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Lie algebras of infinitesimal holonomy groups of a Cartan connection

by B. PiscH

1. Preliminaries. Throughout this paper, we assume that all differentiable manifolds,
fibre bundles, functions, vector fields and differential forms are of class C*.

Let M be a manifold. The tangent vector space of M at a point x € M will be denoted
by T, M and the set of all vector fields on M by & (M). Let M and N be two manifolds
and let f be a mapping of M into N. The differential of f at x € M will be denoted by d, f.
If y is an r-form on N, then f*y is the form on M defined as follows:

f*)’ = Vg—f i-e' f*}’(Xls b ] Xr) = Yf(x)(dxf(Xl)s ey dxf(Xr))a

where X, ..., X, e T, M.

Let M be a manifold of dimension n, G a Lie group, G’ a closed subgroup of G with
dimG[G’ = n and P'(M, G’) a principal fibre bundle over M with structure group G'.
The Lie algebras of ¢ and G’ will be denoted by g and g’ respectively.

A Cartan connection in the bundle P'(M, G’) is a 1-form w on P’ with values in the
Lie algebra g satisfying the following conditions:

1. o(A*) = A for every A € g’'(A* denotes the fundamental vector field corresponding
to A);

2. Rjw = ad,_,w for every element ae G', where R, is the transformation of P’
induced by ae G', i.e. R,u = ua and ad denotes the adjoint representation of G in g;

3. w(X) # 0 for every non-zero vector X of P’.

Condition 3. means that o defines a linear isomorphism of the tangent space T,P’
onto the Lie algebra g for every ue P’.

The two following propositions are well-known.

PROPOSITION 1. For a principal fibre bundle P'(M, G') there is a unique (unique up to
an isomorphism) principal fibre bundle P(M, G) such that P'(M, G') is a subbundle of
P(M, G). '

P(M, G) will be called the overbundle of P'(M, G'). The injection of P'(M, G') into
P(M, G) will be denoted by ..

ProPOSITION 2. If P(M, G) is the overbundle of P'(M, G) and w is a Cartan connection
in P'(M,G’), then o can be uniquely extended to the usual comnection @ in P(M, G).
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The holonomy group (restricted, infinitesimal) of a Cartan connection o will be defined
as the holonomy group (restricted, infinitesimal) of the extended connection .

By Propositions 1 and 2 this definition is meaningful.

Let O, (resp. ,) denotes the vertical subspace of the tangent space 7, P’ (resp. T, 7).
Clearly Q,=0,. The horizontal subspace of T,P will be denoted by I',. Every vector
X eT,P can be uniquely written as X = 3x+hX, where 3Xe @, and hXe T, i.e. 3xis
the vertical component of ‘X and hX is the horizontal component of X.

Take a subspace m of g such that g = g'@m (the direct sum of the vector spaces).
We set I'" = o] }(m) for u e P’. The space I'y will be called the m-horizontal space at u.
It is clear that I'™@®Q, = T,P’'. This means that every vector X e TP’ can be uniquely
written as X = 9X+mX, where 9Xe Q, and mX e I'y. The vector mX is called the
m-horizontal component of X.

Let 7 (resp. %) denotes the canonical projection of a bundle P'(M, G') (resp. P(M, G))
onto the base spacc M. Then a differential d,n: T, P'—Ty,M is an epimorphism. Since
d LTlo, =0, d nl,m I'y-TywM is an 1som0rph1sm

Let Ve Z(M). The vector field V' on P’ defined by V, = (d,n rz‘)—l(Vn(u)) will be
called the m-Aorizonial Iift of V. The horizontal lift (with respect to @) of ¥ will be denoted
by V*. For any X e T,P', X = mX+9X. Since h: T,P—T,is linear, 1X = h(mX)+h(3X)
and 2(9X) = 0. Consequently, A(mX) = hX for every XeT,P', ue P’

The curvature form of the connection ¢& will be denoted by 9. We set Q = *0 and we
call Q the curvature form of a Cartan connection w. Clearly, forms @ and Q satisfy the
equation

do = —}[w,0]+Q.

This equation will be called the basic structure equation.

2. Structure equations and Bianchi’s identities. Let P'(M, G') be a principal fibre bundle
with a Cartan connection . Assume that there exists a linear decomposition of g;
= g'@m such that [m, m] = O ([, ] denotes the bracket operation in g). Such a decom-
posmon exists, for instance, for affine, projective and conformal structures, sce [2]
Let y be a differential form on P’ of degree r. Then the form

V - d}’ m, 1 €. DV(XI: AL Xr+1) =d)’(mX1; e er+1)

is called the exterior covariant derivative of 7.
PROPOSITION 3. The exterior covariant derivative of o satisfies the condition
do(X, V) = —}oX), o(V)]+Do(X, Y)
for X, YeT,P', uecP’.

Proof. We first show the following lemma.

LemMA. Let u € P'. For any vector Y e T,P’, there exists a right invariant vector field X
on P'ly (U is a neighbourhood of the point x = m(u)) such that X, = Y.
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Proof of Lemma. Suppose that = (rr, @) is a local triviality mapping of the bundle
P(M,G). Let = (n,0): Ply=UxG and y(u) = (x,e). We define the following
vector field X on UxG":

X()’,a) = (X-y’ deRa(A)) >

where 4 = d,@(Y) and X is a vector field on M such that X, = d,=(Y). R, denotes here
the right translation of G'. We define X by the formula

X, = dll’_l(Xr:h(v))

for Ve P’. It is easy to check that X is right invariant and X, = Y. This completés the proof
of the Lemma.

Since both sides of the equality are bilinear and skew-symmetric in X and Y, it is
sufficient to verify the equality in the following three special cases:

1. X and Y are m-horizontal. Since [w(X), o (Y)] = 0, by the assumption [m, m] = 0,
the equality reduces to the definition of D.

2. X and Y are vertical. Let X = 4} and Y = B}, where 4, Beg'. Then

2w (4%, B¥) = A*(w(B*)— B w(4)—w([4*, B*]) = —[4, B].

On the other hand, Dw(4*, B*) = 0.

3. X is m-horizontal and Y is vertical. Let ¥ = B, where Beg. By virtue of the
Lemma, we can extend X to a right invariant vector field, which we denote also by X.
Since @ is a 1-form, we have

2dw (X, B¥) = X(w(B*)—B*w(X))-w(X, B*]).
Let b, = exptB. Then
BX(X)) = (d,0(X))(B)

1
= fim (e, (Xan) -0, (1)}

1
= Eirr; ; {@u{d, Ry (X)) —0,(X,)}

1

= lim -t- {ad,,‘_ 1 a)u(Xu) - wu(Xu)}
t—0

= [o, (X..) B]

and [B*, X] = lim - {X——dR,,‘ dRy,_1°X} =0,

t—+0

This completes the proof of our proposition.
From Proposition 3 and the basic structure equation we obtain that 2 = Dw.
Let & e m. We associate with ¢ an m-horizontal vector field B(£) on P’ by the formula:

B = 0, 1(%).

B(&) will be called the standard m-horizontal vector field corresponding to &.
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ProrosirioN 4. The standard m-horizontal vector fields have the following properties

1. If &€ # 0, then B(&) never vanishes;

2. B(a&y+pE;) = aB(E)+BB(E,) for &y, &rem; o, feR;

3. o(B(§),) = & for Lem;

4. d R (B(f) ) - B((ad '1§)m)ua+((ad ‘lé)g)mu
(For an clement 4 € g, let 4,, denotes the m-component of 4, 4, the g’-component of A);

5. w[4%, B(©)],) = [4,&] for Aeg’ and em.

Proof. The first three assertions are trivial. Applying w,, (we know it is an isomorphism)
to the equality 4, we obtain ad,-1£ on both sides of it.

Let g, = expr4. We have

o([4*, B(E)L)

Wy, {llrﬁl; (B (é)u - dRﬂt(B(é))’“'t“ 1}

1
CO,, {3213 ; (B (é)u'— B ((ada‘- 1 é)m)ﬂ - ( ag—1 é)g ’) }

= hm (é ada‘— é) [A7 é} EH

t—=0t

which completes the proof of our assertion.
Let = o' +0 be the decomposition of w corresponding to the decomposition of g;
g =g @®m We set Q = D', @ = DO. The form @ will be called the torsion form of

a Cartan connection o.
From the basic structure equation, we have

(D) do'(X, Y) = —3{[0'(X), @' (D]+[e'(X), 6(X)]e+[0(X), w(Y)],)+9’(X Y),
d(X, Y) = =3(['(X), 6()]n+10(X), o' (N]n) + 6(X, ),

where X, Ye T, P, ucP’.
In the following, the cyclic sum with respect to X, Y and Z will be denoted by o.

PROPOSITION 5. Let Q and © be the curvature form and the torsion form of a Cartan
connection . Then

3DQ(X, ¥,2Z) = o[2(X, 1), 0(2)]

for X,Y,ZeT,P',ueP'.
Proof. It is sufficient to deal with the case where X, ¥, Z are m-horizontal. Assume

that X = B(£) and Y = B(y). Since 2 is a form of degree 2 and by the basic structure
equation, we have

3DQX, Y,Z) = 3dQ(X, Y,Z) = a{XQ(Y, Z)-QX, Y], Z)}
= ¢{Xdo (Y, Z)—do((X, Y], Z)}-}clo(X, Y], o)].
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We have also

(X, Y) = —}X ((Bm)) - Y{o(BE)) - (X, Y]) = —2o(X, ¥
hence
3DAX, Y, Z) = ddo(X, Y, Z)+c[Q(X, Y), o(Z)] = ¢[Q(X, Y),0(2)].
From this proposition and from the equality DQ = DQ'+ D@, we obtain the following
identities
3DQA(X, Y, Z) = o[Q(X, ), 0(2)],,
3DO(X, Y,Z) = o[Q(X, V), 0(2)],.,
where X, Y, ZeT,P', ucP’.
In the case when w is an affine connection and ' is a linear connection induced by @,
equations (1) and identities (2) are known structure equations and Bianchi’s identities

for a linear connection.
Now consider a special situation. Assume that g is a graded Lie algebra:

(2

g =m_;+my+my

such that my+nt; = ¢’ and m_, = m. Take, for instance, the Lie algebra of the projective
group and the Lie algebra of the Mobius group. They have the above property (see [2],
132—135).

Let @ = 0+w,+w, be the decomposition of w corresponding to the decomposition
ofg;g = m_, +my+m;. Weset Q, = Dw,, 2, = Daw,. By equations (1) and identities (2),
we obtain equations:

do(X, Y) = —H[wo(X), 6(N)]—[wo(1), (X)) +0O (X, Y),
B)  dwg(X, ¥) = —3([0g(X), 0o(V)]+[0,(X), 0(N]+[0(X), 0, (V)])+ (X, 1),

doy(X, Y) = —3([0,(X), 0o D]+ [0y(X), 0 (Y)])+2,(X, )
and identities:

3DO(X,Y,Z) =a[Q(X, Y),0(2)],
) 3DQy(X, 7, Z) = a[Q,(X, Y)’ 0(2)1,
DR, =0,

where X, Y,ZeT,P', ueP'.

3. Main results. Let P(M, G) be a principal fibre bundle with a connection ¢&. We
define a series of g-valued functions on P in the following way:

(I J° = 2(x, V),

@ /*= V. v@x, v),
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where X, ¥, V,, ..., V) are arbitrary horizontal vector fields on P. Let n1, () be the subspace
of g spanned by all elements of the form §,(X, ¥), where X and Y are horizontal vectors
at u. Let m,(u) be the subspace of g spanned by m,_ (#) and by the values at u of all
functions f* of the form (Z). The union of all m(u), k = 0, 1,2, ... will be denoted by

b'(w).

The subspace '(v) of g is a subalgebra of the Lie algebra g. The connected Lie subgroup
@'(u) of G generated by h'(v) is called the infinitesimal holonomy group at u.

Consider a g-valued function f* on P of the form

(I F* = v vifx*, vy,

where X, ¥, V,, ..., V, € Z'(M). It is easy to verify that for each k, k = 1,2, .., ny(u) is
spanned by n1,_ () and by the values at u of all functions of the form (IL,).
The infinitesimal holonomy groups have the following property

' (uay = Ad,-1d'(u),

where Ad,x = axa™! for xe G and aeG. Consequently, dim®’(x) is constant on
7 (#(w)).

Later on, we shall use the two following theorems.

THEOREM 1. If dim®'(u) is constant on P, then ®'(u) = ®°(u) for every ue P, where
@D°(u) denotes the restricted holonomy group of @ with the reference point u.

THEOREM 2. For a real analytic fibre bundle P(M, G) with a real analytic connection @,
we have @'(u) = ®°(u) for every ue P.

For more details on this point, see [1]; Chapter 1I, § 10.

Assume now that P'(M, G’) is a principal fibre bundle with a Cartan connection ® and
P(M, @) is the overbundle of P'(M, G') with the extended connection @&. Let a linear de-
composition of g, g = g'@m, be fixed.

Lemma 1. Let f be a g-valued function on P of type adg. Then, for any vector field V'
on M, the function V*f is also of type adg and its restriction to P’ is equal to the function
Vf.f"+ [wl(Vl),fl] ,
“where f' denotes the restriction of f to P'.

Proof. Since V* is right invariant on P, V*fis of type adg. At any point « of P’, we
have '

Ve =hV) =hv,.

Hence the vector V, = ¥V, — V. is vertical in P.
From the fact that f is of type adg, it follows

V.f = —1aJV),f W]
We have also
@, (V) = &,V.) = 0 V.)

Therefore, at each point u of P/,

Vi f=Vuf=Vof = Vaf+160),f )] = Vi f' +lo V). @)] .
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THeOREM 3. (Ozeki [3}) The Lie algebra Y (u) of the infinitesimal holonomy group of
« Cartan connection w at a point u € P’ is spanned by the values at u of all functions f* on P’
obtained in the following way: For any vector fields X, Y, V,, ..., Vi ... on M, we define
q-valued functions f* on P’ successively by: '

() £° = X", ¥,
) /1 = Vi o+ (V). /0],

W) f541 = Viaa for (V0. S,

Proof. Let ueP’. Then Q,X’, Y') = @, (X* Y*), because hX, = hX, and
hY. = hYYX. This shows that f® = Q(X’, Y’) is just the restriction of the function
FO = B(X*, Y*) to P'. Applying Lemma 1. to the function f© = G(X*, ¥*) we see that /™
is also the restriction of /! = V*Q(X*, ¥Y*) to P'. In the same way, we see that f* is the
restriction to P’ of ¥y ... ViQ(X*, ¥*) which is a g-valued function on P of type adg.
This completes the proof.

Introduce now the following functions

(Io) f° = QX, 1),
(I;) Jfl = V1f0+[a)(V1)9f0] »

(o) F41 = Ve frtloWh 0, 1,

where X, ¥, V,, ..., V., are arbitrary mn-horizontal vector fields on P’.

It is evident that m,(v), k =1, 2, ..., is spanned by m,_;() and by the values at u
of all functions 7* of the form (I}).

Observe that a function f* (resp. *) of the form (T;) or (IL}) (resp. (I,) or (1I;)) may be
defined also by means of local vector fields. In the following, a function f* (resp. f*) will
be called a function of the form (1) or (IT) (resp. (L) or (IL), both in the case when the
suitable vector fields are global as well as when they are local.

A diffeomorphism f of P’ (f may be local) onto itself is called a fransformation of w if
it preserves the form , i.e. f*®w = w. If f is a transformation of w, then d, f(I'y) = I'(G,
for every u € P'. If a transformation f of ® is a bundle automorphism, i.c. commutes with
the right transformation R (g G"), then f is called a transformation of (P’, ®).

A vector field X on P’ is called an infinitesimal transformation of o (resp. (P’, )) if the
local I-parameter group of local transformations generated by X in a neighbourhood of
each point of P’ consists of transformations of w (resp. (P’, w)).

The set & of vector fields on P’ is called

a) horizonially transitive at u e P’ if for any V e I',, there is X € k such that A(X,) = V;

b) horizontally tramsitive on P’ if it is horizontally transitive at each point ue P’.

The set k of vector fields on P’ is horizontally transitive at € P’ if for any linear de-
composition g = ¢'@m and for any VeI™ there is X ek such that m(X,) = V. This
follows from the fact that A(mX) = hX for XeT,P'
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PROPOSITION 6. Let [ be a g-valued function on P’ and let f(u) ewy_,(w) for every
ueP’. Then

Vaf+oJ[VD. f )] emyu)
for every ue P’ and Ve Z(M).

Proof. From our assumption, we have that f can be expressed as follows:

f"—_ OC0./‘0-'_""*'0(."];'a

where a,, ..., d, are R-valued functions of class C* and f;, 0<i<r,isa function of the form
(II)) for some s, 0<s<k—1. Then

V= V(L af) = L @ fit V1)

Therefore

Vaf+ 1oV, f (0] = 3 (Vo) @ £+ _groai(u) (V1) @)+ [0V, f)]) -
It is clear that i(V'ozi)(u) fAuyem,_,(x) and
i=0

Y a @) (V)@ + [0lV), f{)]) € myw) ,

i=0

which proves the proposition.
PoposiTION 7. If f is a g-valued function of type adg. on P', then for any vector field X
on P', we have

OXf = —[68X), f@)].
Proof. Let w,(8X,) = A. A belongs to g'. Let a, = exptA. Then

(330 = ALf = lim, S () =1 &)
1
= lim ;{ada;’f(u)_f(u)} = '—[A,f(ll)] = _[wu(‘gX)usf(u)]

=0

and this completes the proof.
Let u, be an arbitrary point of P’ which we choose as a reference point. We define a linear

mapping A: Z(P")—=g by
A(X.) == uo(X) .

PROPOSITION 8. If X and Y are infinitesimal transformations of o, then the curvature
form Q satisfies the following condition:

22,(X, Y) = [4(X), A(V)]-A(X, Y]).
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Proof. Since @ and Q satisfy the basic structure equation and o is a 1-form, we have
20(X, Y) = 2do(X, Y)+[w(X), o(Y)]

| = X(o(1)- Y(o(X)-o(X, YD+[o(X), o(Y)].

X and Y are infinitesimal transformations of w, hence

0 = (Lyo)(¥) = X(w(¥)-o((X, Y],
0 = (Lyo)(X) = Y(o(X)-o(Y, X]).

Finally, we obtain
2Q,(X, Y) = [0,(X), 0,(V)]-A([X, Y]) = [A(X), A(D)]-A([X, Y]).

THEOREM 4. Let P'(M, G') be a principal fibre bundle with a Cartan connection . Let & be
a horizontally transitive at uy € P’ set of infinitesimal transformations of ®. Then the Lie
algebra §(uo) of the infinitesimal holonomy group ®'(u,) of the comnection o is given by

o+ [A(k), me]+[AK), [AK), mp]]+...,
where 1, is the subspace of g spanned by
{I1(X), AM]-A(X, Y)); X, Yek)
Proof. We define the following series of bsubspaces m:

my = o+ [A(k), m,],

ty = My +[AK), m,_,].

A
To prove the theorem, it is sufficient to show that = mylu,) for kK =0,1,2, ..
We first prove that m, = my(u,). Using Proposition 8, we have

m, = the subspace of g spanned by {Q, (X, Y); X, Ye k).
The set £ is horizontally transitive at u, and
Q(X, Y) = Q(mX, mY), thus m, = my(u) .

Let ¥ be a function of the form (IIy). By virtue of Lemma 1, we know that f*is of type
adg . Applying Proposition 7 to f*, we have

(X))o [+ [0, X )y, [¥(110)]
= =Xy [ + Xy o+ [0 X, [*(1)]
= [04(3 X, S (Wo)] + X,y 5+ [0, (m Xy, f4(140)]
= [0, Xy0)s S )+ Xpo 1*
for any Xe Z(P’). Hence we have
) (X [+ [0 Xy 4 (W0)] = = [A(X), [ o)+ X, f*
for every f* of the form (II}) and Xe & ).



62

We now prove the following two lemmas.

Lemma 2. If Y is an m-horizontal vector field on P' and Xek, then [X, Y] is
m-horizontal.
Proof of Lemma 2. w is a 1-form on P’, thereby

X(@(1) = Lyo(V)+o((X, Y].

Since Y is m-horizontal, »(Y) is an nt-valued function on P’ so that X{(w(Y)) is also an
m-valued function on P’. On the other hand, Ly = 0. Thus wu([X , Y1,) belongs to m for
every ue P,

LEMMA 3. Let f* be a function of the form (\I,) and X € k. Then X, ¥ e my(u) for every
ueP,k=0,1,..

Proof of Lemma 3. This lemma will be proved by induction. At first, we show that
X, QW' Z"Yemyu) for W,Ze X (M), Xek. Since Q is a 2-form on P’, we have

X QW' Z') = (LyQW', Z)+ X, W']. Z)+2,W', [X, Z']) .

By Lemma 2, Q,([X, W', Z") emy(u) and Q (W, [X, Z']) e my(z). On the other hand,
LyQ = 0 so that X, f° e my(u) for any function f° of the form (ITy) and for every ue P'.

Suppose now that X, f*~' em,_ () for every function f*~! of the form (I;_,) and
for every ue P'. Let f* be a function of the form (IT}). Let

=V o), 471,
where f¥71 is of the form (IT;_,). Observe that
X f* = XV X o (), 7]
= Vo X+ X o (V) £ = o X, V1), /571 )] modmy(u)
because
X, V'L [0JlX, V1)L 7@l e myw) -

This follows from the fact that [X, V'] is m-horizontal (by Lemma 2) and from Propo-
sition 6. Denote the tight hand side of this congruence by 2. We have

P2 = V(X N+ [0V, X+ X o), /471-
~ [, (X, V'1). /7 )] = [0JV.), ka .
By the inductive assumption and by Proposition 6,
Va(X Y+ olV), X,/ T em) .
Since the bracket operation in g is bilinear,
X[, /471 = [X o),/ @]+ oLV, X1

We have also
0= (Lyo)(V") = X(o(V) - (X, V']
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and consequently
X o), f5 =o,dX, VD, [ @l-1oV), X, =0.

This completes the proof of our lemma.
Going back to the proof of the theorem, we see

(6) (X)) 4o [+ (00X )y fHU)] = = [A(X), o) mod i (ato)

by the equality (5) and by Lemma 3.

Assume now that m, = m,(,) for all r<s. Since k is horlzontally transitive at ug,
every m-horizontal vector at u, is of the form (mX),, for some X e k. Therefore, m,(uo)
is spanned by m,_,(u,) and by the set of all

(mX)uofs_ 1 + [wuo(m X)uo "fs—.i(uo)] ’

where X € k and /! is a function of the form (1I._ ). From the inductive assumption
and from the congruence (6) it follows that m,(u,) is spanned by m,_, and by [A(k), m,_,].
On the other hand, m, is spanned just by m,_, and by [/1(7() m,_;]. Hence we have
completed the proof of Theorem 4.

THEOREM 5. Assume in Theorem 4 that k is a subalgebra of the Lie algebra of all vector
fields on P’. Then

b'(uo) = p = ny(b' (o)) ,

where p is the subalgebra of g spanned by the set A(k) and 1,(b'(uy)) denotes the normalizor
of the Lie algebra Y (u,) in the Lie algebra g.
Proof. From Theorem 4, we know that

B(uo) = mo+[AK), mo)+[AK), [A(K), mo]]+...,
where m, is the subspace in g spanned by
{[A(X), A(D)]-A(IX, Y]); X, Yek}.

Hence the inclusion §'(u,)<p is evident.
To verify the inclusion pen(B'(xy)), it is sufficient to show that

4 (]‘é), b (ue)l = b (ug) .

But this is obvious, because [A(k), ...[A(k), m,]...]< b (up).

THEOREM 6. Let P'(M, G') be a principal fibre bundle with a Cartan connection ©. Assume
that there exists a set & of infinitesimal transformations of (P’, w) horizontally transitive
on P'. Let k be a set of infinitesimal transformations of w horizontally transitive at uy. Then
the Lie algebra %°(uy) of the restricted holonomy group ®°(uy) is equal to the sum in g

m0+[A(E): m0]+[A(k) [A(%)s mO]]'I'-" >
where A(X) = ~ow,(X,,) and m, is the subspace of g spanned by
{IA(X), A(D]-A(X, Y]); X, Yek}.
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Proof. We may assume that M is connected. In view of Theorem 1 and Theorem 4, it
is' sufficient to show that dim@’(x) is constant on P’
We define the following mapping S:

S: LT (M); S(X) = X; X, = d,n(X,),

where u is taken freely from the fibre over x. X, is independent of the choice of », which
follows from the fact that an automorphism of a principal fibre bundle is right invariant.
Every point x of M has a neighbourhood U and a cross-section o: U~P". It is clear that
X|y = dno X o 0. Consequently, the vector field X is of class C®. Local 1-parameter
groups of local transformations generated by X will be denoted by (%,). From the formula
X|y = dno X o g, we obtain that if (¢,) is the local 1-parameter group of local transfor-
mations generated by X in a neighbourhood n~'(U) of u, then (§): @ = mo @00 is
the local 1-parameter group of local transformations generated by X in a neighbourhood U
of n(u).

Take a linear decomposition of g: ¢ = g’@m. Let x € M and Y be any tangent vector
at x. Let Ve Z (M) be such that V, = Y and let # be any point u € P’ with n(u) = x.
Then V,eT™ The set % is horizontally transitive, thereby there is Xe % such that
mX, = V,. Hence

X,=dn(X)=damX)=dr(V,)=7Y.

Consequently, we see that S(&) is a transitive on M set of vector fields. This fact implies
that for every x € M there exists a neighbourhood U of x such that for every y € U there
is a local transformation @, satisfying condition @(x) = y. This means that ¢, sends the
fibre over x into the fibre over y. Since @;w = w, accordingly ¢; @ = Q. Consider a func-
tion f° of the form (Ip), i.e. f° = Q(W, Y), where W, Y are m-horizontal vector fields
on P'. Vector fields @} and Y are m-horizontal, hence /° = Q(¢] W, ¢; Y) is of the
form (Tj). Furthermore f°o ¢, = f°. Suppose now that for every r<k and for any
function 7 of the form (I}) there exists a function F7 of the form (I}) such that /"o ¢, = f".

A function f* of the form (I}) can be written as f* = ¥f*~1+[w(¥), f*~!], where f*~*
is of the form (T_,). We define /* by the formula

F= @7 o, 1,
where f*~1 is of the form (I,_,) and /* !0 ¢, = f¥~1. We have
FH0w) = (do o V) +[0pufda V), 7 Hodw)]

= d(F* 1 e @) (V) + [0V, f* 1 w)]

IR AR CY AN O BRI
Hence, for every k =0, 1,... and for any function f* of the form (I;) there exists
a function F* of the form (I;) such that f*o @, = f*. This means that m(u) ctedw)).
Using this inclusion for the transformation ¢ _, and for the point @(u), we obtain the
inverse inclusion. Therefore, m(u) = m(p u)) and consequently &'(u) = &'(¢ ().
Finally, we obtain that dim &'(4) is constant on P’, because it is locally constant and M is

connected. Hence our theorem is proved. .
As an immediate consequence of Theorems 2 and 4, we obtain
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CoroLLARY 1. Let P'(M, G') be a principal fibre bundle with a Cartan connection o.
Assume that the overbundle P(M, G) of P'(M, G') is real analytic and the extended connec-
tion @ in P is also real analytic. If k is a set of infinitesimal transformations of  horizontally
transitive at ug, then the Lie algebra )°(u,) of the restricted holonomy group ®°(u,) is given by

mo+[AE), Mol +[A(K), [A(K), mo]] +... ,
where A(X) = —w,(X,,) and my is the subspace of g spanned by

{(LA(X), A(D]-A(X, Y]); X, Yek} .
By arguments similar to the proof of Theorem 5, we obtain

COROLLARY 2. With the same assumptions as in Theorem 6 or in Corollary 1 and with
the further assumption that k is a subalgebra of the Lie algebra Z (P') the following inclusions
are true

[)0(1‘0) cpc ng(bo(uo)) ’

where the notation is analogous to the notation in Theorem 5.
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