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On the Exactness of a Class of Endomorphisms of the Real Line
by Piotr BUGIEL

Summary. A class of piecewise monotonic and expanding transformations, defined on the whole
real line, is considered. Tt is shown that every such transformation is an exact endomorphism in the sense
of Rohlin.

1. Iniroduction. Let (X, 9X) be a measurable space, and let t: X — X be a measurable
transformation, i.e., 77*(4) € 9 for each 4 € M. We say that a measure p, defined on 9N,
is 7-invariant (or shortly invariant) if pu(r7*(4)) = u(4) for each 4 € M. A measurable
transformation 7 for which there exists an invariant measure y is called a measure-
preserving transformation, or an endomorphism of a measure space (X, M, u).

Let 7 be an endomorphism of a measure space (X, M, u). The endomorphism 7 is

called an exact endomorphism ([6]) if the o-algebra M, = ) T "(IM) contains only
sets of measure zero and their complements. n=0

In ([6; p. 525]), V. A. Rohlin has given a criterion for the exactness of some measure-
preserving transformations and gives many applications of this criterion. Namely he
proved, among other things, that some number-theoretic transformations of the unit
interval onto itself are exact endomorphisms.

In the casc of transformations defined on the whole real line it is rather difficult to
decide, by applying Rohlin’s criterion, whether a given transformation (possessing an
absolutely continuous invariant measure) is an exact endomorphism. This is because
each absolutely continuous measure, invariant under transformation defined on the
whole real line, has a density which vanish at mﬁmty

Some conditions for the exactness of the transformations defined on the whole real
line were proposed by J. H. B. Kemperman ([1]), and M. Lin ([8]).

Recently A. Lasota ([3; Theorem 2]) has given a different type of criterion (based
on a fixed point theorem) for the exactness of some class of nonsingular transformations.

Using the criterion just mentioned, and applying a technique introduced by A. La-
sota, G. Pianigiani and J. A. Yorke ([4], [5]) we shall show, inter alia, the exactness of
some transformations defined on the whole real line. In particular, we shall show the
exactness of the transformations of the form ¢(x) = A4 tan(Bx+C), where |4B|>1.
The ergodicity of these transformations was proved by J. H. B. Kemperman ([11, 12D
and F. Schweiger ([7]).
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Our paper is divided into four sections. In Section 2, we state a theorem which contains
~ the principal results of this paper. In Section 3 we lay the foundation for the proof of
this theorem. Section 4 contains the proof of our theorem.

2. Statement of the Main Results. We shall start with the definition of the Frobenius-
Perron operator. Let (L, [|-]|) be the space of all integrable (with respect to the Lebesgue
measure m on the whole real line R) functions deﬁned on the whole real line R, and let

7 R — R be a nonsingular transformation,
The Frobenius-Perron operator P,, corresponding to 7, is defined by the formula

P = o
T _dm fOT s

where du; = fdm.
From the definition it follows that the measure g, is invariant under 7 (t preserves

the measure ;) if and only if the function f is a fixed point for P,, i.e., P.f = I
Let D denote a set of all densities, that is all fe L' such that f>0 and |[[f|{ = 1. It
should be noted that there holds the inclusion P(D)< D. This inclusion follows from

the fact that P, is a positive isometry.
Now, we shall select a class of’ densities which will be needed in our further consxder-

ations. A density fe D will be called regular if it is locally Lipschitzean. The regularity
of f (see: [5]) is defined by

|/l
f

Let D, be the set of all fe D which are regular, and which satisfy the following conditions:

Reg(f) = sup{ : xe R, and f'(x) is defined, and f(x)>0}.

o
Reg(f)<ow, and \/f<w

.

(here and in what follows the symbol \/ f as well as \/,f denotes the variation of f over
the closed interval I = [a, b]). b

It should be noted that the set D, is dense in D.

Now we describe a class of (piecewise monotonic) transformations defined on the

whole real line R (except for countably many points) which will be the subject of our

k=—w

study.
~ Let {£,}; . be a doubly infinite sequence of the open intervals 7, of R such that
¢, = inf [ [}>0, ¢, = supIIkI<'oo, for each integer
o k ' K
2. { k=0, +1,+2,.. (here and in what follows the
symbol |I| denotes the length of the interval I);
. ) + o0
2.2) - Lyl =0 for k #, and (J cll, = R.
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' + o
'We shall say that a transformation ¢: R, — R, where R, = J [/, belongsto the class @

if it satisfics the following conditions: k=—

| the restriction ¢, of ¢ to the interval I 1s differentiable and its
2.3) R o
derivative ¢ 1s locally Lipschitzean;
2.4) there is a constant ¢;>1 such that |p(x)|=c; for xe I;
@.5) | 0ul) = R for k=0, £1, 42, ..;
there is a constant c,>0, and a function ceL!, 60 such that
(2.6) Ca o(x)<ak(x)<c4a(x) for xeR, k=0, +1, +2, ..., where 6(x)
= |(ox ) (0)];
en 5 = supsup(|oy)|/a (x)) < + o0 .
: k x

The following theorem contains our main result concerning some ergodic properties
of the transformations belonging to the class under consideration.

| Tueorem. Let ¢ € &, and let P, be the corresponding Frobenius-Perron operator. Then

B0

2.8) there exists a unique fo € D such that f, = lim J 24 f for all fe D, and
o consequently

(2.9) the measure du = fodm is @-invariant.

{If fe Dy, then {P,f} is a sequence of Lipschitzean functions which
1 uniformly converges to f;, consequently;

(2.10)

{2.11) the density fo is Lipschitzean.
(2.12)  The endomorphism ¢ of the measure space (R, B, p) is exact.

It may be worthwhile to stress that the condition (2.3) involved in the definition of
the class @ cannot be weakened without affecting the truth of (2. 10) and (2.11) (see:

Appendix).
We also note that the thesis of Theorem remains valld if we replace the condition (2.6)

by the following condition:

‘ there exists a subset Z, of the integers such that,
@AY Jlinf( 3151 fou») U™ oyxym(d0))mldy)| >0,

J keZo

‘This result will be shown in a subsequent paper.

We shall need a few auxiliary results before proving the Theorem.

3. A few auxiliary results. We first state the result concerning the differentiability

(almost everywhere) of a functional series. Namely, we shall need the following conse-

quence of the Fubini theorem.
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PROPOSITION 3.1. Let {h;};=7 , be a doubly infinite sequence of non-negative real valued
functions, defined on the real line, which satisfy

(3.1) iStwhj<oo  (ae);
| ‘ + o + a0
(3.2) \ <oy for j=0,%1,42,.., and Y o;<wc;
— oo ) J=—x
(3.3) ]1mh(x)-~0 for j=0,+1, +2,..
Then the funétion h = J=—-ooh is differentiable (almost ever }nhei e), and ' = f___"c.’_ ol
{(a.e.).

Proof. Applying the Jordan decomposition to h;, we obtain
= hjl _hjz >
where
— —-w

and both the functions #;, and h,, are increasing. |

From the definition of k;, it follows that k;; >0. Also, k;, is a non-negative function,
since the assumption (3.3) implies A;(x)< \V h;. |

Now, by the Fubini theorem we get the equalities

(i ohy) =3 by for k=1,2.

This two equalities imply that A" = J,__Ooh (a.e.). The proposition has been proved.

We now turn to a problem of differentiation of the Frobenius-Perron operator, cor-

responding to ¢ € . A simple computation shows that the Frobenius-Perron operator,
corresponding to cp, can be written in the form:

(3.4) | | P J(x) = 12 g4x) (ae) for cach felL',

where g;(x) = 6,(x)f 0 ¢@; 1x).
By its very definition the operator P, is a mapping from L' into L', but the last for-
‘mula enables us to consider P, as a map from the space of functions defined on R into

itself. Below we shall prove the following

LeMMA 3.1. Let @ € @, and let P, be the corresponding Frobenius-Perron operator. If
1 is a regular density of bounded variation, then the function P, f is differentiable (a.e.), and

(P f) ZJ_—OOQJ

Proof. We shall prove this lemma by showing that the functions g; (_1 =0, +1, +£2,..))
satlsfy all the hypotheses of the Proposition 3.1.
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First we show the following inequalities

+ o0

(3.5) V gj<a; for  j=0, %1, 42, ..,

where ; = ¢s | fdm+c3' \/1, 1.
T

‘ F
To prove these inequalities we note that for each j =0, &1, +2, ... we have

+ a0 + o0

\/QJ“‘ J‘hd””< fl“ﬂf @; ' dm+ 5 Uf @5 o dm .

Taking into account that

5;<c;' and |djl/o;<es

(these inequalities follow from the conditions (2.4) and (2.7)) we get

+ o + o ’
\/ g;<¢s j Je0; Jdm+c31 jf o crdm<c5jfdm+c31\/,1

which was to be shown.
It follows from the estimates (3.5) that

(3.6) s <esllfil+es” V7
Thus we see that the condition (3.2) of the Propositibn 3.1 is fulfilled,

Obviously the' series Z}'f_ng(x) is absolutely convergent for almost all x (see: for-
mula (3.4)). Thus the condition (3.1) is also fulfilled.

It remains only to show that g; tends to zero as x —» — oo, foreachj =0, +1, £2,

+ o
Suppose that hmlnfgj(x)<]1msupgj (x) for some j. Then \/ g; = . This contra-
diction (see: formula (3.5)) shows that our assumption is mcorrect Thus liminfg;(x)

X = 0

= limsupg,(x) for each j =0, £1, +2, ..., and since g; is integrable, lim gix) = 0.

X 0 X+ =

Thus the condition (3.3) is fulfilled. This finishes the proof of the lemma.

We now show that the set D, is invariant under P}, = P, P, ' for each natural
number nx1, i.e., Po(D,)c D,. We do this in three stages. FlI’St we show that the regu-
larity of P,/ is finite, if fe D;. Next we show that P,f is Lipschitzean, if fe D,. Then'
we show that these two properties has each iterate Py f of P,f and, that it is a function
of bounded variation, -

LemMma 3.2, If fe Dy, then Reg(P, )<cs+cs Reg(f).

Proof. By the Lemma 3.1 we have

(Pof) = ,_—m(cff o 07 ' 40,f 0 0] l0y) (ae),
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-and hence

I(Pcpf)’l < lEjO';'fO (Pj—ll " IZjO‘jf’ o (P;‘-lo'jl
pf ~ Pf Pf

4

O" 'o -
<sup I——!-+supa U (P"\

i G'J fo
<es+c3 ' Reg(f) (ae).
‘Thus Reg(ow)Scs—irc;’Reg(f). The lemma has been proved.

Lemma 3.3. If fe D,, then
P, f(x1)—P,f(x,)| S C(f)(cacsReg(f)+cs5c6)|x, — x|

for each x,, x, € R; where ¢g = supa(x), and
xeR

C(f) = \/f+c A

Proof. Let f be an arbitrary function belonging to D,. For x,, x; € R by formula
(3.4), we have |

IP‘pf(xl)"*Pq, (x2)| < |A(X1, x2)| +|B(x1’_ x'z)l ’
where V

A(xls xz) = J-—ooo-(xl)(fo (PJ' l‘(xl)__fc’ (:oj (xi’.))
and )
B(xy, x;) = J——oo( (x1)“'0'j(xz))f° fP;](xz)-

We show first that the following inequality holds true

|4 (x4, x2)] {"-Cg% Reg(f)C(N)lx—x, -

1t may easily be checked that for every integer j the following three inequalities hold true:

1o 0 (x)—fo @] ()l <flspReg(Nlej ' (x)—0; (¥l

where
| ftsp) = max f{s);
sel;
I(Pj_1(xl)_(p;1(x2)i‘-<-C4C‘6'|x2_xl ;
and

FE) <Gy, fam,
where f(t;) = min f(s).

sel;

The first two of these inequalities give

|A (xls xz)l <c6‘c4(Reg(f))|xl _x"l ZJ-—""OO



i+
F

59

while the third inequality implies that
(3.7) IS L (AL IR P CARS 1) R IIfH<C(f)
Thus we see that the desired incquality holds truc.

Now we pass to th.e- proof of the following inequality .
[B(xy, x)| S cscsC(f) X —x,| .
Our starting point for the proof is the following inequality:
loj(x;)—a;(x)l <e5ClX1— X5,
“which is valid for any integer j. Immediately we obtain from this
| |B(x1,x2)|<csc,5[x1-—x2[ ZJ=-—oof (P}-’l(xz)-
Repeating the same calcu_lations as is (3.7) we obtain

(38) | J———oof QD_, 1(x2)<C(f),

which finishes the proof of the required inequality. The lemma has been proved.
We are now ready to prove an important (for further considerations) statement.

PROPOSITION 3.2. The set D, is invariant under P"’_1 for every natural n=1, 1.e., f,_,
= P, Yfe D, for everv nz1, and fe D,. Moreover, if fe D,, then there are constants

+ a0
cq, cg>0 such that limsupReg(f))<c;, limsup \/ f,<cy, and limsup | fi(x,) —fu(x)|

<eg|x, —x,| for any x, x, € R. The numbers c;, ¢g are independent of fe D,.

Proof. Let f be an arbitrary function belonging to D. If f, € D, for k=0,1,..,n—1,
then by Lemma 3.2 we have ' |

Reg(f,, )<cs+c3 Reg(f) for k=0,1,...n=1;fo =1

Hence |
Reg(f)<cs(es ' + ... +¢3 ") +c3"Reg(f),
so that
(3.9) limsupReg(f,)<cq, where ¢, = cses(ec;—1D7h

n—* 0

Next, the formula (3.4), and the inequalities (3.5), (3.6) together glve

\/f;c+1‘<-65||f;cn+031\/ﬁ; lfo'r :0319--'5 a.fO'—f

These inequalities, together with the equality ||£] = |If ||(k =1,2,..) give

+ x

\/fk+1~<-cs yf‘l"’scs(cs—l) 1Hf”,
so that

‘ ' ' t o
(3.10) limsup \/ J.<cq.

| B ¢} -0
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Finally, by Lemma 3.3 we have

[ﬁ,(xl)—ﬁ,(xz)]-ﬁC(ﬁ,_1)(C4C§Reg(ﬂ,_1)+cscﬁ)lx1 —Xai,
fO]‘ xlijER’ n = 1,2’|c|5f0 "_‘f:
This and inequalities (3.9), (3.10) imply that

limsup|f,(x;)—fu(x2)| <cglx; —x,[, for each X1, X, €R,
where ¢y = (’c7+c1"')(c4c§c7+c5c6).
The proposition has been proved.

We close this section with a result which will serve as a test for exactness of the trans-
formations under consideration.

A closed convex set Y= L' is said to be imbedded in Z<L! (see: [3]) if for every two
different functions &, f1, € Y the closed interval [0, 1] is contained in the interior of the |
set {re R: rhy+(1—r)h, e Z)}.

~ The following proposition is a particular case of Theorem 2 in paper {3]:

PROPOSITION 3.3. Let t: R — R be a nonsingular transformation. Assume that there
exists a set K< D which satisfies the following conditions:

(3.11) . K is convex, and compact;

(3.12) K is imbedded in D;

(3.13) the family H = {he D: limo(Ph, K) = 0},
n— o0

where o(P h, K) = inf{||Pth—gl|: g e K},
is dense in D. Then there exists a unique hye D such that

(3.149) ho = lim P3h for all he D and, consequently;

(3.15) . the measure dv = hodm is t-invariant;

(3.16) the endomérphism t of the measure space (R, B(R), v)
is exact.

4. Proof of the Theorem. The idea of the proof is arrange things so that the Proposi-
tion 3.3 may be applied. To this end we begin by proving the following

-

CLAIM: Let ¢ € &, and let P, be the corresponding Frobenius-Perron operator. Then
there are two constants cg, ¢;0>0 such that

coo < liminff, <limsupf,<e¢qy0  for all fe D,

n—* oo - n—*

where, as before, f, = P, f. The numbers cq, c,, are independent of fe D,.
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Proof of the Claim. Since the proof of the Claim is rather long, it will be convenient
to divide it into three steps.

Step 1. If f is a regular density of bounded variation, then

limsupf,<c 0.

n—rw

Proof. Let f be an arbitrary regular density of bouhded variation over R. From the
formula (3.4), and the inequalities (2.6), (3.8) it follows that

[ix)<eao () C(S) .

Since f, are regular densities of bounded variation (see: Proposition 3.2), from the last
inequality we obtain for any n>1 |

fn(x)§§4d(x)c(ﬁl"1)a fo=1.

. ‘ + o0
Because | f.fi = [|f]] for any »n>1, and limsup \ fu<c7 (see: Proposition 3.2), therefore

limsup f, <00, Where ¢;o = cales+cr ).

H—+ o

The Step 1 is proved.

STEP 2. If f is a regular density of bounded variation, then there is a compact interval I,
a sequence {x,) of real numbers, and a natural number no (ng depends on f) such that

4.1) L,cI for some k,
(4.2) x, €l for each nz1,
(4.3) | flxp)zey  for nzng,

where ¢,, >0 is a constant independent of f.

Proof. By Step 1, we can choose a real number 0<Cll<1 such that

(4.4) [ fUs)dm(s)<ec,, for nzno,

xizcra

where ¢;;>0 is some constant independent of f, and n, is a natural number (n, depends
on f). Moreover, the interval I = [—cy3, ¢;3] contains an interval I,
Note that there are numbers x, e I such that

fx )= [ fil)dm(s)  form=1,2,....
I

This and the inequality (4.4) imply (4.3) with ¢;; = (l—c; )|t Thus the Step 2 is
proved. - |

STEP 3. If f€ D,, then there is a constant cg>0-such that

liminff, = cq0 .

H-* co
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Proof. Note first that for an arbitrary compact interval /< R, and for a large enough n
the image f,(7) is a compact interval without zero. This is because (by Proposition 3.3)
/. 1s a continuous function (in fact, Llpschltzean) and f,>0 for sufficiently ]arge n (if
J does not vanish identically).

Now, in the last section (Proposition 3. 3) we have proved that limsupReg(f,)<c,.

n—r X0

This inequality, restrlcted to a compact interval 7, leads to the following inequality

.fn(y)>ﬁ.(av)exp(—c'ovIX~—yl) for each x,ye& I and, nzn,;

where ¢y,>c, is arbitrary (but fixed).
By virtue of this inequality and the preceding step we see that for any v e 7 and, nZ=ng

@5 £z c.  for each yel,

where ¢y, = ¢, exp(—cy,|1]).
For n>n, we have

-1 : -1
.f;s :prf;r—l = J~oo—:r* n—1 O(PJ 0"204 GZ;=UJ—OOf;'_1 °®j

and hence, by (4. 5) and the fact ¢, YR) = I,,=1 we have
| j,,};q 0,, 1 o(pko Z o0 for n>n,,

where ¢o = ¢; 'c,,. This finishes the proof of the Step 3 and completes the proof of
the Claim.

We have at last made all the preparations necessary for the definition of a set which
satisfies all three conditions of the Proposition 3.3.
To prove parts: (2.8), (2.9), and (2.12) of the theorem’s thesis we sha]l define the set

D, = {fe D,: Regf<a, bo<f<co)},

where a>c¢;, co>b>0, and c¢>c,, are arbitrary (but fixed).

By Proposition 3.2 and Claim, we have: f, = P)fe D, for all fe D, and, for a large
enough # (which depends on f), i.e., the condition (3.13) of the Proposition 3.3 1s fulfilled
(D, 1s dense in D).

It is not hard to see that the set D, is convex, compact and imbedded in D. Thus the
set D, fulfils all three conditions of the Proposition 3.3, whose the31s completes the proof
of parts: (2.8), (2.9), and (2.12) of the theorem’s thesis.

Now we shall consider the uniform convergence of the sequence {f,}. From the
inequalities limsupf,<c,,0 (see: Claim) and,

n—x

Iimsup] f,(x,) —f,(x,)] < Cglxg =X,

n— o

for each xy, x, € R (see: Proposition 3.2) it follows that the family F = {fiinm=1,2,.}
18 equibounded and equicontinuous. Thus the family F is relatively compact (by the
Ascoli-Arzela theorem).
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Since every convergent subsequence of F converges to a fixed point of P, and since P,
has the unique fixed point f,, the sequence {f,} converges to the density f0 This proves
parts: (2.10) and (2.11) of the theorem’s thesis and completes the proof of the Theorem.

Appendix. As we already mentioned, at the end of the Section 2, the condition (2.3)
involved in the definition of the class ¢ is essential for the parts: (2.10) and (2.11) of the

theorem’s thesis. To illustrate this, we shall construct a transformation y: Ry - R

which satisfies all conditions of the definition of the class @, except the condition above
mentioned. Instead of this condition, the following condition will be fulfilled:

(A. 1) the restriction ¥y, of Y to the interval 7, is differentiable on I, except for some
countable set of points.

“We shall show that the Frobentus-Perron operator corresponding to W has a (unique)
fixed point which is some discontinuous function.

We now turn to the construction of the transformation . To this end, let us take
into account a doubly infinite matrix, i.e., a real-valued function on ZxZ (here Z
= {0, +1, £2,. }) denoted T = (ru), j= -, such that

(A. 2) infiezti; = 1;>0, Yyieztyu =1 for eachj.

First. for each i = 0, +1, +2, ..., let us put:

X;=(U-D+ Z;:(}) Lijs
and next:

Xjp = Xy Xy = X ‘l‘zr—lf;r for k=2,3....;
Xp = f,‘__zy:zofi, for k = 0, -1, ——2, v s

Now, for each pair i, k of integers, denote by v, a linear mapping (decreasing or
mcreasmg) from JIA = [X;, Xz+,) onto whole interval J; = [k—1, k).

Clearly, J; = U J .. Also, since J; N J;, = @ for k # r, for each x e J; there cxists

k= - w0

a unique J, such that xeJ,. Hence, by setting y(x) = ¥,(x) for xeJ;, we define
a (piecewise linear) bijection ¥;: J; = R.

Finally, let us define a mapping ¥: R, — R as follows: y(x) = ¥ (x) for x €Ji.

It can be shown, with the aid of (A.2), that ¥ is an expanding transformation, i.e.,
inf, gl (X)) > 1. |

Further, there is a close connection between the existence of a fixed point of the
matrix T and the existence of a fixed point of the Frobenius-Perron operator Py. Namely,
we claim that the following conditions are equivalent:
(i) there exists a (row) vector v = (v);i=2 ., such that

+ ' )
0; 20, Yilovy=1 and T =v;

(1) there exists a function f e D such that f = Y% v 1 g, and Pyf = f.
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To prove this equivalence, let us obscrve that for an arbitrary x €/ i W have

i—1

(A.3) L=y~ ((~ oo, x))“' U( v U L.

J_“'f‘

where
in = [xris l!/:t.l(x)) = [xria tri(x_i+l)+xré)

if ¥,; is increasing; or else
Ji= W (%), x) if Y, is decreasing.
Now, let us take an arbitrary fe D such that f = ;22 v, 1,,. If xeJ;, then
(A9 fx) = v;. |

On the other hand, from the definition of the Frobenius-Perron operator and the
equality (A.3) we conclude that

d d +oo .
P,f(x) = dx ff(s)dm(~7) = ‘E(Zk— UkJ\ 1Jk(s)dm(s))
1. T I

d +oo d +of i-1
= — vl N T) = — E o wm(go U )

k=—-w Jj=-

+ o
= Z o dt(x—i+1)/dx = (vT);.

k=—-w
We have thus proved the equality
P,f(x) = (vT); for each xeJ,.

“This last equality together with (A.4) proves the desired equivalence.

To get the transformation which has the desired properties, take an arbitrary doubly
infinite sequence v = (v;);2%,, such that v,>0, YL v, = L. Setting t,; = v, for i,k
=0, +1, £2,... we then get vT = v. Hence it follows that P,f = f, where  is the
transformatxon determmed by the matrix T and /' = Y;2% v, 1, , which was to be shown.

It can be shown that y is an exact endomorphism and that f = limP,# for each h e D;
here we shall not present the proof of these facts. noe

Acknowledgment: [ would like to thank Professor A. Lasota for his valuable remarks
on this problem. |
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