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Continuity of invariant measures
for Rényi’s transformations

by M. JABLONSKI (Krakdw)

1. Introduction. In this note we show that for a transformation t: [0, []—-[0, 1] con-
sidered by A, Rényi [9] there exists a sequence of transformations ty: [0, 1]1—[0, 1] for
which the invariant measure jiy is given by a solution of a linear equation and the sequence
of densities f, of these measures is uniformly convergent to a density of the invariant
measure under t. This theorem gives us a computational method for finding an invariant
measure under 7.

In Scction 2 we recall some basic definitions and state the main theorem. In Section 3
we prove some necessary lemmas and theorem.

2. Denote by (L', ¢+ 1) the space of all integrable functions defined oo the interval [0, 1].
The Lebesgue measure on {0, 1] will be denoted by m.

Lett: [0, 1]=[0. ] be a measurable nonsingular transformation, that is, m{t” j(E)) =0
whenever m(£) = 0 for a measurable set £. Given t we define the Frobenius—Perron
operator P L'—L' by the formuia

. d .
Py = T{s)ds .
’ dx '

= H[0.x])
It is well known that the operator P, is linear and continuous and satisties the following
conditions

(a) P, 1s positive: f=0=P, 20,

(by P, preserves integrals

1 1
§ P fdm = [ fdm, [rel'.
5} 0

(¢) P = P! (t denotes the n-th iterate of 1),

(d) P,/ =f if and only if the measure du = fdm is invariant under 7, that is
w(t™(E)) = p(F) for each measurable £.

We shall not make a distinction between functions f: [0, 1]— R defined on [0, 1] and
functions f: [0, 1R taken as elements of the space L'. This difference will become
clear in the context.

Denote by ti; the restriction of t to the set Ec|0, [].
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A transformation 7: [0, 17> R will be called piecewise C?, if there exists a partition
0 = a;<ay<..<qg; = | of the unit interval such that for each integer i (/ = 1.2, ..., k)
the restriction 7', ., is a C? function which can be extended to the closed interval
fa;-,a;] as a C? function. 7 need not be continuous at the points «;.

If transformation 7: [0, 1]—[0, 1] satisfies the following conditions

(e} There exists a partition 0 = ay<a,<..<a, = 1 of the unit interval such that for
each integer / (/ = 1, 2. ..., k) the restriction 7, of 7 to the open interval (a,_,, a,) is a con-
tinuous function Whth can be extended to the closed interval [a,_,, a,] as a continuous
and bijective map of interval {«,_,, a,] onto [0, 1].

(f) There exists p and a partition 0 = bl <bf<..<bl, = | of interval [0, 1] such
that

TP Qag ay ., oa) = hh BT L b
and satisties the identities
(b ) —T(h]) ;
T(x) = ' x=bP (b)) for xe (bl b7y i=1,2... k7.

by b
then for that transformation we can give the definition of a matrix A = (a;;)
i,j= 1,2, ," by formulas
1
[7'()]

if there exists /e {1,2. .., k! such that

(n a; = for xety ((P!_ . b))

(N ) =T (O
(2) uy; =0
it for any /e {1,2. ...,k ‘
T B A, B = 0.
where

T = Ty o and 0 = b <bf <. <hfs = 1
the partition of [0, 1 such that
TP Qag, ays L)) = 65 BT LB

To illustrate this definition we take for example & = 2, p = 2 and the transformation

. - 2 2 2 2
given by the figure, where v, = ¢g. ¢y = ¢y, a5 = ¢g, by = g, b7 = ¢4, b3 = ¢, b3 = ¢
by = ¢y and b3 = ¢,, b} = ¢y b3 = ¢y, by = ¢3, ..., by = ¢g. For this transformation
matrix A is given by

a4, 00

0 0 ayy ayy

0 0 ayy ay
Llar Uiz 0 0
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i 1
= { " \, = f . ‘12 ’
@y, pe or X €(Cq,.C} day; ol o1 x€{cy, )
1 1
dy3 = ;F(_x}; for x e{cy, 1), dyy = Tl for xe(cz,¢q),
i 1
14 = for xe(cs, Cs), d3; = —— for xefcs, cg),
dayg ()] X €(cy,C5) 33 ()] €5, C)
i 1
1y = ]%! for x e(cs, €5, s = m for xe(cq, cg).

Let 7: [0,1]-10, 1) be a piecewise C? function for which there exists a partition
0 = gqy<a,;<..<a, = 1 of the unit interval such that for each integer / (I = 1,2, ..., k)
the restriction 7, of 1 to the open interval (e,_,, a;) is a C? function which can be extended
to the closed interval [a;_,, a;] as a C? and bijective map of interval [e,_,, ;] onto [0, 1].
Let

N

D=blchic. <bh =1 and 0=y "1<bl" < . .<bith =

be new partitions of interval [0, 1] such that
_N N
TV Sy, ayy ey }) = A AN

and

-N __ ipN+1 N+ N+13
T Mag, ayy ey gy = b T L by, L )
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Denote by 1y transformations of [0, 1] in [0, 1] given by the formulas

N+1y N+t
(3) Tx(x) = fiﬂﬁ%_f(b )( _bN+1)+ (bNJr!)

for xe(bML, B¥*Y) and
(3 Tn(x) = 1(x) for xe {pyt1, BY Y, . BNAY .

Transformation ty satisfy the conditions (e) and (f), therefore by formulas (1) and (2)
a matrix which we will denote by 4y corresponds to 1y.
Let A’ denote the transpose of the matrix A.

THEOREM 1. If transformation 7: [0, 1]1-[0, 1] is a piecewise C? function for which there
exists a partition 0 = gp<a,<..<a, =1 of the [0,1] such that for each integer |
(U=1,2,..,k) 1ty = tl_,a is a C* function which can be extended to the closed interval

[@;—+, a;] as a C*and bijective map of interval [a,_,, a,] onto [0, 1] and s = min |'(x)|>1
xe[0,1]
then

(i) for any N = 1,2, ... there exists exdctly one function fy € L* such that || fy| = 1,
20 and measure duy = fydm is invariant under 1, where ty is given by formulas (3), (3'),
N -

(ii) function fy is constant on the interval (b)- ,bY) i=1,2,.. kY and vector
YW= N, ¥y, M) yi = fy(x) for xe (b, b)) is a solution of linear equation

Ayy =y,

(iii) the sequence of functions fy is uniformly convergent to a continuous function fe L,
(iv) measure du = fdm is invariant under t.
In the case when the transformation t is given by function

7(x) = ¢(x)(mod 1),

where @(x) is a bijective map of [0, 1] onto [0, n], ne {N U o} the continuity of func-
tion f has also been proved by M. Halfant (see [I3]).

3. Now we give the lemmas and theorems which we shall use in proof of Theorem 1.

We say that.the matrix 4 = (g, )>0 i,j=1,2,..,mif a;20fori,j=1,2,
and 4>0 if a;;>0 for i,j=1,2,.

Lemma L. If for matrix A = (aij)>0 i,j=1,2,...,m there exists p such A*>0
(A? denotes the p-th iterate of A) and there exists a vector x € R™, a>0(u;>0i= 1,2, ..., m)
such that Ao = o then

(1) there exists exactly one vector y € R™ such thar

Ay =y
and .

m m
Z o0y = Z i
i=1 i=1
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(i) there exists limA® = B>0 (B = (b)),

P

(iii) vector v can be given by the formula : »

. m
yj:.zlbij: jzlszguam
L=

The proof of this lemma is given in [1].
It is easy to verify that the following is valid

LEMMA 2. Let matrices B, = (bj)<0 i,j =1,2,..,k" r = 1,2, ..., k satisfy one of
the two conditions

(b5,>0 i  ((i—1)(modk"~ 1))k<]<(z(modk“ Wk for i such that
(r—DE" '<i<rk" 1,
® im0 i ((z—l)(modk"”))k<]<k” for i =rk" 1,

b =0 if i<r—1k""Y or izrk"%,

b>0  if ((i—1)(mod k"~ )k <k"—j<(i(modk" "))k for i such that
(r—1)k" l<i<rk" !,

B>0 i ((=D(modk" )< K —j<(i(modk" Wk for i=rk"",

y=0 if i<(r=DA"Y or  izrk"Th

(h) -

If matrix A = B, +By+...+B, then there exists p such that A”>0.
Example. Let 4 = B, +B,+B;, where

"4, a, a3 0 0 0 0 0 07
0 0 O dyydas@zg 0 0 O
0 0 0 0 0 0 ay; dss @30
0 0 0 0 0 0 0 0 O

B,=l0 ... . ... .. ... 0
0 o 0
0 0
0 oo 0

0 0 0 0 a7 a8 dyo
B,=10 0 as, dss a5 0 0 0
dg, g2 g3 0 0 0 0 O O
0 0 0 0 0 0 0 0 O

=
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0 0 0 0 0 0 0 0 0

0 e 0 .
0 0 ‘
0 o 0

By=|0 ............. .. .

0
0 0 0 0 0 0 O 0 0
apsanmanz 0 0 0 0 O O
0 0 0 aggagsage 0 O O
| 0 0 0 0 0 0 ag; ae dgg

for n =2 1If B;20 for i =1,2,3 then 4°>0 for p = 2.

We write “4AcBa.e.”if 4, Bc Rand x € B for almost all x in 4. We write “4 = Ba.e.”
if both A< B a.e. and Bc A a.e. are satisfied.

Let z: [0, 1]-[0, 1]. We say a set 4 is invariant under 1 if 4 is a measurable subset
of [0, 1] and z(4) = 4 a.e.

Let f be a function on [0, 1]. We call the set on which the function f is non-zero, the
support of f"and denote it supp f. Notice that supp f need not be closed in our definition.

THeOREM (Yorke-Li). If 7: [0, 1]1-[0, 1] is a piecewise C? function with {x,, x,, ..., Xi}s

the points of discontinuity of T and ©' and inf |7'(x)|>1 then there exists a finite collection
x€[0,1)

of sets Ly, L,, ... L, and a set of functions {f,,fs, ..., fi} L' such that:
(i) each L; (1<i<n) is a finite union of closed intervals and 1(L) = L;,
(i) L; ~ L; contains at most a finite number of points when i # j,
(i) each L; (i = 1,2, ..., n) contains at least one point of discontinuity 5(=1,2,..
.» k) in its interior, hence n<k,
V) filx} =0 for x¢ L; i = 1,2, ....n and f(x)>0 for almost all xeL;,
v) H(x)dx =1 fori=1,2,..,n,

(vi) zf g satisfies (iv), (v) for some i =1,2,...n and P,g = g then g = f, almost
everywhere,
(vii) every f such that P,f = f can be written as

f=.;1aifi

with a suitably chosen a;, and supp f is imvariant under .

The proof of this theorem is given in [12].

-

Lemmvia 3. If transformation-t: [0, 11-[0, 1] satisfies the conditions (¢) and (f) then

(1) there exists exactly one measure p which is invariant under ©, absolutely contmuous
under Lebesgue measure and p([0,1]) = 1,

(ii) the density g of measure 1 under Lebesgue measure is constant on the interval
&F,, b
i-150i )
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(ild) the vecior ¥ = (Y1, V2, ey Yir) ¥i = g(x) for x e (b?_,,bY) is a solution of the
linear equation

Ay=y,
where A is given by (1) and (2),
(iv) g(x)>0 for xe [0, 1] and g(x) may be chosen as a function continuous from the
left. -
Proof. Let 4" = (aj}) i,j = 1,2, ..., k* denotes the n-th iterate of matrix A. It is easy
to see that matrix .4 satisfies the assumptions of Lemma 2 and we have Ao = « for

o= (B —bE, bE—~bL, ..., Blo=blo_y) .

Therefore, from Lemma 1 it follows that there exists lim A" = B. Computing the Fro-

n— o

benius-Perron operator for 1 we obtain

k
P.h =’lel(¢z(~\‘))lcoi(X)l ,

where ¢, = 1; ' and 7,is an extension of T} (a1, ) tO @ continuous function from [a;_;, 4]
onto [0, 1]. By its very definition the operator P, is a mapping from L! into L', but the
last formula enables us to consider P, as a map from the space of functions defined on
[0, 1] into itself,

Let 15 denotes the characteristic function of the set E< [0, 1] = 7. By simple induction
we obtain

kP
Pily(x) =Y ai; for xe(bi-,, b))
i=1

We know that A" is convergent to a matrix B>0, therefore P;1; is uniformly convergent
on [0, IIN{bG, T, .... bfs} to a function

kp

@) g(x) =Y by;>0 for xe@®i_,,b).
i1

Since P,g = g. from (b) and (d) it follows that measure du = gdm is invariant under 7 and
lgll,r = 1. From the Yorke-Li Theorem it follows that for any & such that P.h = h we
have g = h (if E = supph then there exists m, such that t"°(E) = [0, 1]}, therefore trans-
formation t has exactly one absolutely continuous invariant measure. From Lemma 1
and (4) we obtain (ii) and (iii). Since measure p does not depend on value function g on
the set E<|0, 1] such that m(E) = 0 we may assume that ¢ is continuous from the left.
From (4) we get g>0. This completes the proof.

LemMA 4. If rransformation ©: {0, 1]—[0, 1] satisfies the assumptions of Theorem 1 then
for any fel?

Um [Py =P fllpa =0,

N—w

where ty are given by formulas (3) and P, P, denote Frobenius—Perron operators.
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Proof. It is obvious that 7 is uniformly convergent to = on [0, 1]. As in the proof of
Lemma 3let ¢, = 7, ' and @y, = vy, where 7, and 1y, are extensions of t|(,_, ) and
Txl(ar- 1,an t0 @ continuous function from [g,.,, ] onto [0, 1]. Since

lon(®)—@r(x)< max ( max |p;(x) - (M) <Ms™Y,

= N
1=1,..,k wye® by
-1

where
M = max ( max |¢;"(x)])
t=1,..,k xe[0,1}

we also have ¢y, uniformly convergent to ¢; for [ = 1,2, ...,k on the set

[0, 11\ szlr'"g{ao, Ayyooes G)) -

For any fe L' we have
1
[Pef =P [l =J|P:Nf—frf|dm

1 k k
= g !lazlf (me(X))ifP&z(X)l—l;f (i) @)l

< g S 1/ (onil)) o) =f (@) | @il -

I=1

Since @y; and @y, are convergent uniformly, from the last inequality we obtain for any
continuous f

fim | Py, f=P.f e = 0.

N—-oo

Because the set of all continuous functions is dense in L' and | P, || = |P.[l = 1 for any N,
therefore for any fe L'

lim [P f=P [l =0.
N-o

Thus the lemma is coniplctely proved.

\/ h the variation of h over the closed interval [a, b].

b
Denote by \/ h =
a [a.b]

LEMMA 5. If transformation t: [0, 1]-[0, 1] satisfies the assumptions of Theorem 1,
then

() for any N = 1,2, ... there exists exactly one function fy e LY such that | fyll = 1,
fu=0 and the measure duy = fydm is invariant under ty, \

(ii) function fy is constant on the interval (biLy,by) i =1,2,..,k" and vector
W= 08,0, L V) N = fulx) for xe (b, b)) is a solution of the linear equation

Ay =y,

(ili) fy may be chosen as a function continuous from the left,
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(iv) there exists fe L' such that im fy = f in L' norm,

N—w
(V) measure du = fdm is invariant under t,
(vi) there exist constant K such that for any xe 0,1}, N=1,2,.., n=1,2,..,
<K, PLE(N) K,

\ fxsK and \/PL1(x)<K.
0 0
Proof. (i), (ii) and (iii) follow directly from Lemma 3. Set P, = Py. We know that
kN
Pylx) = Z at  for xe (b}, %),

where (a ") is the n-th iterate of matrix (au), and that Py, is convergent uniformly on
the set [0, INt™**'({a,, a(, ..., ¢;}). Changing, if necessary the values of functions
PN1, on the set {bY, b}, ..., bix} we may assume without loss of generality that for any
n=1,2,..Py1,are functions continuous from the left and continuous in 0, Then, P51, is
convergent uniformly on [0, 1] to a function fy which is continuous from the left on [0, 1]
and continuous in 0. Using notations as in the proof of Lemma 4 we set

(C) N M= r{\axk( sup ltp; "0l

and

(6) m = min { inf jo;(x)]).
=1,k x€[0,1]

Let N, be so large that for any N> N,

Ms™N
S s <p<l.

We have
+ kN k k
\/P” ! I, = 'Z&;lzlf); ll((le(xi))l(PNl(Xi)l-— Izipl':lll((PNl(xi+!))|q’Nl('xi-f-l)l ’
where xe(b,-_l, bYyi=1,2,..,k". Therefore

\/Pz'\'rJrl < Z Z |Py1 ((PNl(xi))]q)l'VI(xi)[ -

i=1 l=1

"'Pmr((PNz(xH 1))| (PI’VI(xi+1)”

-
Z

k

$. R !(PNl(x ) [Pyl I((Pm(".)) - Pyl I((le(xl+1))
KNk

+_; 121 Py 11(‘PN1(/‘"1‘+ 1))| I(PNl(xi)l —lon(xi DI

[l
-

- and consequently

KNk

(7 VPE s N PR Y Y Pl endxie D) lonx)l = lom(xi DI -

i=11=1
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~

From the definition of transformations 7y and the mean value theorem there exist points
Enu € (b, b)) such that

) ’P;(fnu) = (pJ'W(xi) .
Since PL1, is constant on (b_,, bY) from (5) and (8) we obtain
Nk
©® Zi I_Z Pyl 1(‘PM()‘;+1))| |(Pm(x )= lqo:\n(xiﬂ)”
kN
<M 21 IZ Pyl J(Qow(fnuu))l'fm; Eniiel -

Set Oy, = ¢ni(Eyis). From the definitions of transformations 7, and (6) it follows that
there exist real numbers {y;;=m such that

wmt"gmwﬂ = ‘:Mil‘fwu“fzmﬂi .

This and (9) imply the inequality

Z ZPN l((PNl(A:-H))I ](DM(X:)! |(p,.,,(x,“)|l

<“— E E Pi 1 oniCxnie DEnilnii— vt

Z E Pyl 1(6N11+IH€N11_0NI:4-1]<_ 1PNl +
M . L
+ " 1PN Ongis 1)~ PN 100 1Ongi 1 — Ondl -
=1 1=3

Since |Oxpi4 1 — Oyl <5~V from the last inequality we obtain

=

PRV , M M
(10) Z ZP;11(¢NI(xi+i))| londx il —lom(Xie DIl < — 'IPN 1+ —S N \/PN11
i=1 i=1

From (7) and (10) it follows
\/PrH-lJ}\ o |‘Pn ]IIi+ﬁvP" ]1

for N>N, and consequently

)

M M 1 .
V Pl E i = i

p=0
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for any n and N> N,. Letting n—oo we obtain

1 < M 1

YISl
Thus we have proved (vi). Since [ fyll = | for any N from Helly’s theorem it follows that
the sequence { fy}y-o is relatively compact in L!. Therefore there exists a subsequence Iy,
which is convergent in L! norm to a function fe L. We show that f'is the density of the
invariant measure under 1. With this aim we show that for any &>0

an 1Pef=fli<e.

Since
VP =F AP, =Py, f U+ 1Py, =Py, f) |+ 1Py, f, =S I <IP =Py, £ 421 i

we obtain (11) by Lemma 4. From the Yorke-Li Theorem it follows that transforma-
tion 7 have only one absolutely continuous invariant measure (if P.# = h and E = supph
then there exists such m, that ?"(E) = [0, 1]). Since { fyln-o is relatively compact in L'
the above implies the convergence of fy to / in L' norm. Thus the lemma is proved.

7 Let function /: [a, b]— R be monotonic and continuous and let /4 satisfy the condition

, hla)— h(a;_ )
(k) Wy = MmO e
ai—d;—,
for xela;,_.a;] where a = a,<a,<..<a, = b is a partition of interval [a, b]. Set

(A (x), A ()] if AL(x) < B(x),
Dhi(x) = {[H (%), h_(X)] if h(x) < AL(x),
h'(x) if AL(x) = W(x),

where AZ(x), #',(x) denote the left and right derivatives of 4 respectively.
By #'(x) we shall denote any real number from D#(x).
Let Ac R and B R (R is the set of real numbers). Denote

AB = {ab: ae A,be B} .

LevMa 6. If functions £, [a, f}-[y, 8] and f>: {y, ]— R are monotonic and continuous,
and [ satisfies condition (k) for a partition o = ay<a,<...<a,, = B, f, satisfies condition
(k) for a pariition y = by<b,<..<b,, =3 then for any x e [a, B}

D(fz = f)x)=(Df)(f1(x)) Df () .

- Proofl. From the definition of derivative from the left and derivative from the right
we have
(f2 o /)0 = ([ (/i) () (x)
or
(f3 L) = U (L)) (D2 (x)
and

(f> fy);("') = (fz):r(fx(r))(ft);(\)
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or
(f2 oS50 = () (L))
From these identities it follows that

(f1 o f2)=(x) € (D) (fi(x)) Dfi(x)

and
(f "fz):r(«\) € (sz)(ﬂ(’f)) Dfi(x).
Since (Df2){ f1(x)) Dfy(x) is an interval, therefore

D(f7 = £)=(Df)(f1(x)) Dfy(x) .
This finishes the proof of lemma.
1t is easy to verify

LeMMA 7. If function h: [a, b]— R is continuous and satisfies condition (K) for a certain
partition a = ay<a,<..a<a, = b of interval [a, b] then there exisis a point &€ {4. b)
and there exisis h'(&) e Df (x) such thar

I(a)— h(b)
a—b

= ().

LEMMA 8. If h: [a, b]— R is C! function and |K'(x){>0 then for any ¢ € (a, b) and any
number de D there exists & e(a, b) such that W(&) = d, where

?

2
c—a c—b c—a c—b

([rozke Hozhe] p sazte Koo

i ][’?(")-”@ f'(c)‘“”_.@] i PO _h=h@)

A T R
c—b c—da c—b c—d

Proof. From the mean value theorem there exist &, € (a, ) and &, e (a, b) such that

W) = ,}(C(»)‘:g(a) and (&) = h(c():Z(b)

Since '(x) has the Darboux property, therefore there exists ¢ € (a, b) such that A'(&) = d.

LEMMA 9. If transformation ©: [0, 1]—[0, 1] satisfies the assumptions of Theorem | then
“there exists « constant L>0 such that for any n (n = 1,2,..), for any N (N =1,2...)
and for any measurable set Ac{0, 1]

m(ty"(A))<Lm(A).
Proof. Let 0 = b)"<b "< ...<bt = 1 be the partition of interval [0, I] such that

" a, @y s @) = {p", bY", .., b} .
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It is easy to see that transformations rN (b, B —(0, 1) are injections for Jj<n and
i=1,2,. e (b, bY™—(0, 1) are bijections for i= 1,2, ..., k" fori=1,2,.., k"
there exists l such that

((bl 1> bN")) = (al—-l ’ al)

and for i = 1,2, ..., k" j<n there exists / such that
T’J;’((b‘!vfl ’ b?"))c(a,_h a) .

From this and the definition of number s for any x € (bX",, B¥™), y € (bY",, b'") and j<n
we have

e

[ )= D= ) )]s
and consequently

(12) Iw(r) HON< JT”();),, f”ml < ,,1_7.

for j<n, xe (b, b} and ye (", b}, .
From Lemma 6 it follows that for x € (b}",, b'") and y e (b)",, b}") there are such
derivatives Ty(th(v)) € (Dty)(th(x)) and ty{th(3) e (Dt (t4(»)) j=1,2,...,n—1that

-(13) (_T_?_VEC) nl:f [TN((TN‘)(x))%
(C00) NS RN (CAT60) I
It is easy to see that if j<n—N, xe(b",,b)", ye (b}, ,bY") then there exists g such

that zh(v)e(bq 1 ), ‘rN(y)e(hq L q) and consequently

(14) () = tr(Th(»)) =
If n—12jzn—N x,ye(b}",b)) then there exist p,, p, and [ such that

(15) TN()‘) S [bpl 12 p;]c[al I l] a"d Ti\/(y) € [bpz 13 pzlc[u! i al]
From Lemma 8 and the definition of 7y it follows that there exists &,; and &,; such that

|TN(X) Ev1[< max IbN"bi I|<s N:
i=1,2,..,kN

Iffb(y)—iy,-1<5"“
and
() = (&), (i) = (&) .

From this and (15) we obtain

(16)  {ti(Th(0) = (T = [T CEl =T EI S MIE— &l < M(hE) — 4l +257%)
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where M = sup {7'(x)|. Inequalities (12), (16) and identities (13) and (14) imply

xe[0,1]
|(1~@),! ﬁ ( :v(T(Xf;r))“T;v(T{v(J’))l>
()Y iE Tk (»)
n—1
M(Jt5(0) — (N + 2s-”)>
exp .
j=n—-N+1
n—1
M
Xp(ZNMS_N—’r-S" Z ‘fn.(\) TN(’() TN()’)I)
j=n-N+1
n—1
. M Vo oy M1
éexp(2NMs N Z —,-,»'_-j-)sexp ANMs™" + ‘>
s § S I
j=n—N+1 - -
RY

for X, VE (b1, , bY"). This inequality implies that there exists a constant L such that for
—1,2,.,n=1,2,..and x,ye (" 1, 6%

|(‘c r))"
|(TN()’))

Since |t'(x)|=s>0 for any x € [0, 1] therefore
) (T'v(x))

() (T W |

for x,ye (¥, bl n=1,2,3,.. andNul,_,3

i—=1>

Since 14 (b}, HYM—(0, 1) is a bljf:ctl()n from Lemma 7 it follows that for
N=1,2,3,.,n=1,2,3,...and i=1,2, ., k" there exist points fw,,le(bfv”l,bm‘)

and derivatives (Th(£y,)) € DTi(Cny) such that
(B =B (&) = 1.

Because
Z (bhn bN" ) . 1

from the last identity we have

kﬂ
‘ l
18 I |
o Zl !(ﬁ(fm«i))'i
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Finally, from (17) and (18) we obtain

kn

1 .
(% Z TR

=1 el

forn=1,2,3,...and N=1,2,3, ...
Let Ec[0, 1] be any measurable set. Set

EY = 3"E) n (b 1> bN") .

It is obvious that

kn
(20) wWE) = UE".
i=1
Since t%(EN") = E a.e. therefore
@n mEy>m(EY  iof  |(zh()] -
x€ {bs.v_',' 1 b:v"]

From (19), (20) and (21) we obtain

. N m(E)
m(ty"(E)) = Zm(E, "< Z o 1(T~( 5 <m(E)L

= xe{b

-11

for n=1,2,3,..and N =1,2,3,... This finishes the proof of the lemma.
A sequence of functions {h,};=; h,: [0, 1]>R is said to be quasi-equicontinuous
on [0, 1] if for every £>0 there exists n, and >0 such that

lhn(x) _hn(y)I <&

whenever |x-y|<d, x,yel0,1], and n>n,.
For a proof of Theorem 1 we shall need the following generalization of Arzela theorem.
Treorem (Arzela). If sequence {h,}3-, h,: [0, 1]=R is uniformly bounded on [0, 1]
and quasi-equicontinuous on [0, 1] then
(i) {h,}ai, contains a uniformly convergent subsequence {h,}
(i) lim h,, is a continuous function.

Jjreo

The proof of this Theorem is identical with that of the well known Arzela theorem.
Let E= U [c,,d,]=[0, 1] be such that [c,,d,] N {c,, d]=¢ for p#gq and let
p=1
f: [0, 1]-R. We define the variation of f over the set £ by the formula

V= Z\/f

r=1 cp
5 — Prace matematyczne 21
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Proof of Theorem 1. (i) and (ii) follows directly from Lemma 5. To prove (iii) we show
first that there exists N, such that the sequence of functions { fy}¥=x, is uniformly bounded
on [0, 1] and quasi-equicontinuous. Using notations as in the proof of Lemma 4 we denote

m= inf ( inf |gj(x)])

1= 1,2,k x€[1,0]
and
M= sup (sup lgj'@)).

I=1,2,...,k xe{0,1]

Let N, be so large that

—s Nys i< p<l

for N> N, and k: [0, 1]-[0, c0] be a function continuous in 0, continuous from the
left on [0, 1] and constant on the intervals (Y, bY). Furthermore, let

E= U [c,, d,]<[0, 1]
p=1

be such that [c,, d,] N [¢;, d,] = ¢ for p # g.

As in the proof of Lemma 5, changing if necessary value of functions Pyh on the set
{bY, b7, ..., byw} we may assume without loss of generality that Py are functions con-
tingous from the left and continuous in 0 for n = 1, 2, 3, ... Furthermore, since

b
\/Pih =0

for any n if [¢, bl (b}, bY] for a certain i we may assun:{e that
le,od ] {bY,bY, ... B5xy # ¢ forp=1,2,..,r
We have

‘\:/ Pyh = “;1 | a; h(qul(xi))l(P;v'l(xi)} —Iglh(q’m(xiﬂ))l (Pj'w(xn Dl

=
L4

|h(‘PN1(xi)) I (P;\'l(xi)l —h (‘PNz(xi+ 1))] ¢;W(Xi+ Il

12
>

% ﬂ.M

oDl 1 @nx))—h(en(xis D) +

if

=11

+ Z Z h(goNl(x1+l))| I(Phl(xx)l Iqul(xHri)H ’

i=1 i=1
where x;elc,, p]m(b, 5, bY] and @y (x) = Jim @y (x). Since |oy(x)|<s” ! from

X Xq

the last inequality we obtain

&N
Z (QDNZ(XHJ))l |§0;w(-\'i)l“|€01vz(xi+x)|| .

i=1

[%r

(22) \/P h<s~1 \/

Y (tep, dph) ‘

n
-
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As in the proof of Lemma 5, for any x; and / = 1,2, ..., k there exists {y,; € (bY,, b
such that @n,(x;) = ¢;(Exp). Therefore

k kN ) ,
) Z h(@wi(x i DHenx = lendxir il

I=1i=1
k

<) 2 h((le(éNli+1))“‘P;(lei)l—](P;(éNli-k1)'i+(suph)BEp

I=1 Ly dvn+ 1 €[cp,dpl

where Bg, = Y Hcp;(ém,-)]—|<p§(c§m,~+1)l] is a sum of that component of the sum
kN
Zl“(/’;(ém;)l - |¢;(§N¢i+1)|’ for which &y;; ¢ [c), dp] or Eypiv1 € [cp’ dp]“ Set Oyi; = oni(Enid)-
As in the proof of Lemma 5 there exist numbers {y;=m such that

IeNli"6N1i+1l = VCNHI&NH"CN“?]I .

This and the last inequality imply

K kN
Z Z h((PNl(xi+ 1)) ! l@onix )= lpnilxi x)|'|
: =1 i=1 .
K

M
\<~;;Z Z h(‘PNJ(fMiH))CMf|fNu‘an+1|+(SUP]1)BE,»

I=21 Cnti, INti+1€1¢p,dp]

M _ M
= . B(Oni) x5+ 5 — Onisl +(suph) Bg, < m h(s)ds +
=1 {nti ;Nliflelcp;ép] =1 ,1" Yicpdoh
k
M —
+ ” Zl |h(9mi)—h(0mi+ O Oxpi= Oy 11+

1=1 Inii LN+ 1€[cp.dp]
»

M M
+suphBEp\—’—n~ J h(s)ds+ ;s" \/  h+(suph)Bg, .

-1
iy ([ep,dpl}
11; l(fcp’dp]) N o

From (22) and the last inequality we obtain

4p M\ M )
\ PNhs(s‘l + =YW At — J h(s)ds+(suph) Bg,
m m

ep icp

Ty {[epdpD)

dp M
<B\ h+ - J #(s)ds+(suph) Bg,

™ Y (icpdoD)

b*
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and finally
(23) \/ Pyh<B\/ h+ :—f j h(s)ds+(suph) By,
E E e
where Bg = :‘:.BE,,.
It is eas;=tlo see that
24) B <akMrs™ and  Bg<l.

Now set £ = ‘[xo, x,]. From (23) and Lemma 35 we have

M
\/PN11<ﬁ \/ P;’v 111'*‘"" j‘ P}nv_lll'i‘KBE
*o N e _3
(B

for n=1,2,3,... and N>N,. Therefore

N
(25) Vm,srf” y Py M+ (?B“ f P;‘”lfdm)+1<ZB"“*BE,,,
p=1

(E)
1y ()

where E, = 13"([xo, x.D,n=1,2,3,... and N> N,. Obviously By <land BEP<4k’Ms"”.
Applying Lemma 9 and Lemma 5 to (25) we obtain

\\/PNhSKﬁN“' KL(XI XD)Z/}P 1+KZBP 135,

for n=1,2,3,... and N>N,. Letting n—oc0 we have
N N

. *1 M
(26) \/stKﬂN+—;n—KL(x1—x0) E B+ K E B° ' By,
X0
p=1 ) p=1

where Bg, <1 and Bg, <A4kPMs™V
Let ¢ "be such that k%~ V<1 and k%*1s™V> 1. Since Bg, <1 and By, <4k"Ms™" we

have

N q N
Z- Z z 4Ms~N Z Z
ﬁp-lBEp . ﬁp—lBEp+ ﬁp IBEP< _ <s, ﬁpkp ﬁp*l

r=1 r=1 p=q+1 p=q+1
N_ -
g R 1B
1— Bk 1-p
1 -N kq N—qg-1
= AMs M —— 4 —-/--vﬁu-g-ﬁ —#
1 —pk 1-B8k l—ﬁ
| 4Mpe I
<4Ms™" it TR g +[,w,_,,,,,_

1—~pk 1-8
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Since g—oo as N—oo therefore from the last inequality it follows that
N

27 Y BP'Bg,»0  as N-ow.
=1

From (26), (27) and Lemma 5 it follows that the sequence of functions N fati=no 18
4]

quasi-equicontinuous and uniformly bounded. This implies that the sequence of functions

{ fa}%-n, is quasi-equicontinuous and uniformly bounded because
: \

[A(x)—h(x)|<\/ h for any i From Lemma 5 and the

Arzela theorem it follows that f, is uniformly convergent to a continuous function f and
the measure dj = fdm is invariant under t. This completes the proof.
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