ..., L, which are extremal
points of the unit sphere in the conjugate space E* the implication

heG,L(h) = —L(h)—0=¢h 0

holds, then G is called an interpolating subspace.

“Example 5.2. By Corollary 3.5, [14], every interpolating subspace G of a normed
linear space E is a 2-SCS if the space £ is complex, and 1-SCS if the space E is real.

- \
Example 5.3. Given a positive measure space (X, M, m), let £ = L?(X, M, m). For
every set A€ M such that m(A4) >0 the subspace G = theE: th \4 = 0} is p-SCS.
Indeed, for any fe E the element g defined by

L >, ifxed
g(x) = {o, if xe X\4

is p-SUBA for f, since for every he G
|| f=hll* = I |f|"dm+jlf- {Fdm = Ilf*gll"+llg hlP.

Example 5.4. Let E be a Hilbert space and G its closed convex subset. Fix fe ENG
and put g = Pg(f). We claim that for every-he G

LRI = 11~ +1lg =l

Indeed, put 4 = || f—gll- Then there exists a hyperplane H which separates G and the
ball B(f, d). This means that there exists L € M(f—g) such that H = {k: L(k g) = 0}
and ReL(h—g) <0 for all he G, whence

(x.f—9)
L{x
0=
Furthermore
|f=Al1> = lh—gl> +]1f—gl* +2 Re(h—g,8-f),

which proves our claiming.‘
By Theorem 4.2, Example 5.4-and Theorem 3.9, [I5], we obtain

COROLLARY 5.5. Let E be a Hilbert space and G its subset. The following requirements
are equivalent:

(i) G is 2-strongly Chebyshev Sét,

4 — Acta Mathematica 26
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(il) G is closed and convex,
(iii) G is a Chebyshev set and a sun.

The next example shows that there is a Chebyshev set which is not a strongly Cheby-
shev set. - - |

Example 5.6. Let E = R? be normed by ||(x, »)|| = max(]x|, |y]). Put
G = {(x,))e R*: exp(—4/x)<y<1-Ix]}.

Then G is a convex Chebyshev set. Take f= (0, —1). It is obvious that Ps(f) = ¢
= (0, 0). For i = (x, exp(—4/x%)

ILf—hl}=11f=gll = exp(—4/x?).

But ll|g—h}] = |x| and there are no p2=1 and r>0 satisfying r|x|? < exp(—4/x*) when
x =0, | '
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