ZESZY1TY NAUKOWE UNIWERSYTETU JAGIELLONSKIEGO
CCCCLXXV PRACE MATEMATYCZNE, ZESZYT 19 1977

Sur une méthode des différences finies pour I’équation différentielle non
linéaire elliptique aux dérivées mixtes et la condition aux limites du type
de Neumann

par M. MALEC

1. On considdre ici une méthode des différences finies, appelée dans la suite
schéma des différences finies, pour 1’équation partielle

ou  Pu N
(1.1) J Tythy ' 5 =0, &= (#,...,%)¢€(0,0)

. Ou ou) %u *u .. ‘s -
oll - ={-—py— = (¢,j=1,..,n) avee la condition aux limites
o owy)  ox? 0w 005

du type de Neumann sous la forme

ou
— (2) = @i{@) pour x; = 0
3.’%

1.2 on

(1.2) — (x) = pi(x) pour x; = o
oxs
(t=1,..,n)

Le schéma des différences finies mentionné s’obtient en remplacant dans (1.1)
les dérivées par rapport &4 @; par les quotients centraux des différences finies
et les autres dérivées du second ordre par les quotients ayant la forme

(1.3) 2_;2 (D) gD gy =300 =) _ g M _ gy (=FHD_ (1730
ou

1 {M M —i(M —i(M M i(HM —i(—7(M)) : ]
(14) — (— D — g7 PD— g FOD_ =Tt 9 M | gy 7T gy =H=7I) — (4 # §)

2h?

On prouve que de tels schémas sont convergents et on proposé une esti-
mation de P’erreur de la méthode des différences finies (théoréme 1).
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2. Dans le travail entier nous poserons que les hypothéses suivantes sont
satisfaites

1) la  fonction scalaire f(x,u,q,w), &= (T, ..., @)y §= (§uy .oy n),
W= (W1 erey Winy ceoy Wayy ---y Wan) €86 de la classe C! dans Pensemble

2.1) D = [0, o] x RM*ntn!

et satisfait dans cet ensemble aux conditions

of of of N oef| of  ef

2.2 TLL<0, Sl 0<ggs L — M|, L=

(2.2) S <0, 3Qi]\ , U g < G5 p o ,Bw“ ooy
J#

(i=1,.,nm,j=1,..,m)
ot L, I' et g sont des nombres,

0
2) pour les indices établis 4,j (1<<i<<n, 1< j < n) la fonction %Ji est
i
toujours non négative ou toujours non positive,

3) la fonction % (x) est de la classe €2 dans D’ensemble
(2.3) B=1[0,c"

et satisfait a ’équation différentielle partielle (1.1) de méme qu’aux conditions
aux limites (1.2) ou les fonetions ¢; et y; sont de la classe O? sur les hyperplans
z; = 0 et x; = o respectivement,

4) le pas h est tel que

(2.4)

b Ny

=0

Eal S

Remarque. La fonction u (), # ¢ E C R™ est dite de classe C" dans ’ensemble
fermé F §’il existe une telle fonction #(x) de classe O dans R® que i (z) = u(»)
sur E.

3. Supposons que N est un nombre naturel et m,, ..., m, sont des nombres
enticers et soit

M = (my, ..., Mn)
(3.1) H={M: 0< <N+ i=1,..,n}
Z={M: —1<mi<< N, i=1,..,n}
Introduisons les notations suivantes
— (M) = (Myy ceey Mimy, Mi— 1, Mgy oo, Ma) (M € Zy)
(3.2) C(M) = My eory Mimqy, Mi+1, Mipy, ..., M) (M € Zy)

(E=1,..,n)
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et soib
(3.3) Z={M: ils existent ¢ et j (1<<i<m, 1<j<<n) tels que
i(j (M)) ou i(—»j‘(M)) ou —i(j(M)) ou —i(—j(M)) appartenant & Z, ~ Z,}

On suppose qu’a chaque multi-indice M ¢ Z correspond un nombre réel oM et
on admet que ‘

1
Mi_ WM _ gy i)
v = — (P —

Pt M _12 (— p¥BD__ D __ =i _ =) 4 oMt qyili(B) 1 =i~ F2D)
(3.4) 2h :
v M — 2_;2 (0D 1 I | =KD =TD_ M _ gyi(=TD)_ oy~ UKD

(i=1,..,n j=1,..,n, MEZleQ)

Considérons maintenant dans Pespace euclidien & =-dimensions E* un
ensemble de points nodaux ayant les coordonnées

(3.5) - g=mh (i=1,..,7n)

o M= (my,..,my)eZ, 0<h= l%et désignons le point nodal (2™, ..., #5")

- par z™.
Dans la suite nous supposerons que les nombres vMgatisfont aux conditions

oMt = g (™) pour m; =0

oM = y (o) pour m;= N

00D — o= H=H L 2R (a™) 1 py(2™)] pour my=m; = N (i # j)

(3.6) ] oA — yi—HA)_ zk[(pi(mM)f_wj(wM)] pour m; = 0 e‘,{ my;= N (i # j)
| oI — D21 [g (™) + p,(x™)] POUr m; = m; =0 (i # j)

| o#=IA0) — =D oh [y (&™) — p(a™)] pour m,= N et m; =0 (i #J)

(6= 1y uyy f=1, 0y, M ey Zy)
et & D’équation aux différences finies

B3.7 o f@M oM M MYy =0 (M e 2y~ Zy)

ot les fonctions @i, i, f sont les méntes que “ celles: figurant dans- (1.2)

Prace matematyczne z, 19 11

.
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et (1.1), et
oMU — (MY pMin MM M)
. 7}
ptM¥ pour § £ j et%-; 0
(3.8) T oM — "
‘ -Mij P — of
v~ M pour i =jou — <0
ow

if

(i=1,u,n j=1,..,n)

(voir la condition 2) dans 2).

4, Désignbns par u la valeur de la solution du probléme différentiel (1.1),
(1.2) en point nodal z engendré par le multi-indice M € Z, N Z, et soit

u—1OD — 4D _ohe (x™) pour m, =0

Wi = 4~ ¥ | 2hy (x™) pour m; = N

WD) — 4= 413Dy 9h[yp () +py(x™) pour m;=m; =N (i # J)

(41) |um 0D = 4 TOD_ g} (5¥)—p,(a™)] pour m, = 0 et m; =N (i #j)
u— =T — M) OR g (1) 4 p(@™)] pour m, = m; =0 (i # j)

k=1 =) 4 OR [y (aM)— g (@™)] pour m,= N et m; =0 (i # j)

(=1, 0,y j=1,.yn, MeZinZ)

LEMME 1. §i les hypothéses de 2 sont satisfaites, u™ vérifient les égalités

(4.2) FaM, uM, uM, uM) = nM(h) pour M e Z, ~Z,
(voir (3.8)) et
(4.3) lime(k) =0, e(h) = max |n¥(h)]

h—0 MeZnZs

Démonstration. Comme la solution %(x) du probléme différentiel (1.1), (1.2)
est de classe (® dans l'ensemble F et la fonction f est de classe C' dans
l’ensemble D, les formules (4.2) et (4.3) sont évidentes pour ceux des points
nodaux ¥ qui ‘sont générés par les suites M eZ,nZy o8 1S M N—-1
(i=1,..,m)

Il faut encore démontrer que les formules (4.2) et (4.3) sont valables pour
les points nodaux @™ appartenant & la frontiére oF de I’ensemble E. Pour ce
faire il suffit de prouver que pour & ¢ 2E les quotients des différences finies u™?

o2
‘ ) 0w 04
(ceci résulte de la régularité de la fonction f dans Pensemble D).

. on , -
et 4~ M9 y+M7 tendent & 8—;(mM) et (@™) respectivement, lorsque h—0
: )
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De (4.1), nous avons ' ¢
ou

wMi= g (oM) = — (™) pour m, =0

- 3&71 ’

4.4 ) ou
(4.4) aMt = p (M) = é;};(mM) pour m,= N

Soit ensuite
w(x) pour x ¢ B
U(Dyy oy Bimyy — By Bidyy oory Tn)+ 2T04(T1)
pour % e[0,0], j=1,...,m j £t Zie[—0,0
(4.5) u+(w)= ' yGly yorey My ] H [ : ]
‘ ULy y oeey Bimgy 20— Bty Bityy -ory Tn)— 2 (06— 1) pe(@s)

pour #;¢[0,0], j=1,..,m, j #1, @i e[o,20]

(t=1,..,n) ‘ ’
O Tt = (Dgy vvey Ti1y Oy Bypgyeeesy Tn)y Bt == (Byy eeey Biyy Oy Bty voey Tn)y b= 1,00y M
Lafonction ut(x) est de classe €2 dans l’ensemble EY = E o (B u...u E})
oll ' '

(4.6) Ef={zeR" 2;e[0,0], j=1,..,m, j # 1, xie[—0a,20]}
(t=1,..,n)
Ses dérivées du second ordre peuvent donc &tre rapprochées par les quotients
des différences finies formés de la méme facon que les quotients w= 2 et y*+¥%
pour la fonetion u(x), mais seulement & la condition que tous les points nodaux
figurant dans ces quotients appartiennent & 1’ensemble Et, _
" Comme les valeurs des fonctions u* et # sont respectivement égales aux
points nodaux générés par les multi-indices M, —i(M), (M), j(M)
(j=1,...,m, j # 1) lorsque m; = 0 ou m; = N, et les valeurs des dérivées du
second ordre de ces deux fonctions sont les mémes pour z™ ¢ 9E, alors

62
(4.7) uMt = a%:(m”’)—k()(ha) lorsque m; = 0
et

4

82
u:FMﬁ:am—i—:w(mM)—{uO(h) lorsque m;= 0, m; # 0, m; # N,

i=1,.,m j=1 (¢ #))

. 82
(4.8) utMi - (™) 0(h) lorsque m; = 0, my # N (2 # j)
aw;aﬁj
i %y ..
u MY = (™) 0(h) lorsque m;= m; = 0 ou m;=m;= N (¢ # j)

024 0%4
(Z,j=1,..,n)
11+
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Pour démontrer la formule (4.8) il suffit d’appliquer la régle de L’Hospital-
~ Bernoulli.
Il faut encore montrer que

2

lim y+ M4 — (@™) lorsque m; = m; =0 ou m; = m; = N (i # j)
A0 [ eon i
(4.9) .
. s %u .
Hm w M4 — —— (2™) lorsque m; = 0, m; = N (i # j)
h—0 3.’1/‘53.’1?;

Nous ferons la démonstration de 1’égalité (4.9) dans le cas ou m; = m; = 0
(t#5).Bimi=m;=DN (i #j) ou mi=0 et mj = N (i # j), la démonstration
est pareille. ‘ ‘

Soient done 2™ ¢ oF et mi=m;= 0 (i # j:). Nous aurons alors

(4.10) “ﬂM»—uMJrh[ (wM)+—(mM)]+ hﬁ[ wM)+Zzz(w )]+

o
2,
e TR ()40 ()
0w 0%y
Dot
24 L[y O gy (f“ a
(4.11) 8w¢6m;'(w )—2h2[u ) - 2u™—2h ami(m )+
| fi‘ oM M oM :
ta® ) =1 (5 o+ )| o

Mais w0 — A0 9] )+w(wM)] _ umiean o [ o @ M)+

ou L 2u 1. ; .
4 —(wM)] (voir (4.1) et — (o) = = [u¥¥)— 2uM | 4=iD] (voir (4.7) ot (3.4),
(3.8), (2.2)), alors

2. : ‘
T My = L [y g -i0my_ gy M g0 |

e 8a7, 2;1,2

(4.12)

Ainsi la démonstration du lemma 1 est achevée.

5. THEOREME 1. Suppoéoné que Tes hé/potheSes de 2 somt satisfaites, les nom-
bres 'vM et u™ sont def@ms par les formules (3 7), (3.8) et (4.1), (4.2) respectivement
ainsi que : o ‘ ‘

(6.1) M =M M (M € Z)
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Sous ces hypotheéses,
1) Derreur de la méthode des dszérences findes (3.7), (3 8) peut étre est@méa
de la fagom suivanie

| e(h)

2) la méthode des différemces fim‘eé (3.7), (3.8) est convergente, est-a-dire

(5.3) : lim »™ = 0
R0

Démonstration. Comme (5.3) résulte de (5.2) (voir (4.3)) il suffit de
montrer (5.2). ' ' ‘
De (4.1) et de (4.2), nous avons

p~ 4 =y pour ms = 0

yi) — %M pour m; = N

pUI) — U1 pour mi = my= N (1 # j)

(5.4) p D) — pH—TD) pour m; = 0 et m;= N (i # j)

p={=1OD) — 9GO0 poyr my = my = 0 (i # j)

pU=IOD) — =) pour my = N et my =0 (i # j) !
l(i: 1,eyn j=1,.,n MecZ nZ)

11 résulte des égalités dérnieres que
max M = ¢4, min r¥ = P
(55) MeZ MeZ

ol A eZyn Zy, BeZ ~n2Z,
Tenant compte d.e (4.2), (3.8) et en appliquant le théoreme de la moyenne,
nous obtenons

(5-6) — E(h) < nA — f(wA, uA’ uA AIJ) f A A AI @AIJ)

— CATA—'!' bA. A7+ A Aﬂ
| Syt Sty
a 7 7 .
ol ¢t = —f(—-), b = —Jf(—), af = o (—) et les dérivées sont prises aux
ou 6{” OWs;
points convenables (—).
Analogiquement on obtient

(5.7)  e(h) =% = f(a%, uB, uB?, uF) — f(a®, vP, vPT, 0PV

oy Sepi Y aBem

7=1 =1
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Montrons maintenant que

ej_h)

(5.8) ' g oy

Nous allons_faire la démonstratio_n de (5.8) en raisonnant par P’absurde.
Admettons que I'inégalité (5.8) n’est pas vérifide, c’est-a-dire

(5.9) rd > ‘%

En utilisant la définition (3.4) et en tena.nt compte de P'égalité ay; = a7}
- (voir (2.2)), nous obtenons

n

. n
(5.10) Z afrdt 4+ Z bi'r47 4 cdp4
Li=1 =1
=2 Zfa 1)+ 0t | o o)1
h g 2
7%1

1 1 - 1
i 20 (“f’"‘* et = goi Jiwora
Codg=1 i=1
j#1

Z | ] [(r DN _ pdy 1 (p=i=sEDHAN_ pdY] 4 g pa
2h2

i =

oy
ou _
‘ o .o f+1 pour af=0
(5.11) 8(i,) = {_.1 pour af<o

Il résulte des hypothéses (2.2) et (2.6) que

(5.12)

n

1 A 1 g T
(2)

=1
7%l

tandis qu’a partir de (5.5) on arrive 3

pHA)_ 4 <0, r7HD__pd 0, PN __ pd <0, pH{=sENi ) _ pd

(5.13) l :
t=1,..,n j=1,..,n)
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Notons aussi que de (5.9) et du fait que ¢4 < L < 0 (voir (2.2)), il s’ensuit
(5.14) cirt < —e(h)
Des (5.10)—(5.14), nous obtenons

(5.15) Lttt Y bt N et < —e(h)

j=1 t,i=1
ce qui est contraire & (5.6).
De 1a méme fagon on peut montrer que ’inégalité (5.7) nous donne

e(h)

(5.16) B> ~

De (5.8) et de (5.16) (voir aussi (5.5)) il résulte que
(5.17) M) < f-_(_hl% pour M e Z

La démonstration du théoréme 1 est donc terminée.



