

Continuity Properties of Conditionally Positive Definite Functions on Linear Spaces

WŁODZIMIERZ MŁAK

The purpose of the present paper is the presentation of some generalization of some results of the author presented in [2]. Roughly speaking, we show that some continuity properties of functions of class $CP(\mathbf{R}^m; S)$ (see the definition below) are preserved by the strict inductive limit passage of the spaces S .

Let S be a complex linear and $b_x(f, g)$, where $x \in \mathbf{R}^m$, a bilinear form in $f, g \in S$ i.e. for each $x \in \mathbf{R}^m$ $b_x(f, g) \in \mathbf{C}$ and $b_x(f, g)$ is linear in f and antilinear in g .

We say that $b = \{b_x(f, g)\}$ is weakly conditionally positive definite if the following property holds true:

For every $f \in S$, every $n = 1, 2, 3, \dots$ and $a_1 \dots a_n \in \mathbf{C}$ such that $\sum_{j=1}^n a_j = 0$ and arbitrary $x_1 \dots x_n \in \mathbf{R}^m$, the inequality

$$\sum_{j,k=1}^n b_{x_j-x_k}(f, f) a_j \bar{a}_k \geq 0$$

holds true.

The weakly conditionally positive definite function $b = \{b_x(f, g)\}$ will be called of class $CP(\mathbf{R}^m; S)$ if it satisfies the following three conditions:

- (1) $b_0(f, f) = 0$ for every $f \in S$.
- (2) $\overline{b_x(f, f)} = b_{-x}(f, f)$ for $x \in \mathbf{R}^m$, $f \in S$.
- (3) For every $f \in S$ $b_x(f, f)$ is continuous in x at $x = 0$.

Notice that by polarization formula (1) implies that $b_0(f, g) = 0$ for all $f, g \in S$. Condition (2) says that the function $(x, y) \rightarrow b_{x-y}(f, f)$ is hermitian symmetric. Also (3) implies that $b_x(f, g)$ is continuous in x all over the space \mathbf{R}^m for arbitrary $f, g \in S$ — see [2].

The inner product of $x, y \in \mathbf{R}^m$ is denoted by $\langle x, y \rangle$ and the related norm by $|x|$. The spectral form of generalized Levy-Khintchine formula for $b = \{b_x(f, g)\}$ of class $CP(\mathbf{R}^m; S)$ is the following one (see [2] for the proof):

$$(LK) \quad b_x(f, g) = u(f, g; x) - \frac{1}{2}G(f, g; x, x) + P(f, g; x)$$

where the functions u , G and P are determined in the unique way by b . These functions have the following properties:

- (4) $u(f, g; x)$ is bilinear in f, g and real linear in x ;
- (5) $G(f, g; x, y)$ is bilinear in f, g , real linear in x and y and symmetric in x, y i.e. $G(f, g; x, y) = G(f, g; y, x)$ and for every $f \in S$ the function $(x, y) \rightarrow G(f, f; x, y)$ is positive definite;
- (6) $P(f, g; x)$ has the unique, up to unitary equivalence representation

$$P(f, g; x) = \int_{\mathbb{R}^m} \left(e^{i\langle x, y \rangle} - 1 - \frac{i\langle x, y \rangle}{1 + |y|^2} \right) \frac{1 + |y|^2}{|y|^2} d(E_y Rf, Rg)$$

where E is a spectral measure on the Borel sets of \mathbb{R}^m in some Hilbert space K (with the inner product (\cdot, \cdot)), vanishing on the singleton $\{0\}$ i.e. at the zero vector of \mathbb{R}^m , $R: S \rightarrow K$ is a linear operator and K is spanned by $E(\sigma)RS$, where σ are Borel sets of \mathbb{R}^m .

In connection with (6), we recall that the uniqueness up to unitary equivalence means that if K_σ is some other Hilbert space with inner product $(\cdot, \cdot)'$ and E' a spectral measure on Borel sets of \mathbb{R}^m , $R': S \rightarrow K'$ a linear operator and moreover K' is spanned by sets $E'(\sigma)R'S$, and $(E(\sigma)Rf, g) = (E'(\sigma)R'f, g)'$ for all σ, f, g then there is a unitary map $U: K \rightarrow K'$ which establishes the unitary equivalence of E and E' and moreover $UR = R'$.

The $u(f, g; x)$ is called the elementary part of b , G the Gaussian part of b and P the Poisson one.

Let S be a locally convex linear space and $b = \{b_x(f, g)\}$ of class $\text{CP}(\mathbb{R}^m; S)$ with (LK) representation. We say that b is of class (UC) $(\mathbb{R}^m; S)$ if the following implication holds true:

If $b_x(f, g)$ is jointly continuous in $f, g \in S$ for each $x \in \mathbb{R}^m$ then:

- (a) The operator $R: S \rightarrow K$ is continuous;
- (b) $u(f, g; x)$ is jointly continuous in f, g uniformly in x for x varying over an arbitrary compact subset of \mathbb{R}^m .
- (c) $G(f, g; x, y)$ is jointly continuous in f, g uniformly in $(x, y) \in \mathbb{R}^m \times \mathbb{R}^m$ for (x, y) varying over an arbitrary compact set.

Using the arguments as in [2] (8.4), (8.5), one proves easily what follows:

(P) If $R: S \rightarrow K$ is continuous, then the Poisson part $P(f, g; x)$ is jointly continuous in f, g , uniformly in x on every compact subset of \mathbb{R}^m .

We now recall some properties of strict inductive limits of sequences of locally convex spaces. We refer in this matter to [1].

Suppose we are given the sequence $\{S_n\}$ of locally convex complex spaces such that $S_n \subset S_{n+1}$ for all n and let $S = \bigcup_{n=1}^{\infty} S_n$.

We suppose that the identity embedding $\text{id}_n: S_n \rightarrow S_{n+1}$ is a strict morphism for every n . Let τ be the finest locally convex topology in S for which $\text{id}'_n: S_n \rightarrow S$ is continuous for every n . This topology is called the topology of the strict inductive limit of $\{S_n\}$ and the fact that S is considered as a locally convex space with this topology is shortly written

as $\liminf S_n = S$. By Schwartz-Dieudonné theorem ([1], p. 159) τ induces in each S_n the initial locally convex topology of S_n itself. The following lemma is now a consequence of Prop. 1, [1], p. 159.

LEMMA 1. *If $S = \liminf S_n$ and Z is a locally convex space, $R: S \rightarrow Z$ a linear operator such that for every n its restriction R_n to S_n is continuous, then R is continuous.*

Next we will prove the following:

LEMMA 2. *Suppose $S = \liminf S_n$ and let $b(f, g)$ be a bilinear form on $S \times S$. If for every n the restriction b_n of b to the topological product $S_n \times S_n$ is jointly continuous, then $b(f, g)$ is jointly continuous in the product topology of $S \times S$.*

Proof: Let $\varepsilon > 0$ and define

$$N = \{(f, g) \in S \times S : |b(f, g)| < \varepsilon\}$$

and

$$N_n = \{(f, g) \in S_n \times S_n : |b(f, g)| < \varepsilon\} = (\text{id}'_n \times \text{id}'_n)^{-1}(N).$$

By our assumption N_n is open in the product topology of $S_n \times S_n$. Moreover, N_n is balanced and convex, and consequently N , being absorbing, balanced and convex is open in $\liminf(S_n \times S_n)$. On the other hand the product locally convex topology ξ of $S \times S = (\liminf S_n) \times (\liminf S_n)$ has the following property: for every n $\text{id}'_n \times \text{id}'_n: S_n \times S_n \rightarrow S \times S$ is a continuous embedding. It follows that ξ is finer than the topology of $\liminf(S_n \times S_n)$. Hence N is open in the ξ topology, which completes the proof, because b being continuous at zero of $S \times S$ is continuous — see [1], Prop. 1, p. 356. Our basic theorem is the following one (we use the (LK) notation):

THEOREM 1. *Suppose that S_n are locally convex spaces and $S = \liminf S_n$ makes sense. Then if $b = \{b_x(f, g)\}$ is of class $\text{CP}(\mathbf{R}^m; S)$ the following implication holds true: the condition*

- (a)' *The restriction $b^{(n)}$ of b to $S_n \times S_n$ is of class $(\text{UC})(\mathbf{R}^m; S_n)$ for each n , implies that*
- (b)' *b is of class $(\text{UC})(\mathbf{R}^m; S)$.*

Proof: (b)' includes an implication. Suppose (a)' holds true and $b_x(f, g)$ is jointly continuous in $f, g \in S$ for $x \in \mathbf{R}^m$. Then $b_x(f, g)$ is jointly continuous in $f, g \in S_n$, $x \in \mathbf{R}^m$ for each n . By Lemma 1 and (a)' $R: S \rightarrow K$ is a continuous operator. Next, since $b^{(n)} \in (\text{UC})(\mathbf{R}^m; S_n)$ (any n), $u(f, g; e_p)$ is jointly continuous in $f, g \in S_n$; e_p ($p = 1, \dots, m$) form a basis for \mathbf{R}^m . By Lemma 2 and (a)' it follows then that $u(f, g; e_p)$ ($p = 1, \dots, m$) are jointly continuous in $f, g \in S$.

Let $\varepsilon > 0$ and suppose that $x = \sum_{j=1}^m x_j e_j$ and $|x_j| \leq \eta$, $\eta > 0$ for $j = 1, \dots, m$, η arbitrary. Let N be a neighbourhood of $(0, 0) \in S \times S$ which is the intersection of neighbourhoods

$\left\{(f, g): |u(f, g; e_p)| < \frac{\varepsilon}{m(1+\eta)}\right\}$. It follows that if $(f, g) \in N$ then

$$|u(f, g; x)| \leq \sum_{j=1}^m |x_j| |u(f, g; e_j)| \leq \sum_{j=1}^m |x_j| \frac{\varepsilon}{m(1+\eta)}$$

if $|x_j| \leq \eta$ for $j = 1, \dots, m$ which proves that u satisfies (b) of the definition of class $(UC)(\mathbf{R}^m; S)$. By similar token when using Lemma 2 we show that G satisfies (c) of this definition, which completes the proof.

It follows from Thm. 8.1 of [2] that if S is a metric linear space, then the function $b = \{b_x(f, g)\}$ of class $CP(\mathbf{R}^m; S)$ which is jointly continuous in f, g for every $x \in \mathbf{R}^m$, is in class $(UC)(\mathbf{R}^m; S)$. We get therefore by using Theorem 1 and Lemma 2 the following theorem.

THEOREM 2. *Let $\{S_n\}$ be an increasing sequence of linear metric locally convex spaces such $S = \liminf S_n$ makes sense. If the function $b = \{b_x(f, g)\} \in CP(\mathbf{R}^m; S)$ is jointly continuous in $f, g \in S_n$ for $x \in \mathbf{R}^m$, for each n , then b is jointly continuous in $f, g \in S$ and of class $(UC)(\mathbf{R}^m; S)$, and consequently its Poisson $P(f, g; x)$ part is jointly continuous in $f, g \in S$, uniformly in x varying on an arbitrary compact in \mathbf{R}^m , and u and G satisfy (b) and (c) respectively.*

COROLLARY. *If S_n are F -spaces i.e. complete metric locally convex spaces with translation invariant metrics, then Th. 2 holds true if $b_x(f, g)$ is separately continuous in $f, g \in S_n$ for every n .*

The classical model of spaces appearing as strict inductive limits of S_n such as in Theorem 2 are the \mathcal{D} spaces of Schwartz. Suppose namely that Ω is an open subset of \mathbf{R}^q . Let K be a compact set such that $K \subset \Omega$ and consider the totality $\mathcal{D}(K)$ of all $C^\infty(\Omega)$ complex functions with supports included in K . With usual algebraic operations $\mathcal{D}(K)$ becomes a linear complex space. We define the multiindex $p = (p_1 \dots p_q)$ (p_j natural numbers) and $|p| = \sum_{j=1}^q p_j$. For $f \in \mathcal{D}(K)$ we define $(D^p f)(x) = \left(\frac{\partial^{|p|}}{\partial^{p_1} x_1, \dots, \partial^{p_q} x_n} f \right)(x)$ and the seminorm $S_{p, K}(f) = \sup_{x \in K} |D_p f(x)|$. Let K_n be a sequence such that K_n is a compact included in Ω , $K_n \subset K_{n+1}^0 = \text{interior of } K_{n+1}$, and every compact $K \subset \Omega$ is included in some K_n . Let $\mathcal{D}(K_n)$ be the Fréchet space with metric

$$\varrho_n(f, g) = \sum_{j=0}^{\infty} \frac{1}{2^j} \frac{S_{j, K_n}(f-g)}{1 + S_{j, K_n}(f-g)}.$$

The identity embeddings $\text{id}_n: \mathcal{D}(K_n) \rightarrow \mathcal{D}(K_{n+1})$ are continuous morphisms. Suppose that $\Omega = \bigcup_{n=1}^{\infty} K_n$. We define $\mathcal{D}(\Omega) = \liminf \mathcal{D}(K_n)$. Since every compact $K \subset \Omega$ is included in

some K_n , every space $\mathcal{D}(K)$ is included in $\mathcal{D}(\Omega)$. Since $\mathcal{D}(\Omega) = \bigcup_{n=1}^{\infty} \mathcal{D}(K_n)$ we get that the set theoretic equality $\bigcup_K \mathcal{D}(K) = \mathcal{D}(\Omega)$, (K compact). Moreover, the topology of $\mathcal{D}(\Omega)$ is independent of the choice of K_n and is the finest locally convex topology for which all the canonical injections $\mathcal{D}(K) \rightarrow \mathcal{D}(\Omega)$ are continuous for compacts $K \subset \Omega$, when

we equip $\mathcal{D}(K)$ with topology defined by $\varrho_K(f, g) = \sum_{n=0}^{\infty} \frac{1}{2^n} \frac{S_{n, K}(f-g)}{1+S_{n, K}(f-g)}$. $\mathcal{D}(\Omega)$ is the

Schwartz space of test functions and continuous linear functionals on $\mathcal{D}(\Omega)$ are just the distributions over Ω .

It follows now from our Theorem 2, having in view Lem. 1,2, that, since $\mathcal{D}(\Omega)$ is a strict inductive limit of Fréchet spaces, the following theorem holds true:

THEOREM 3. *Let $b_x(f, g)$ be of class $\text{CP}(\mathbf{R}^m, \mathcal{D}(\Omega))$ such that for every $x \in \mathbf{R}^m$ and every compact $K \subset \Omega$ $b_x(f, g)$ is separately continuous in $f, g \in \mathcal{D}(K) \times \mathcal{D}(K)$. Then $b_x(f, g)$ jointly continuous on $\mathcal{D}(\Omega) \times \mathcal{D}(\Omega)$ and is of class $(\text{UC})(\mathbf{R}^m; \mathcal{D}(\Omega))$, hence u satisfies (b), G satisfies (c) and P the property of (P).*

The equivalent formulation of the above theorem is the following:

THEOREM 4. *Suppose the function $b = \{b_x(f, g)\}$ is of class $\text{CP}(\mathbf{R}^m; \mathcal{D}(\Omega))$. If $b_x(f, g)$ separately continuous in $f, g \in \mathcal{D}(\Omega)$, then b is jointly continuous in $f, g \in \mathcal{D}(\Omega)$, is of class $(\text{UC})(\mathbf{R}^m; \mathcal{D}(\Omega))$ and consequently b satisfies (a) and (b), G satisfies (c), the Poisson part $P(f, g; x)$ is jointly continuous in $f, g \in \mathcal{D}(\Omega)$, uniformly in x on compact subsets of \mathbf{R}^m .*

References

- [1] J. Horváth, *Topological vector spaces and distributions*, Vol. I Addison-Wesley P. Comp. London 1966.
- [2] W. Mlak, *Conditionally positive definite functions on linear spaces*, Annales Pol. Math. XLII, 1983, 187-239.

INSTYTUT MATEMATYCZNY PAN
31-027 KRAKÓW, UL. SOLSKIEGO 30
POLAND

Received May 25, 1981