

Lie algebras of infinitesimal holonomy groups of a Cartan connection

by B. PIECH

1. Preliminaries. Throughout this paper, we assume that all differentiable manifolds, fibre bundles, functions, vector fields and differential forms are of class C^∞ .

Let M be a manifold. The tangent vector space of M at a point $x \in M$ will be denoted by $T_x M$ and the set of all vector fields on M by $\mathcal{X}(M)$. Let M and N be two manifolds and let f be a mapping of M into N . The differential of f at $x \in M$ will be denoted by $d_x f$. If γ is an r -form on N , then $f^* \gamma$ is the form on M defined as follows:

$$f^* \gamma = \gamma \circ f \text{ i.e. } f^* \gamma(X_1, \dots, X_r) = \gamma_{f(x)}(d_x f(X_1), \dots, d_x f(X_r)),$$

where $X_1, \dots, X_r \in T_x M$.

Let M be a manifold of dimension n , G a Lie group, G' a closed subgroup of G with $\dim G/G' = n$ and $P'(M, G')$ a principal fibre bundle over M with structure group G' . The Lie algebras of G and G' will be denoted by \mathfrak{g} and \mathfrak{g}' respectively.

A *Cartan connection* in the bundle $P'(M, G')$ is a 1-form ω on P' with values in the Lie algebra \mathfrak{g} satisfying the following conditions:

1. $\omega(A^*) = A$ for every $A \in \mathfrak{g}'$ (A^* denotes the fundamental vector field corresponding to A);

2. $R_a^* \omega = ad_{a^{-1}} \omega$ for every element $a \in G'$, where R_a is the transformation of P' induced by $a \in G'$, i.e. $R_a u = ua$ and ad denotes the adjoint representation of G in \mathfrak{g} ;

3. $\omega(X) \neq 0$ for every non-zero vector X of P' .

Condition 3. means that ω defines a linear isomorphism of the tangent space $T_u P'$ onto the Lie algebra \mathfrak{g} for every $u \in P'$.

The two following propositions are well-known.

PROPOSITION 1. *For a principal fibre bundle $P'(M, G')$ there is a unique (unique up to an isomorphism) principal fibre bundle $P(M, G)$ such that $P'(M, G')$ is a subbundle of $P(M, G)$.*

$P(M, G)$ will be called the *overbundle* of $P'(M, G')$. The injection of $P'(M, G')$ into $P(M, G)$ will be denoted by ι .

PROPOSITION 2. *If $P(M, G)$ is the overbundle of $P'(M, G')$ and ω is a Cartan connection in $P'(M, G')$, then ω can be uniquely extended to the usual connection $\tilde{\omega}$ in $P(M, G)$.*

The *holonomy group (restricted, infinitesimal)* of a *Cartan connection* ω will be defined as the holonomy group (restricted, infinitesimal) of the extended connection $\tilde{\omega}$.

By Propositions 1 and 2 this definition is meaningful.

Let Q_u (resp. \tilde{Q}_u) denotes the vertical subspace of the tangent space $T_u P'$ (resp. $T_u P$). Clearly $Q_u \subset \tilde{Q}_u$. The horizontal subspace of $T_u P$ will be denoted by Γ_u . Every vector $X \in T_u P$ can be uniquely written as $X = \tilde{X} + hX$, where $\tilde{X} \in \tilde{Q}_u$ and $hX \in \Gamma_u$ i.e. \tilde{X} is the vertical component of X and hX is the horizontal component of X .

Take a subspace \mathfrak{m} of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{m}$ (the direct sum of the vector spaces). We set $\Gamma_u^{\mathfrak{m}} = \omega_u^{-1}(\mathfrak{m})$ for $u \in P'$. The space $\Gamma_u^{\mathfrak{m}}$ will be called the *\mathfrak{m} -horizontal space at u* . It is clear that $\Gamma_u^{\mathfrak{m}} \oplus Q_u = T_u P'$. This means that every vector $X \in T_u P'$ can be uniquely written as $X = \tilde{X} + mX$, where $\tilde{X} \in Q_u$ and $mX \in \Gamma_u^{\mathfrak{m}}$. The vector mX is called the *\mathfrak{m} -horizontal component of X* .

Let π (resp. $\tilde{\pi}$) denotes the canonical projection of a bundle $P'(M, G')$ (resp. $P(M, G)$) onto the base space M . Then a differential $d_u \pi: T_u P' \rightarrow T_{\pi(u)} M$ is an epimorphism. Since $d_u \pi|_{Q_u} \equiv 0$, $d_u \pi|_{\Gamma_u^{\mathfrak{m}}}: \Gamma_u^{\mathfrak{m}} \rightarrow T_{\pi(u)} M$ is an isomorphism.

Let $V \in \mathcal{X}(M)$. The vector field V' on P' defined by $V'_u = (d_u \pi|_{\Gamma_u^{\mathfrak{m}}})^{-1}(V_{\pi(u)})$ will be called the *\mathfrak{m} -horizontal lift of V* . The horizontal lift (with respect to $\tilde{\omega}$) of V will be denoted by V^* . For any $X \in T_u P'$, $X = mX + \tilde{X}$. Since $h: T_u P \rightarrow \Gamma_u$ is linear, $hX = h(mX) + h(\tilde{X})$ and $h(\tilde{X}) = 0$. Consequently, $h(mX) = hX$ for every $X \in T_u P'$, $u \in P'$.

The curvature form of the connection $\tilde{\omega}$ will be denoted by $\tilde{\Omega}$. We set $\Omega = \iota^* \tilde{\Omega}$ and we call Ω the *curvature form of a Cartan connection ω* . Clearly, forms ω and Ω satisfy the equation

$$d\omega = -\frac{1}{2}[\omega, \omega] + \Omega.$$

This equation will be called the *basic structure equation*.

2. Structure equations and Bianchi's identities. Let $P'(M, G')$ be a principal fibre bundle with a Cartan connection ω . Assume that there exists a linear decomposition of \mathfrak{g} ; $\mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{m}$ such that $[\mathfrak{m}, \mathfrak{m}] = 0$ ($[\cdot, \cdot]$ denotes the bracket operation in \mathfrak{g}). Such a decomposition exists, for instance, for affine, projective and conformal structures, see [2].

Let γ be a differential form on P' of degree r . Then the form

$$D\gamma = d\gamma \oplus m, \text{ i.e. } D\gamma(X_1, \dots, X_{r+1}) = d\gamma(mX_1, \dots, mX_{r+1})$$

is called the exterior covariant derivative of γ .

PROPOSITION 3. *The exterior covariant derivative of ω satisfies the condition*

$$d\omega(X, Y) = -\frac{1}{2}[\omega(X), \omega(Y)] + D\omega(X, Y)$$

for $X, Y \in T_u P'$, $u \in P'$.

Proof. We first show the following lemma.

LEMMA. *Let $u \in P'$. For any vector $Y \in T_u P'$, there exists a right invariant vector field X on $P'|_u$ (U is a neighbourhood of the point $x = \pi(u)$) such that $X_u = Y$.*

Proof of Lemma. Suppose that $\psi = (\pi, \varphi)$ is a local triviality mapping of the bundle $P'(M, G')$. Let $\psi = (\pi, \varphi): P'|_U \rightarrow U \times G'$ and $\psi(u) = (x, e)$. We define the following vector field \tilde{X} on $U \times G'$:

$$\tilde{X}_{(y, a)} = (\bar{X}_y, d_e R_a(A)),$$

where $A = d_u \varphi(Y)$ and \bar{X} is a vector field on M such that $\bar{X}_x = d_u \pi(Y)$. R_a denotes here the right translation of G' . We define X by the formula

$$X_v = d\psi^{-1}(\tilde{X}_{\psi(v)})$$

for $V \in P'$. It is easy to check that X is right invariant and $X_u = Y$. This completes the proof of the Lemma.

Since both sides of the equality are bilinear and skew-symmetric in X and Y , it is sufficient to verify the equality in the following three special cases:

1. X and Y are \mathfrak{m} -horizontal. Since $[\omega(X), \omega(Y)] = 0$, by the assumption $[\mathfrak{m}, \mathfrak{m}] = 0$, the equality reduces to the definition of D .

2. X and Y are vertical. Let $X = A_u^*$ and $Y = B_u^*$, where $A, B \in \mathfrak{g}'$. Then

$$2d\omega(A^*, B^*) = A^*(\omega(B^*)) - B^*(\omega(A^*)) - \omega([A^*, B^*]) = -[A, B].$$

On the other hand, $D\omega(A^*, B^*) = 0$.

3. X is \mathfrak{m} -horizontal and Y is vertical. Let $Y = B_u^*$, where $B \in \mathfrak{g}$. By virtue of the Lemma, we can extend X to a right invariant vector field, which we denote also by X . Since ω is a 1-form, we have

$$2d\omega(X, B^*) = X(\omega(B^*)) - B^*(\omega(X)) - \omega([X, B^*]).$$

Let $b_t = \exp tB$. Then

$$\begin{aligned} B^*(\omega(X)) &= (d_u \omega(X))(B_u^*) \\ &= \lim_{t \rightarrow 0} \frac{1}{t} \{ \omega_{ub_t}(X_{ub_t}) - \omega_u(X_u) \} \\ &= \lim_{t \rightarrow 0} \frac{1}{t} \{ \omega_{ub_t}(d_u R_{b_t}(X)) - \omega_u(X_u) \} \\ &= \lim_{t \rightarrow 0} \frac{1}{t} \{ ad_{b_{t-1}} \omega_u(X_u) - \omega_u(X_u) \} \\ &= [\omega_u(X_u), B] \end{aligned}$$

$$\text{and } [B^*, X] = \lim_{t \rightarrow 0} \frac{1}{t} \{ X - dR_{b_t} \circ dR_{b_{t-1}} \circ X \} = 0.$$

This completes the proof of our proposition.

From Proposition 3 and the basic structure equation we obtain that $\Omega = D\omega$.

Let $\xi \in \mathfrak{m}$. We associate with ξ an \mathfrak{m} -horizontal vector field $B(\xi)$ on P' by the formula:

$$B(\xi)_u = \omega_u^{-1}(\xi).$$

$B(\xi)$ will be called the standard \mathfrak{m} -horizontal vector field corresponding to ξ .

PROPOSITION 4. *The standard \mathfrak{m} -horizontal vector fields have the following properties*

1. *If $\xi \neq 0$, then $B(\xi)$ never vanishes;*
2. *$B(\alpha\xi_1 + \beta\xi_2) = \alpha B(\xi_1) + \beta B(\xi_2)$ for $\xi_1, \xi_2 \in \mathfrak{m}$; $\alpha, \beta \in R$;*
3. *$\omega_u(B(\xi)_u) = \xi$ for $\xi \in \mathfrak{m}$;*
4. *$d_u R_a(B(\xi)_u) = B((ad_{a^{-1}}\xi)_{\mathfrak{m}})_{ua} + ((ad_{a^{-1}}\xi)_{\mathfrak{g}'})_{ua}^*$;*

(For an element $A \in \mathfrak{g}$, let $A_{\mathfrak{m}}$ denotes the \mathfrak{m} -component of A , $A_{\mathfrak{g}'}$ the \mathfrak{g}' -component of A);

5. *$\omega_u([A^*, B(\xi)]_u) = [A, \xi]$ for $A \in \mathfrak{g}'$ and $\xi \in \mathfrak{m}$.*

Proof. The first three assertions are trivial. Applying ω_{ua} (we know it is an isomorphism) to the equality 4, we obtain $ad_{a^{-1}}\xi$ on both sides of it.

Let $a_t = \exp tA$. We have

$$\begin{aligned} \omega_u([A^*, B(\xi)]_u) &= \omega_u \left\{ \lim_{t \rightarrow 0} \frac{1}{t} (B(\xi)_u - dR_{a_t}(B(\xi))_{ua_{t^{-1}}}) \right\} \\ &= \omega_u \left\{ \lim_{t \rightarrow 0} \frac{1}{t} (B(\xi)_u - B((ad_{a_{t^{-1}}}\xi)_{\mathfrak{m}})_u - ((ad_{a_{t^{-1}}}\xi)_{\mathfrak{g}'})_u^*) \right\} \\ &= \lim_{t \rightarrow 0} \frac{1}{t} (\xi - ad_{a_{t^{-1}}}\xi) = [A, \xi], \end{aligned}$$

which completes the proof of our assertion.

Let $\omega = \omega' + \theta$ be the decomposition of ω corresponding to the decomposition of \mathfrak{g} ; $\mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{m}$. We set $\Omega' = D\omega'$, $\Theta = D\theta$. The form Θ will be called the *torsion form of a Cartan connection ω* .

From the basic structure equation, we have

$$\begin{aligned} (1) \quad d\omega'(X, Y) &= -\frac{1}{2}([\omega'(X), \omega'(Y)] + [\omega'(X), \theta(Y)]_{\mathfrak{g}'} + [\theta(X), \omega'(Y)]_{\mathfrak{g}'}) + \Omega'(X, Y), \\ d\theta(X, Y) &= -\frac{1}{2}([\omega'(X), \theta(Y)]_{\mathfrak{m}} + [\theta(X), \omega'(Y)]_{\mathfrak{m}}) + \Theta(X, Y), \end{aligned}$$

where $X, Y \in T_u P'$, $u \in P'$.

In the following, the cyclic sum with respect to X, Y and Z will be denoted by σ .

PROPOSITION 5. *Let Ω and Θ be the curvature form and the torsion form of a Cartan connection ω . Then*

$$3D\Omega(X, Y, Z) = \sigma[\Omega(X, Y), \theta(Z)]$$

for $X, Y, Z \in T_u P'$, $u \in P'$.

Proof. It is sufficient to deal with the case where X, Y, Z are \mathfrak{m} -horizontal. Assume that $X = B(\xi)$ and $Y = B(\eta)$. Since Ω is a form of degree 2 and by the basic structure equation, we have

$$\begin{aligned} 3D\Omega(X, Y, Z) &= 3d\Omega(X, Y, Z) = \sigma\{X\Omega(Y, Z) - \Omega([X, Y], Z)\} \\ &= \sigma\{Xd\omega(Y, Z) - d\omega([X, Y], Z)\} - \frac{1}{2}\sigma[\omega([X, Y]), \omega(Z)]. \end{aligned}$$

We have also

$$\Omega(X, Y) = -\frac{1}{2}(X(\omega(B(\eta))) - Y(\omega(B(\xi))) - \omega([X, Y])) = -\frac{1}{2}\omega([X, Y])$$

hence

$$3D\Omega(X, Y, Z) = dd\omega(X, Y, Z) + \sigma[\Omega(X, Y), \omega(Z)] = \sigma[\Omega(X, Y), \theta(Z)].$$

From this proposition and from the equality $D\Omega = D\Omega' + D\Theta$, we obtain the following identities

$$(2) \quad \begin{aligned} 3D\Omega'(X, Y, Z) &= \sigma[\Omega'(X, Y), \theta(Z)]_{g'}, \\ 3D\Theta(X, Y, Z) &= \sigma[\Omega'(X, Y), \theta(Z)]_m, \end{aligned}$$

where $X, Y, Z \in T_u P'$, $u \in P'$.

In the case when ω is an affine connection and ω' is a linear connection induced by ω , equations (1) and identities (2) are known structure equations and Bianchi's identities for a linear connection.

Now consider a special situation. Assume that g is a graded Lie algebra:

$$g = m_{-1} + m_0 + m_1$$

such that $m_0 + m_1 = g'$ and $m_{-1} = m$. Take, for instance, the Lie algebra of the projective group and the Lie algebra of the Möbius group. They have the above property (see [2], 132—135).

Let $\omega = \theta + \omega_0 + \omega_1$ be the decomposition of ω corresponding to the decomposition of g ; $g = m_{-1} + m_0 + m_1$. We set $\Omega_0 = D\omega_0$, $\Omega_1 = D\omega_1$. By equations (1) and identities (2), we obtain equations:

$$(3) \quad \begin{aligned} d\theta(X, Y) &= -\frac{1}{2}([\omega_0(X), \theta(Y)] - [\omega_0(Y), \theta(X)]) + \Theta(X, Y), \\ d\omega_0(X, Y) &= -\frac{1}{2}([\omega_0(X), \omega_0(Y)] + [\omega_1(X), \theta(Y)] + [\theta(X), \omega_1(Y)]) + \Omega_0(X, Y), \\ d\omega_1(X, Y) &= -\frac{1}{2}([\omega_1(X), \omega_0(Y)] + [\omega_0(X), \omega_1(Y)]) + \Omega_1(X, Y) \end{aligned}$$

and identities:

$$(4) \quad \begin{aligned} 3D\Theta(X, Y, Z) &= \sigma[\Omega_0(X, Y), \theta(Z)], \\ 3D\Omega_0(X, Y, Z) &= \sigma[\Omega_1(X, Y), \theta(Z)], \\ D\Omega_1 &\equiv 0, \end{aligned}$$

where $X, Y, Z \in T_u P'$, $u \in P'$.

3. Main results. Let $P(M, G)$ be a principal fibre bundle with a connection $\tilde{\omega}$. We define a series of g -valued functions on P in the following way:

$$\begin{aligned} (I_0) \quad \tilde{f}^0 &= \tilde{\Omega}(X, Y), \\ &\vdots \\ (I_k) \quad \tilde{f}^k &= V_k \dots V_1(\tilde{\Omega}(X, Y)), \end{aligned}$$

where X, Y, V_1, \dots, V_k are arbitrary horizontal vector fields on P . Let $\mathfrak{m}_0(u)$ be the subspace of \mathfrak{g} spanned by all elements of the form $\tilde{\Omega}_u(X, Y)$, where X and Y are horizontal vectors at u . Let $\mathfrak{m}_k(u)$ be the subspace of \mathfrak{g} spanned by $\mathfrak{m}_{k-1}(u)$ and by the values at u of all functions \tilde{f}^k of the form (I_k) . The union of all $\mathfrak{m}_k(u)$, $k = 0, 1, 2, \dots$ will be denoted by $\mathfrak{h}'(u)$.

The subspace $\mathfrak{h}'(u)$ of \mathfrak{g} is a subalgebra of the Lie algebra \mathfrak{g} . The connected Lie subgroup $\Phi'(u)$ of G generated by $\mathfrak{h}'(u)$ is called the *infinitesimal holonomy group at u* .

Consider a \mathfrak{g} -valued function \tilde{f}^k on P of the form

$$(\Pi_k) \quad \tilde{f}^k = V_k^* \dots V_1^* \tilde{\Omega}(X^*, Y^*),$$

where $X, Y, V_1, \dots, V_k \in \mathcal{X}(M)$. It is easy to verify that for each k , $k = 1, 2, \dots, \mathfrak{m}_k(u)$ is spanned by $\mathfrak{m}_{k-1}(u)$ and by the values at u of all functions of the form (Π_k) .

The infinitesimal holonomy groups have the following property

$$\Phi'(ua) = Ad_{a^{-1}}\Phi'(u),$$

where $Ad_a x = axa^{-1}$ for $x \in G$ and $a \in G$. Consequently, $\dim \Phi'(u)$ is constant on $\tilde{\pi}^{-1}(\tilde{\pi}(u))$.

Later on, we shall use the two following theorems.

THEOREM 1. *If $\dim \Phi'(u)$ is constant on P , then $\Phi'(u) = \Phi^0(u)$ for every $u \in P$, where $\Phi^0(u)$ denotes the restricted holonomy group of $\tilde{\omega}$ with the reference point u .*

THEOREM 2. *For a real analytic fibre bundle $P(M, G)$ with a real analytic connection $\tilde{\omega}$, we have $\Phi'(u) = \Phi^0(u)$ for every $u \in P$.*

For more details on this point, see [1]; Chapter II, § 10.

Assume now that $P'(M, G')$ is a principal fibre bundle with a Cartan connection ω and $P(M, G)$ is the overbundle of $P'(M, G')$ with the extended connection $\tilde{\omega}$. Let a linear decomposition of \mathfrak{g} , $\mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{m}$, be fixed.

LEMMA 1. *Let f be a \mathfrak{g} -valued function on P of type ad_G . Then, for any vector field V on M , the function V^*f is also of type ad_G and its restriction to P' is equal to the function*

$$V'f' + [\omega'(V'), f'],$$

where f' denotes the restriction of f to P' .

Proof. Since V^* is right invariant on P , V^*f is of type ad_G . At any point u of P' , we have

$$V_u^* = hV_u^* = hV'_u.$$

Hence the vector $\tilde{V}_u = V'_u - V_u^*$ is vertical in P .

From the fact that f is of type ad_G , it follows

$$\tilde{V}_u f = -[\tilde{\omega}_u(\tilde{V}_u), f(u)]$$

We have also

$$\tilde{\omega}_u(\tilde{V}_u) = \tilde{\omega}_u(V'_u) = \omega_u(V'_u)$$

Therefore, at each point u of P' ,

$$V_u^* f = V'_u f - \tilde{V}_u f = V'_u f + [\tilde{\omega}_u(\tilde{V}_u), f(u)] = V'_u f' + [\omega_u(V'_u), f'(u)].$$

THEOREM 3. (Ozeki [3]) *The Lie algebra $\mathfrak{h}'(u)$ of the infinitesimal holonomy group of a Cartan connection ω at a point $u \in P'$ is spanned by the values at u of all functions f^k on P' obtained in the following way: For any vector fields $X, Y, V_1, \dots, V_k \dots$ on M , we define \mathfrak{g} -valued functions f^k on P' successively by:*

$$\begin{aligned} (\Pi'_0) \quad f^0 &= \Omega(X', Y'), \\ (\Pi'_1) \quad f^1 &= V'_1 f^0 + [\omega(V'_1), f^0], \\ &\vdots \\ (\Pi'_{k+1}) \quad f^{k+1} &= V'_{k+1} f^k + [\omega(V'_{k+1}), f^k], \\ &\vdots \end{aligned}$$

Proof. Let $u \in P'$. Then $\Omega_u(X', Y') = \tilde{\Omega}_u(X^*, Y^*)$, because $hX'_u = hX_u^*$ and $hY'_u = hY_u^*$. This shows that $f^0 = \Omega(X', Y')$ is just the restriction of the function $\tilde{\Omega} = \tilde{\Omega}(X^*, Y^*)$ to P' . Applying Lemma 1. to the function $\tilde{\Omega} = \tilde{\Omega}(X^*, Y^*)$ we see that f^1 is also the restriction of $\tilde{f}^1 = V'_1 \tilde{\Omega}(X^*, Y^*)$ to P' . In the same way, we see that f^k is the restriction to P' of $V'_k \dots V'_1 \tilde{\Omega}(X^*, Y^*)$ which is a \mathfrak{g} -valued function on P of type ad_G . This completes the proof.

Introduce now the following functions

$$\begin{aligned} (\Gamma'_0) \quad f^0 &= \Omega(X, Y), \\ (\Gamma'_1) \quad f^1 &= V_1 f^0 + [\omega(V_1), f^0], \\ &\vdots \\ (\Gamma'_{k+1}) \quad f^{k+1} &= V_{k+1} f^k + [\omega(V_{k+1}), f^k], \end{aligned}$$

where $X, Y, V_1, \dots, V_{k+1}$ are arbitrary \mathfrak{m} -horizontal vector fields on P' .

It is evident that $\mathfrak{m}_k(u)$, $k = 1, 2, \dots$, is spanned by $\mathfrak{m}_{k-1}(u)$ and by the values at u of all functions f^k of the form (Γ'_k) .

Observe that a function f^k (resp. \tilde{f}^k) of the form (Γ'_k) or (Π'_k) (resp. (Γ_k) or (Π_k)) may be defined also by means of local vector fields. In the following, a function f^k (resp. \tilde{f}^k) will be called a *function of the form* (Γ'_k) or (Π'_k) (resp. (Γ_k) or (Π_k)), both in the case when the suitable vector fields are global as well as when they are local.

A diffeomorphism f of P' (f may be local) onto itself is called a *transformation of ω* if it preserves the form ω , i.e. $f^* \omega = \omega$. If f is a transformation of ω , then $d_u f(\Gamma_u^m) = \Gamma_{f(u)}^m$ for every $u \in P'$. If a transformation f of ω is a bundle automorphism, i.e. commutes with the right transformation R_a ($a \in G'$), then f is called a *transformation of (P', ω)* .

A vector field X on P' is called an *infinitesimal transformation of ω* (resp. (P', ω)) if the local 1-parameter group of local transformations generated by X in a neighbourhood of each point of P' consists of transformations of ω (resp. (P', ω)).

The set \tilde{k} of vector fields on P' is called

- a) *horizontally transitive at $u \in P'$* if for any $V \in \Gamma_u$, there is $X \in \tilde{k}$ such that $h(X_u) = V$;
- b) *horizontally transitive on P'* if it is horizontally transitive at each point $u \in P'$.

The set \tilde{k} of vector fields on P' is horizontally transitive at $u \in P'$ if for any linear decomposition $\mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{m}$ and for any $V \in \Gamma_u^m$ there is $X \in \tilde{k}$ such that $m(X_u) = V$. This follows from the fact that $h(mX) = hX$ for $X \in T_u P'$.

PROPOSITION 6. Let f be a \mathfrak{g} -valued function on P' and let $f(u) \in \mathfrak{m}_{k-1}(u)$ for every $u \in P'$. Then

$$V'_u f + [\omega_u(V'_u), f(u)] \in \mathfrak{m}_k(u)$$

for every $u \in P'$ and $V \in \mathcal{X}(M)$.

Proof. From our assumption, we have that f can be expressed as follows:

$$f = \alpha_0 f_0 + \dots + \alpha_r f_r,$$

where $\alpha_0, \dots, \alpha_r$ are R -valued functions of class C^∞ and f_i , $0 \leq i \leq r$, is a function of the form (Π'_s) for some s , $0 \leq s \leq k-1$. Then

$$V' f = V' \left(\sum_{i=0}^r \alpha_i f_i \right) = \sum_{i=0}^r ((V' \alpha_i) f_i + \alpha_i (V' f_i)).$$

Therefore

$$V'_u f + [\omega_u(V'_u), f(u)] = \sum_{i=0}^r (V' \alpha_i)(u) f_i(u) + \sum_{i=0}^r \alpha_i(u) ((V' f_i)(u) + [\omega_u(V'_u), f_i(u)]).$$

It is clear that $\sum_{i=0}^r (V' \alpha_i)(u) f_i(u) \in \mathfrak{m}_{k-1}(u)$ and

$$\sum_{i=0}^r \alpha_i(u) ((V' f_i)(u) + [\omega_u(V'_u), f_i(u)]) \in \mathfrak{m}_k(u),$$

which proves the proposition.

PROPOSITION 7. If f is a \mathfrak{g} -valued function of type $\text{ad}_{\mathfrak{G}'}$ on P' , then for any vector field X on P' , we have

$$(\vartheta X)_u f = -[\omega_u(\vartheta X), f(u)].$$

Proof. Let $\omega_u(\vartheta X_u) = A$. A belongs to \mathfrak{g}' . Let $a_t = \exp tA$. Then

$$\begin{aligned} (\vartheta X)_u f &= A_u^* f = \lim_{t \rightarrow 0} \frac{1}{t} \{f(u a_t) - f(u)\} \\ &= \lim_{t \rightarrow 0} \frac{1}{t} \{a_t^* f(u) - f(u)\} = -[A, f(u)] = -[\omega_u(\vartheta X)_u, f(u)] \end{aligned}$$

and this completes the proof.

Let u_0 be an arbitrary point of P' which we choose as a reference point. We define a linear mapping $A: \mathcal{X}(P') \rightarrow \mathfrak{g}$ by

$$A(X) = -\omega_{u_0}(X).$$

PROPOSITION 8. If X and Y are infinitesimal transformations of ω , then the curvature form Ω satisfies the following condition:

$$2\Omega_{u_0}(X, Y) = [A(X), A(Y)] - A([X, Y]).$$

Proof. Since ω and Ω satisfy the basic structure equation and ω is a 1-form, we have

$$\begin{aligned} 2\Omega(X, Y) &= 2d\omega(X, Y) + [\omega(X), \omega(Y)] \\ &= X(\omega(Y)) - Y(\omega(X)) - \omega([X, Y]) + [\omega(X), \omega(Y)]. \end{aligned}$$

X and Y are infinitesimal transformations of ω , hence

$$\begin{aligned} 0 &= (L_X\omega)(Y) = X(\omega(Y)) - \omega([X, Y]), \\ 0 &= (L_Y\omega)(X) = Y(\omega(X)) - \omega([Y, X]). \end{aligned}$$

Finally, we obtain

$$2\Omega_{u_0}(X, Y) = [\omega_{u_0}(X), \omega_{u_0}(Y)] - \Lambda([X, Y]) = [\Lambda(X), \Lambda(Y)] - \Lambda([X, Y]).$$

THEOREM 4. *Let $P'(M, G')$ be a principal fibre bundle with a Cartan connection ω . Let \check{k} be a horizontally transitive at $u_0 \in P'$ set of infinitesimal transformations of ω . Then the Lie algebra $\mathfrak{h}'(u_0)$ of the infinitesimal holonomy group $\Phi'(u_0)$ of the connection ω is given by*

$$\mathfrak{m}_0 + [\Lambda(\check{k}), \mathfrak{m}_0] + [\Lambda(\check{k}), [\Lambda(\check{k}), \mathfrak{m}_0]] + \dots,$$

where \mathfrak{m}_0 is the subspace of \mathfrak{g} spanned by

$$\{[\Lambda(X), \Lambda(Y)] - \Lambda([X, Y]); X, Y \in \check{k}\}$$

Proof. We define the following series of subspaces \mathfrak{m}_k :

$$\begin{aligned} \mathfrak{m}_1 &= \mathfrak{m}_0 + [\Lambda(\check{k}), \mathfrak{m}_0], \\ &\vdots \\ \mathfrak{m}_k &= \mathfrak{m}_{k-1} + [\Lambda(\check{k}), \mathfrak{m}_{k-1}]. \end{aligned}$$

To prove the theorem, it is sufficient to show that $\mathfrak{m}_k = \mathfrak{m}_k(u_0)$ for $k = 0, 1, 2, \dots$

We first prove that $\mathfrak{m}_0 = \mathfrak{m}_0(u_0)$. Using Proposition 8, we have

$$\mathfrak{m}_0 = \text{the subspace of } \mathfrak{g} \text{ spanned by } \{\Omega_{u_0}(X, Y); X, Y \in \check{k}\}.$$

The set \check{k} is horizontally transitive at u_0 and

$$\Omega_{u_0}(X, Y) = \Omega_{u_0}(mX, mY), \text{ thus } \mathfrak{m}_0 = \mathfrak{m}_0(u_0).$$

Let f^k be a function of the form (Π'_k) . By virtue of Lemma 1, we know that f^k is of type $\text{ad}_{G'}$. Applying Proposition 7 to f^k , we have

$$\begin{aligned} (mX)_{u_0}f^k + [\omega_{u_0}(mX)_{u_0}, f^k(u_0)] \\ &= -(gX)_{u_0}f^k + X_{u_0}f^k + [\omega_{u_0}(mX)_{u_0}, f^k(u_0)] \\ &= [\omega_{u_0}(gX)_{u_0}, f^k(u_0)] + X_{u_0}f^k + [\omega_{u_0}(mX)_{u_0}, f^k(u_0)] \\ &= [\omega_{u_0}(X_{u_0}), f^k(u_0)] + X_{u_0}f^k \end{aligned}$$

for any $X \in \mathcal{X}(P')$. Hence we have

$$(5) \quad (mX)_{u_0}f^k + [\omega_{u_0}(mX)_{u_0}, f^k(u_0)] = -[\Lambda(X), f^k(u_0)] + X_{u_0}f^k$$

for every f^k of the form (Π'_k) and $X \in \mathcal{X}(P')$.

We now prove the following two lemmas.

LEMMA 2. *If Y is an \mathfrak{m} -horizontal vector field on P' and $X \in \check{k}$, then $[X, Y]$ is \mathfrak{m} -horizontal.*

Proof of Lemma 2. ω is a 1-form on P' , thereby

$$X(\omega(Y)) = L_X \omega(Y) + \omega([X, Y]).$$

Since Y is \mathfrak{m} -horizontal, $\omega(Y)$ is an \mathfrak{m} -valued function on P' so that $X(\omega(Y))$ is also an \mathfrak{m} -valued function on P' . On the other hand, $L_X \omega = 0$. Thus $\omega_u([X, Y]_u)$ belongs to \mathfrak{m} for every $u \in P'$.

LEMMA 3. *Let f^k be a function of the form (Π'_k) and $X \in \check{k}$. Then $X_u f^k \in \mathfrak{m}_k(u)$ for every $u \in P'$, $k = 0, 1, \dots$*

Proof of Lemma 3. This lemma will be proved by induction. At first, we show that $X_u \Omega(W', Z') \in \mathfrak{m}_0(u)$ for $W, Z \in \mathcal{X}(M)$, $X \in \check{k}$. Since Ω is a 2-form on P' , we have

$$X_u \Omega(W', Z') = (L_X \Omega)(W', Z') + \Omega_u([X, W'], Z') + \Omega_u(W', [X, Z']).$$

By Lemma 2, $\Omega_u([X, W'], Z') \in \mathfrak{m}_0(u)$ and $\Omega_u(W', [X, Z']) \in \mathfrak{m}_0(u)$. On the other hand, $L_X \Omega = 0$ so that $X_u f^0 \in \mathfrak{m}_0(u)$ for any function f^0 of the form (Π'_0) and for every $u \in P'$.

Suppose now that $X_u f^{k-1} \in \mathfrak{m}_{k-1}(u)$ for every function f^{k-1} of the form (Π'_{k-1}) and for every $u \in P'$. Let f^k be a function of the form (Π'_k) . Let

$$f^k = V' f^{k-1} + [\omega(V'), f^{k-1}],$$

where f^{k-1} is of the form (Π'_{k-1}) . Observe that

$$\begin{aligned} X_u f^k &= X_u V' f^{k-1} + X_u [\omega(V'), f^{k-1}] \\ &\equiv V'_u X f^{k-1} + X_u [\omega(V'), f^{k-1}] - [\omega_u([X, V']_u), f^{k-1}(u)] \pmod{\mathfrak{m}_k(u)}, \end{aligned}$$

because

$$[X, V']_u f^{k-1} + [\omega_u([X, V']_u), f^{k-1}(u)] \in \mathfrak{m}_k(u).$$

This follows from the fact that $[X, V']$ is \mathfrak{m} -horizontal (by Lemma 2) and from Proposition 6. Denote the right hand side of this congruence by \mathcal{P} . We have

$$\begin{aligned} \mathcal{P} &= V'_u (X f^{k-1}) + [\omega_u(V'_u), X_u f^{k-1}] + X_u [\omega(V'), f^{k-1}] - \\ &\quad - [\omega_u([X, V']_u), f^{k-1}(u)] - [\omega_u(V'_u), X_u f^{k-1}]. \end{aligned}$$

By the inductive assumption and by Proposition 6,

$$V'_u (X f^{k-1}) + [\omega_u(V'_u), X_u f^{k-1}] \in \mathfrak{m}_k(u).$$

Since the bracket operation in \mathfrak{g} is bilinear,

$$X_u [\omega(V'), f^{k-1}] = [X_u (\omega(V')), f^{k-1}(u)] + [\omega_u(V'_u), X_u f^{k-1}].$$

We have also

$$0 = (L_X \omega)(V') = X(\omega(V')) - \omega([X, V']).$$

and consequently

$$X_u[\omega(V'), f^{k-1}] - [\omega_u([X, V']), f^{k-1}(u)] - [\omega_u(V'_u), X_u f^{k-1}] = 0.$$

This completes the proof of our lemma.

Going back to the proof of the theorem, we see

$$(6) \quad (mX)_{u_0} f^k + [\omega_{u_0}(mX)_{u_0}, f^k(u_0)] \equiv -[\Lambda(X), f^k(u_0)] \bmod m_k(u_0)$$

by the equality (5) and by Lemma 3.

Assume now that $m_r = m_r(u_0)$ for all $r < s$. Since \check{k} is horizontally transitive at u_0 , every m -horizontal vector at u_0 is of the form $(mX)_{u_0}$ for some $X \in \check{k}$. Therefore, $m_s(u_0)$ is spanned by $m_{s-1}(u_0)$ and by the set of all

$$(mX)_{u_0} f^{s-1} + [\omega_{u_0}(mX)_{u_0}, f^{s-1}(u_0)],$$

where $X \in \check{k}$ and f^{s-1} is a function of the form (Π'_{s-1}) . From the inductive assumption and from the congruence (6) it follows that $m_s(u_0)$ is spanned by m_{s-1} and by $[\Lambda(\check{k}), m_{s-1}]$. On the other hand, m_s is spanned just by m_{s-1} and by $[\Lambda(\check{k}), m_{s-1}]$. Hence we have completed the proof of Theorem 4.

THEOREM 5. *Assume in Theorem 4 that \check{k} is a subalgebra of the Lie algebra of all vector fields on P' . Then*

$$\mathfrak{h}'(u_0) \subset \mathfrak{p} \subset \mathfrak{n}_{\mathfrak{g}}(\mathfrak{h}'(u_0)),$$

where \mathfrak{p} is the subalgebra of \mathfrak{g} spanned by the set $\Lambda(\check{k})$ and $\mathfrak{n}_{\mathfrak{g}}(\mathfrak{h}'(u_0))$ denotes the normalizer of the Lie algebra $\mathfrak{h}'(u_0)$ in the Lie algebra \mathfrak{g} .

Proof. From Theorem 4, we know that

$$\mathfrak{h}'(u_0) = \mathfrak{m}_0 + [\Lambda(\check{k}), \mathfrak{m}_0] + [\Lambda(\check{k}), [\Lambda(\check{k}), \mathfrak{m}_0]] + \dots,$$

where \mathfrak{m}_0 is the subspace in \mathfrak{g} spanned by

$$\{[\Lambda(X), \Lambda(Y)] - \Lambda([X, Y]); X, Y \in \check{k}\}.$$

Hence the inclusion $\mathfrak{h}'(u_0) \subset \mathfrak{p}$ is evident.

To verify the inclusion $\mathfrak{p} \subset \mathfrak{n}_{\mathfrak{g}}(\mathfrak{h}'(u_0))$, it is sufficient to show that

$$[\Lambda(\check{k}), \mathfrak{h}'(u_0)] \subset \mathfrak{h}'(u_0).$$

But this is obvious, because $[\Lambda(\check{k}), \dots [\Lambda(\check{k}), \mathfrak{m}_0] \dots] \subset \mathfrak{h}'(u_0)$.

THEOREM 6. *Let $P'(M, G')$ be a principal fibre bundle with a Cartan connection ω . Assume that there exists a set \mathcal{L} of infinitesimal transformations of (P', ω) horizontally transitive on P' . Let \check{k} be a set of infinitesimal transformations of ω horizontally transitive at u_0 . Then the Lie algebra $\mathfrak{h}^0(u_0)$ of the restricted holonomy group $\Phi^0(u_0)$ is equal to the sum in \mathfrak{g}*

$$\mathfrak{m}_0 + [\Lambda(\check{k}), \mathfrak{m}_0] + [\Lambda(\check{k}), [\Lambda(\check{k}), \mathfrak{m}_0]] + \dots,$$

where $\Lambda(X) = -\omega_{u_0}(X_{u_0})$ and \mathfrak{m}_0 is the subspace of \mathfrak{g} spanned by

$$\{[\Lambda(X), \Lambda(Y)] - \Lambda([X, Y]); X, Y \in \check{k}\}.$$

Proof. We may assume that M is connected. In view of Theorem 1 and Theorem 4, it is sufficient to show that $\dim \Phi'(u)$ is constant on P' .

We define the following mapping S :

$$S: \mathcal{L} \rightarrow \mathcal{X}(M); S(X) = \bar{X}; \bar{X}_x = d_u \pi(X_u),$$

where u is taken freely from the fibre over x . \bar{X}_u is independent of the choice of u , which follows from the fact that an automorphism of a principal fibre bundle is right invariant. Every point x of M has a neighbourhood U and a cross-section $\sigma: U \rightarrow P'$. It is clear that $\bar{X}|_U = d\pi \circ X \circ \sigma$. Consequently, the vector field \bar{X} is of class C^∞ . Local 1-parameter groups of local transformations generated by \bar{X} will be denoted by $(\bar{\varphi}_t)$. From the formula $\bar{X}|_U = d\pi \circ X \circ \sigma$, we obtain that if (φ_t) is the local 1-parameter group of local transformations generated by X in a neighbourhood $\pi^{-1}(U)$ of u , then $(\bar{\varphi}_t): \bar{\varphi}_t = \pi \circ \varphi_t \circ \sigma$ is the local 1-parameter group of local transformations generated by \bar{X} in a neighbourhood U of $\pi(u)$.

Take a linear decomposition of $\mathfrak{g}: \mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{m}$. Let $x \in M$ and Y be any tangent vector at x . Let $V \in \mathcal{X}(M)$ be such that $V_x = Y$ and let u be any point $u \in P'$ with $\pi(u) = x$. Then $V'_u \in \Gamma_u^m$. The set \mathcal{L} is horizontally transitive, thereby there is $X \in \mathcal{L}$ such that $mX_u = V'_u$. Hence

$$\bar{X}_x = d_u \pi(X_u) = d_u \pi(mX_u) = d_u \pi(V'_u) = Y.$$

Consequently, we see that $S(\mathcal{L})$ is a transitive on M set of vector fields. This fact implies that for every $x \in M$ there exists a neighbourhood U of x such that for every $y \in U$ there is a local transformation $\bar{\varphi}_t$ satisfying condition $\bar{\varphi}_t(x) = y$. This means that φ_t sends the fibre over x into the fibre over y . Since $\varphi_t^* \omega = \omega$, accordingly $\varphi_t^* \Omega = \Omega$. Consider a function f^0 of the form (I'_0) , i.e. $f^0 = \Omega(W, Y)$, where W, Y are \mathfrak{m} -horizontal vector fields on P' . Vector fields $\varphi_t^* W$ and $\varphi_t^* Y$ are \mathfrak{m} -horizontal, hence $\check{f}^0 = \Omega(\varphi_t^* W, \varphi_t^* Y)$ is of the form (I'_0) . Furthermore $\check{f}^0 \circ \varphi_t = f^0$. Suppose now that for every $r < k$ and for any function f^r of the form (I'_r) there exists a function \check{f}^r of the form (I'_r) such that $\check{f}^r \circ \varphi_t = f^r$.

A function f^k of the form (I'_k) can be written as $f^k = V f^{k-1} + [\omega(V), f^{k-1}]$, where f^{k-1} is of the form (I'_{k-1}) . We define \check{f}^k by the formula

$$\check{f}^k = (\varphi_t^* V) \check{f}^{k-1} + [\omega(\varphi_t^* V), \check{f}^{k-1}],$$

where \check{f}^{k-1} is of the form (I'_{k-1}) and $\check{f}^{k-1} \circ \varphi_t = f^{k-1}$. We have

$$\begin{aligned} \check{f}^k(\varphi_t(u)) &= (d\varphi_t \circ V)_u \check{f}^{k-1} + [\omega_{\varphi_t(u)}(d_u \varphi_t(V_u)), \check{f}^{k-1}(\varphi_t(u))] \\ &= d_u(\check{f}^{k-1} \circ \varphi_t)(V_u) + [\omega_u(V_u), f^{k-1}(u)] \\ &= V_u f^{k-1} + [\omega_u(V_u), f^{k-1}(u)] = f^k(u). \end{aligned}$$

Hence, for every $k = 0, 1, \dots$ and for any function f^k of the form (I'_k) there exists a function \check{f}^k of the form (I'_k) such that $\check{f}^k \circ \varphi_t = f^k$. This means that $\mathfrak{m}_k(u) \subset \mathfrak{m}_k(\varphi_t(u))$. Using this inclusion for the transformation φ_{-t} and for the point $\varphi_t(u)$, we obtain the inverse inclusion. Therefore, $\mathfrak{m}_k(u) = \mathfrak{m}_k(\varphi_t(u))$ and consequently $\Phi'(u) = \Phi'(\varphi(u))$. Finally, we obtain that $\dim \Phi'(u)$ is constant on P' , because it is locally constant and M is connected. Hence our theorem is proved.

As an immediate consequence of Theorems 2 and 4, we obtain

COROLLARY 1. Let $P'(M, G')$ be a principal fibre bundle with a Cartan connection ω . Assume that the overbundle $P(M, G)$ of $P'(M, G')$ is real analytic and the extended connection $\tilde{\omega}$ in P is also real analytic. If \tilde{k} is a set of infinitesimal transformations of ω horizontally transitive at u_0 , then the Lie algebra $\mathfrak{h}^0(u_0)$ of the restricted holonomy group $\Phi^0(u_0)$ is given by

$$\mathfrak{m}_0 + [\Lambda(\tilde{k}), \mathfrak{m}_0] + [\Lambda(\tilde{k}), [\Lambda(\tilde{k}), \mathfrak{m}_0]] + \dots,$$

where $\Lambda(X) = -\omega_{u_0}(X_{u_0})$ and \mathfrak{m}_0 is the subspace of \mathfrak{g} spanned by

$$\{[\Lambda(X), \Lambda(Y)] - \Lambda([X, Y]); X, Y \in \tilde{k}\}.$$

By arguments similar to the proof of Theorem 5, we obtain

COROLLARY 2. With the same assumptions as in Theorem 6 or in Corollary 1 and with the further assumption that \tilde{k} is a subalgebra of the Lie algebra $\mathcal{X}(P')$ the following inclusions are true

$$\mathfrak{h}^0(u_0) \subset \mathfrak{p} \subset \mathfrak{n}_\theta(\mathfrak{h}^0(u_0)),$$

where the notation is analogous to the notation in Theorem 5.

References

- [1] S. Kobayashi and K. Nomizu, *Foundations of differential geometry*, New York—London 1963.
- [2] S. Kobayashi, *Transformation groups in differential geometry*, Ergeb. der Math., Springer Verlag Berlin 1972.
- [3] H. Ozeki, *Infinitesimal holonomy groups of bundle connections*, Nagoya Math., J. 10, 1956, p. 105—123.