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Continuity Properties of Conditionally Positive
Definite Functions on Linear Spaces

WLODZIMIERZ MLAK

The purpose of the present paper is the presentation of some generalization of some
results of the author presented in [2]. Roughly speaking, we show that some continuity
properties of functions of class CP(R™; S) (see the definition below) are preserved by
the strict inductive limit passage of the spaces S.
 LletSbea complex linear and b.(f, g), where x € R™, a bilinear form in f,ge S i.e.
for each xe R™ b (f, g) € C and b (f, g) is linear in f and antilinear in g.

We say that b = {b(f, g)} is weakly conditionally positive definite if the following
property holds true:

For every feS, every n=1,2,3,... and @, ...a,€ C such that Z a; =0 and
Ji1
arbitrary x, ... x, € R", the inequality

Z bxj—xk(f,f)ajak?,o

| TR

holds true. -

The weakly conditionally positive definite function b = {b.(f, g)} will be called of
class CP(R™; S) if it satisfies the following three conditions:

(1) bo(f,f) =0 for every fe S.
2) bAf.f)=b_(f.f) for xeR" feS.
3) For every feS b (f,f) is continuous in x at x =0 .

Notice that by polarization formula (1) implies that by(f, g) = 0 for all f, g€ S.
Condition {2) says that the function (x, y) = b,_(f,f) is hermitian symmetric. Also (3)
implies that b.(f, g) is continuous in x all over the space R™ for arbitrary f, ge S —
see [2]. |

The inner product of x, y € R™ is denoted by {x, ») and the related norm by |x|. The
spectral form of generalized Levy-Khintchine formula for b = {b(f, g)} of class
CP(R™; S) is the following one (see [2] for the proof):

(LK) b(f, 9) = u(f, 9; X)—2G(f, 9: x, x)+P(f. g; x)
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where the functions v, G and P are determined in the unique way by b These functions
have the following properties:

(4) u(f, g;x) 18 bilinear in f, g and real linear in x;

(5)  G(f,g; x,y) 1s bilinear in f, g, real linear in x and y and symmetric in
x,y 1e. G(f,g; x,v)=G(f,¢g; y,x) and for every fe S the function
{x,¥}—= G(f,f; x,¥) is positive definite;

(6)  P(f,g; x) has the unique, up to unitary equivalence representation

- i<x, )\ 14 )12
-P(f: g x) = J(el<x’y>"1" ) d(E R » —Rg)
| Lepr) T BN

Rm

where E is a spectral measure on the Borel sets of R™ in some Hilbert space K (with the
inner product (-, -)), vanishing on the singleton {0} i.e. at the zero vector of R™, R: S— K
is a Iinear operator and K is spanned by E(¢)RS, where o are Borel sets of R™.

In connection with (6), we recall that the uniqueness up to unitary equivalence means
that if K, is some other Hilbert space with inner product (-,-) and E’ a spectral
measure on Borel sets of R™, ‘R’; S — K’ a linear operator and moreover K’ is spanned
by sets E'(¢)R’S, and (E(6)Rf, g) = (E'(6)R'f, g) for all o, f, g then there is a unitary
map U: K — K’ which establishes the unitary equivalence of E and E’ and moreover
UR = R’ , -

The u(f, g; x)is called the elementary part of b, G the Gaussian part of b and P the
Poisson one.

Let S be a locally convex linear space and b = {b.(f, g)} of class CP(R™; S) with
(LK) representation. We say that b is of class (UC) (R™; S) if the following implication
holds true:

If b,(f, g) is jointly continuous in f g € S for each x € R™ then:

(a) The operator R: S — K is continuous;

(b) u(f, g; x) is jointly continuous in f, g umformly in x for x varying over an arbltrary
compact subset of R™

(¢) G(f,g; x,y) i1s jointly continuous in f, g uniformly in (x y)e R*x R™ for (x, )
varying over an arbitrary compact set.

Using the arguments as in [2] (8.4), (8,5), one proves easﬂy what follows: |

(P) If R: §— K is continuous, then the Poisson part P(f, g; x) is jointly continuous
in f, g, uniformly in x on every compact subset of R™.

We now recall some properties of strict inductive llmxts of sequences of locally convex .
spaces. We refer in this matter to [1].

Suppose we are given the sequence {S,} of locally convex complex spaces such that

S,=8,.; for all n and let § = U §,.

nilt
We suppose that the identity enilbedding id,: S, — S,+ is a strict morphism for every n.
Let © be the finest locally convex topology in S for which id,: S, — § is continuous for
every n. This topology is called the topology of the strict inductive limit of {S,} and the
fact that S is considered as a locally convex space with this topology is shortly written
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as limind S, = S. By Schwartz-Dieudonné theorem ([1}, p. 159) 7 induces in each §, the
initial locally convex topology of S, itself. The following lemma is now a consequence
of Prop. I, [1], p. 139. |

LeMMA 1. If S = limind S, and Z is a locally convex space, R: S — Z a linear operator
such that for every n its restriction R, to S, is continuous, then R is continuous.
Next we will prove the following:

| _ J

LeMMA 2. Suppose S = limindS, and let b(f, g) be a bilinear form on SxS. If for
every n the restriction b, of b to the topological product S, xS, is jointly continuous, thern
b(f, ) is jointly continuous in the product topology of SxS.

Proof: Let £>0 and define

N = {(f. 9) e SxS: 1b(f, g)l <&}
and :

N, = {(/. ) € S, xS,: [b(f, gl <&} = (idyxid) ™' ().

By our assumption N, is open in the product topology of S,xS,. Moreover, N, is.
balanced and convex, and consequently N, being absorbing, balanced and convex is
open in limind(S, % §,). On the other hand the product locally convex topology & of’
Sx S = (limind $,) x (limind S,) has the following property: for every n id, xid,: S, %
xS, — Sx S is a continuous embedding. It follows that & is finer than the topology of’
limind(S, x S,). Hence N is open in the ¢ topology, which completes the proof, because b
being continuous at zero of Sx S is continuous — see [1], Prop. 1. p. 356. Our basic
theorem is the following one (we use the (LK) notation):

THEOREM 1. Suppose that S, are locally convex spaces and S = limind S, makes sense.
Then if b = {b(f, g)} is of class CP(R™; S) the following implication holds true: the
condition -

(a)' The restriction b™ of b to S,x S, is of class (UC)(R™; S,) for each n,
implies that | "
(b)Y b is of class (UC)(R™; S).

Proof: (b) includes an implication. Suppose (a)’ holds true and b.(f, g) is jointly
continuous in f, g € S for x € R™. Then b(f, g) is jointly continuous in f, g€ S,, x€ R
for each ». By Lemma 1 and (a)’ R: S — K is a continuous operator. Next, since by
e (UC) (R™; S,) (any n), u(f, g; e,) is jointly continuous in f,ge€S,; e, (p=1,..., m)
form a basis for R”. By Lemma 2 and (a)’ it follows then that u(f, g;e,) (p = 1,...,m)
are jointly continuous in f, g € §S.

Let >0 and suppose that x = ijej and |x;]<n, n>0 for j = 1, ..., m, y arbitrary.
. o | |
Let N be a neighbourhood of (0, 0) e S xS which is the intersection of neighbourhoods
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{(f, q): |u(f, g; el < ° 11)}' It follows that if (f, g) e N then

m(l+

lu(f, g; 0I< lellu(f g; J)|<ZI (1+q)

Jl

if |x;l<n for j = 1,...,m which proves that u satisfies (b) of the definition of class
(UC)(R™; S). By sumlar token when using Lemma 2 we show that G satisfies (c) of this
definition, which completes the proof.

It follows from Thm. 8.1 of [2] that if S is a metric linear space, then the function
b = {b(f, 9)} of class CP(R™; S) which is jointly continuous in f, g for every x € R™,
is in class (UC)(R™; S). We get therefore by usmg Theorem 1 and Lemma 2 the following
‘theorem.

THEOREM 2. Let {S,} be an increasing sequence of linear metric locally convex spaces
such S = limind S, makes sense. If the function b = {b.(f, )} € CP(R™; S) is jointly
~continuous in f, g € S, for x € R™, for each n, then b is jointly continuous in f, g€ S and
of class (UC)(R™; S), and consequently its Poisson P(f, g; x) part is jointly continuous
in f, g € S, uniformly in x varying on an arbitrary compact in R™, and u and G satzsfy (b)
and (c) respectively.

COROLLARY. If S, are F-spaces i.e. complete metric locally convex spaces with trans-
lation invariant metrics, then Th. 2 holds true if b (f, g) is Separatel y continuous in f, g € S,
Jor every n.

The classical model of spaces appearing as strict inductive limits of S, such as in
‘Theorem 2 are the & spaces of Schwartz. Suppose namely that Q is an open subset of R
Let K be a compact set such that K<Q and consider the totality 2(K) of all C~(Q)
complex functions with supports included in K. With usual algebraic operations Z(K)
becomes a linear complex space. We define the multiindex p-= (p, ... p,) (p; natural

4 o'
numbers) and |p| = Y p;. For fe 9(K) we define (D?f)(x) = (6"‘ XC j')(x) and
X1, X

it
the seminorm S, x(f) = sup |D,f)(x)|. Let K, be a sequence such that K is a compact

xek

included in @, K,cK,,, = interior of K,,,, and every compact KcQ is included in
some K,. Let 2(K,) be the Fréchet space with metric

e o]

l Sj,K,,(f—g)
27148k (f—9) .

e(f> 9) =
. @ jio
The identity embedings 1d,: Z(K,) -~ Z2(K,,,) are continuous morphisms. Suppose that
2 =) K,. We define 2(Q) = limind Z(X,). Since every compact K< Q is included in

n|i
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some K, every space 2(K) is included in 2(Q). Since .@‘(Qj = {J 2(K,) we get that the

n[1

‘set theoretic equality () 2(K) = D(Q), (K compact). Moreover, the topology of Z(R2)
K

is independent of the choice of K, and is the finest locally convex topology for which
all the canonical injections 2(K) - 2(Q) are continuous for compacts KcQ, when

}__ Sn.K(f_g)
2" 145, k(f—9)

n O
Schwartz space of test functions and continuous linear tl‘unctlonals on Z(Q) are just the
distributions over Q.
It follows now from our Theorem 2, having in view Lem. 1,2, that, since Z(Q) is
a strict inductive limit of Fréchet spaces, the following theorem holds true:

we equip Z(K) with tOpology defined by ox(f, g) = . 9(Q) is the

THEOREM 3. Let b,(f, g) be of class CP(R™, Z(Q)) such that for every x € R™ and every
compact K< Q b (f, g) is separately continuous in f, g € D(K) x @(K). Then b (f, g) jointly
continuous on P(Q) x D(Q) and is of class (UC)(R™; 2(R)), hence u satisfies (b), G satisfies
(c) and P the property of (P).

The equivalent formulation of the above theorem is the following:

THEOREM 4. Suppose the function b = {b.(f, g)} is of class CP(R™; 2(Q). If b(/, 9)
separately continuous in f, g € D(Q), then b is jointly continuous in f, g € D(Q), is of class
(UC)(R™; 2(RQ)) and consequently b satisfies (2) and (b), G satisfies (¢), the Poisson part
P(f, g; x) is jointly continuous in f, g € D(Q), uniformly in x on compact subsets of R™.

References

{11 ¥. Horvath, Topological vector spaces and distributions, Vol. T Addison-Wesley P. Comp. London 1966.
[2] W. Mlak, Conditionally positive definite functions on linear spaces, Annales Pol. Math. XLI1I, 1983,
187-239.

INSTYTUT MATEMATYCZNY PAN
31-027 KRAKOW, UL. SOLSKIEGO 30

. POLAND

Received May 23, 1981

8 — Acta Mathematica XXV



