

*Janusz Traple*

## On a Boundary Value Problems for Systems of Ordinary Differential Equations of Second Order

### INTRODUCTION

In the present note we are concerned with a system of ordinary differential equations

$$(0.1) \quad x_i'' = f_i(t, x_1, \dots, x_m, x_1', \dots, x_m') \quad (i = 1, \dots, m),$$

and the boundary value problem

$$(0.2) \quad x_i(0) = x_i(h) = 0 \quad (i = 1, \dots, m).$$

Problem (0.1)–(0.2) can be written shortly in vector notation as

$$(0.3) \quad x'' = f(t, x, x'), \quad x(0) = x(h) = 0,$$

where  $x = (x_1, \dots, x_m)$ ,  $f = (f_1, \dots, f_m)$ .

By a *solution* of (0.3) we mean any function  $x: [0, h] \rightarrow \mathbb{R}^m$  with absolutely continuous derivative  $x'(t)$ , satisfying (0.3) almost everywhere on  $[0, h]$ .

Problem (0.3) has been considered by I. Kovač and I. Savtchenko [3]; they have given a solution to this problem in the case of  $f(t, x, x') = f(t, x)$ . In the present note, making use of the method of A. Lasota and Z. Opial [4], we give a generalization and an extension of their results.

Section 1 contains some inequalities of Wirtinger's and Opial's type. Section 2 is devoted to some differential inequalities and in Section 3 we formulate and prove the main theorems.

### 1. INEQUALITIES

For  $x \in \mathbb{R}^m$ ,  $|x|$  denotes the Euclidean norm of  $x$ . In what follows all functions  $x: [0, h] \rightarrow \mathbb{R}^m$  are supposed to be absolutely continuous and such that  $x(0) = x(h) = 0$ .

Inequality 1. If the derivative  $x'(t)$  is absolutely continuous, then

$$\int_0^h |x'(t)|^2 dt \leq \int_0^h |x(t)| |x''(t)| dt.$$

The equality occurs for  $x(t) = (x_1(t), \dots, x_m(t))$ , where  $x_i(t) = A \sin \frac{\pi t}{h}$  ( $i = 1, \dots, m$ ).

Inequality 2 ([2], p. 184). Under the general assumptions,

$$\int_0^h |x(t)|^2 dt \leq \frac{h^2}{\pi^2} \int_0^h |x'(t)|^2 dt.$$

The equality occurs for  $x(t) = (x_1(t), \dots, x_m(t))$ , where  $x_i(t) = A \sin \frac{\pi t}{h}$  ( $i = 1, \dots, m$ ).

Inequality 3 [6]. Under the general assumptions,

$$\int_0^h |x(t)| |x'(t)| dt \leq \frac{h}{4} \int_0^h |x'(t)|^2 dt.$$

The equality occurs for  $x(t) = (x_1(t), \dots, x_m(t))$ , where

$$x_i(t) = \begin{cases} \frac{1}{2} t & \text{for } 0 \leq t \leq \frac{h}{2} \\ \frac{1}{2} (h-t) & \text{for } \frac{h}{2} \leq t \leq h \end{cases} \quad (i = 1, \dots, m).$$

Inequality 4. For any summable function  $p : [0, h] \rightarrow [0, +\infty)$ ,

$$\int_0^h p(t) |x(t)|^2 dt \leq \frac{h}{4} \int_0^h p(t) dt \int_0^h |x'(t)|^2 dt.$$

This inequality is the best possible and we have the equality only if  $x(t) \equiv 0$  or  $p(t) = 0$  almost everywhere in  $[0, h]$ .

Inequality 5. For any square summable function  $p : [0, h] \rightarrow [0, +\infty)$ ,

$$\int_0^h p(t) |x(t)| |x'(t)| dt \leq \left( \frac{h}{4} \int_0^h p^2(t) dt \right)^{\frac{1}{2}} \int_0^h |x'(t)|^2 dt.$$

Proof of Inequality 1. For  $x(t) = (x_1(t), \dots, x_m(t))$ ,  $x(0) = x(h) = 0$ , integrating by parts yields

$$\int_0^h x_i(t) x''_i(t) dt = - \int_0^h x_i'^2(t) dt$$

and hence

$$\int_0^h x_i'^2(t) dt \leq \int_0^h |x_i(t)| |x''_i(t)| dt.$$

Using the Cauchy inequality, we obtain

$$\begin{aligned} \int_0^h |x'(t)|^2 dt &= \sum_{i=1}^m \int_0^h x_i'^2(t) dt \leq \sum_{i=1}^m \int_0^h |x_i(t)| |x_i''(t)| dt \\ &\leq \int_0^h \left( \sum_{i=1}^m x_i'^2(t) \right)^{\frac{1}{2}} \left( \sum_{i=1}^m x_i''^2(t) \right)^{\frac{1}{2}} dt = \int_0^h |x(t)| |x''(t)| dt. \end{aligned}$$

**Proof of Inequality 2.** From the well-known Wirtinger inequality [2] it follows that

$$\begin{aligned} \int_0^h |x(t)|^2 dt &= \sum_{i=1}^m \int_0^h x_i^2(t) dt \\ &\leq \sum_{i=1}^m \frac{h^2}{\pi^2} \int_0^h x_i'^2(t) dt = \frac{h^2}{\pi^2} \int_0^h |x'(t)|^2 dt. \end{aligned}$$

**Proof of Inequality 3.** Our proof is a simple modification (for the vector case) of the proof given in [5] (see also [6]) for the one dimensional version of this inequality.

For

$$y(t) = \int_0^t |x'(s)| ds \quad \text{and} \quad z(t) = \int_t^h |x'(s)| ds$$

we have  $y'(t) = |x'(t)| = -z'(t)$  and  $|x(t)| \leq y(t)$ ,  $|x(t)| \leq z(t)$  for  $t \in [0, h]$ . Hence

$$\begin{aligned} \int_0^{h/2} |x(t)| |x'(t)| dt &\leq \int_0^{h/2} y(t) y'(t) dt = \frac{1}{2} y^2 \left( \frac{h}{2} \right), \\ \int_{h/2}^h |x(t)| |x'(t)| dt &\leq - \int_{h/2}^h z(t) z'(t) dt = \frac{1}{2} z^2 \left( \frac{h}{2} \right). \end{aligned}$$

Thus

$$\int_0^h |x(t)| |x'(t)| dt \leq \frac{1}{2} \left[ y^2 \left( \frac{h}{2} \right) + z^2 \left( \frac{h}{2} \right) \right].$$

Furthermore, using the Buniakowski inequality we get

$$y^2 \left( \frac{h}{2} \right) \leq \frac{h}{2} \int_0^{h/2} |x'(t)|^2 dt, \quad z^2 \left( \frac{h}{2} \right) \leq \frac{h}{2} \int_{h/2}^h |x'(t)|^2 dt$$

and this proves Inequality 3.

**Proof of Inequality 4.** We have, for every  $t \in [0, h]$ ,

$$|x(t)| \leq \int_0^t |x'(s)| ds, \quad |x(t)| \leq \int_t^h |x'(s)| ds.$$

Hence

$$|x(t)| \leq \frac{1}{2} \int_0^h |x'(t)| dt$$

and therefore

$$(1.1) \quad \int_0^h p(t) |x(t)|^2 dt \leq \frac{1}{4} \int_0^h p(t) dt \left[ \int_0^h |x'(t)| dt \right]^2$$

Finally, applying the Schwartz inequality

$$(1.2) \quad \left[ \int_0^h |x'(t)| dt \right]^2 \leq h \int_0^h |x'(t)|^2 dt$$

we get Inequality 4. It is easy to see that equalities in (1.1) and (1.2) with assumption  $\int_0^h p(t) dt > 0$  imply  $x(t) = 0$  in  $[0, h]$ .

The following example shows that, if we replace  $\frac{h}{4}$  by any number  $a < \frac{h}{4}$ , then Inequality 4 fails to be true. Let

$$x_i(t) = \begin{cases} t & \text{for } 0 \leq t \leq k \\ k & \text{for } k \leq t \leq h-k \\ -t+k & \text{for } h-k \leq t \leq h, \end{cases}$$

$$p(t) = \begin{cases} 0 & \text{for } 0 \leq t \leq k \\ 1 & \text{for } k < t < h-k \\ 0 & \text{for } h-k \leq t \leq h, \end{cases}$$

where  $2a < k < \frac{h}{2}$ ,  $i = 1, \dots, m$ . We have

$$\int_0^h p(t) |x(t)|^2 dt = mk^2(h-2k)$$

$$\int_0^h p(t) dt = h-2k, \quad \int_0^h |x'(t)|^2 dt = 2km.$$

Hence  $mk^2(h-2k) \leq 2amk(h-2k)$ , in contradiction with  $2a < k$ .

Proof of Inequality 5 is an immediate consequence of Inequality 4 and the Schwartz inequality.

$$\begin{aligned} \int_0^h p(t) |x(t)| |x'(t)| dt &\leq \left( \int_0^h p^2(t) |x(t)|^2 dt \right)^{\frac{1}{2}} \left( \int_0^h |x'(t)|^2 dt \right)^{\frac{1}{2}} \\ &\leq \left( \frac{h}{4} \int_0^h p^2(t) dt \int_0^h |x'(t)|^2 dt \right)^{\frac{1}{2}} \left( \int_0^h |x'(t)|^2 dt \right)^{\frac{1}{2}} \leq \left( \frac{h}{4} \int_0^h p^2(t) dt \right)^{\frac{1}{2}} \int_0^h |x'(t)|^2 dt. \end{aligned}$$

## 2. DIFFERENTIAL INEQUALITIES

Throughout this Section the function  $x : [0, h] \rightarrow R$  is assumed to have absolutely continuous first derivative  $x'$  and to vanish at both ends of the interval  $[0, h]$ , i.e.,  $x(0) = x(h) = 0$ .

**Lemma 1.** *If*

$$(2.1) \quad |x''(t)| \leq N|x(t)|$$

*almost everywhere on  $[0, h]$  and*

$$(2.2) \quad h < \frac{\pi}{\sqrt{N}},$$

*then  $x(t) \equiv 0$  in  $[0, h]$ .*

*Condition (2.2) is the best possible.*

**Proof.** Inequality 1 and (2.1) imply that

$$\int_0^h |x'(t)|^2 dt \leq \int_0^h |x''(t)| |x(t)| dt \leq N \int_0^h |x(t)|^2 dt.$$

Hence, by Inequality 2,

$$\int_0^h |x'(t)|^2 dt \leq N \frac{h^2}{\pi^2} \int_0^h |x'(t)|^2 dt.$$

If  $x(t) \not\equiv 0$  in  $[0, h]$ , then  $\int_0^h |x'(t)|^2 dt > 0$  and therefore  $1 \leq N \frac{h^2}{\pi^2}$ . Thus (2.2) implies that  $x(t) \equiv 0$ . For  $h = \frac{\pi}{\sqrt{N}}$  the function  $x(t) = (x_1(t), \dots, x_m(t))$ , where  $x_i(t) = A \sin \sqrt{N} t$  ( $i = 1, \dots, m$ ), satisfies (2.1).

**Lemma 2.** *If*

$$(2.3) \quad |x''(t)| \leq N|x(t)| + M|x'(t)|$$

*almost everywhere on  $[0, h]$  and*

$$(2.4) \quad N \frac{h^2}{\pi^2} + M \frac{h}{4} < 1,$$

*then  $x(t) \equiv 0$  in  $[0, h]$ .*

**Proof.** By Inequalities 1, 2, 3 and (2.3) we have

$$\begin{aligned} \int_0^h |x'(t)|^2 dt &\leq \int_0^h |x''(t)| |x(t)| dt \leq N \int_0^h |x(t)|^2 dt + M \int_0^h |x(t)| |x'(t)| dt \\ &\leq N \frac{h^2}{\pi^2} \int_0^h |x'(t)|^2 dt + M \frac{h}{4} \int_0^h |x'(t)|^2 dt. \end{aligned}$$

Therefore, if  $x(t) \not\equiv 0$ , we would have  $1 \leq N \frac{h^2}{\pi^2} + M \frac{h}{4}$ , in contradiction with (2.4).

**Lemma 3.** *If the function  $p: [0, h] \rightarrow [0, +\infty)$  is summable, if*

$$(2.5) \quad |x''(t)| \leq p(t)|x(t)|$$

*almost everywhere on  $[0, h]$  and*

$$(2.6) \quad \int_0^h p(t) dt \leq \frac{4}{h},$$

*then  $x(t) \equiv 0$  in  $[0, h]$ .*

*Condition (2.6) is the best possible.*

**Proof.** The assumption  $x(t) \not\equiv 0$  implies that  $\int_0^h |x'(t)|^2 dt > 0$ . Since, by Inequalities 1, 4 and (2.5), we have

$$\begin{aligned} \int_0^h |x'(t)|^2 dt &\leq \int_0^h |x''(t)||x(t)| dt \leq \int_0^h p(t)|x(t)|^2 dt \\ &< \frac{h}{4} \int_0^h p(t) dt \int_0^h |x'(t)|^2 dt, \end{aligned}$$

it follows that

$$1 < \frac{h}{4} \int_0^h p(t) dt.$$

A simple modification of the example of Denkowski [1] shows that the number  $\frac{4}{h}$  cannot be replaced by any greater.

**Lemma 4.** *If the function  $p: [0, h] \rightarrow [0, +\infty)$  is summable and the function  $q: [0, h] \rightarrow [0, +\infty)$  is square summable, if the inequality*

$$(2.7) \quad |x''(t)| \leq p(t)|x(t)| + q(t)|x'(t)|$$

*is fulfilled almost everywhere on  $[0, h]$  and*

$$(2.8) \quad \frac{h}{4} \int_0^h p(t) dt + \sqrt{\frac{h}{4} \int_0^h q^2(t) dt} < 1,$$

*then  $x(t) \equiv 0$  in  $[0, h]$ .*

**Proof.** Using Inequalities 1, 4, 5 and assumption (2.7), we have

$$\int_0^h |x'(t)|^2 dt \leq \int_0^h |x''(t)||x(t)| dt$$

$$\begin{aligned} &\leq \int_0^h p(t)|x(t)|^2 dt + \int_0^h q(t)|x(t)||x'(t)| dt \\ &\leq \frac{h}{4} \int_0^h p(t) dt \int_0^h |x'(t)|^2 dt + \sqrt{\frac{h}{4} \int_0^h q^2(t) dt \int_0^h |x'(t)|^2 dt}. \end{aligned}$$

Hence, for  $x(t) \not\equiv 0$ , it follows that

$$1 \leq \frac{h}{4} \int_0^h p(t) dt + \sqrt{\frac{h}{4} \int_0^h q^2(t) dt}.$$

in contradiction with (2.8).

### 3. APPLICATION TO DIFFERENTIAL EQUATIONS

Now we state and prove two theorems which are particular cases of the general theory of Lasota and Opial [4].

We shall say that the function  $f: [0, h] \times R^n \rightarrow R^m$  satisfies *condition (C)* (*Carathéodory's condition*), if for every fixed  $t \in [0, h]$ ,  $f(t, p)$  is continuous in  $p$  and for every fixed  $p \in R^n$   $f(t, p)$  is measurable with respect to  $t$ .

**Theorem 1.** Suppose that in (0, 3) the function  $f: [0, h] \times R^m \times R^m \rightarrow R^m$  satisfies condition (C) and the inequality

$$(3.1) \quad |f(t, x, y)| \leq p(t)|x| + q(t)|y| + g(t, x, y)$$

for  $t \in [0, h]$ ,  $x, y \in R^m$ , where  $p(t)$  and  $q(t)$  are summable on  $[0, h]$  and the function  $g: [0, h] \times R^m \times R^m \rightarrow R$  satisfies condition (C) and the following assumption

$$(3.2) \quad \lim_{k \rightarrow \infty} \frac{1}{k} \int_0^h \sup_{|x| + |y| \leq k} g(t, x, y) dt = 0.$$

Under these assumptions, if  $x(t) \equiv 0$  is the unique solution on  $[0, h]$  of the inequality

$$(3.3) \quad |x''(t)| \leq p(t)|x(t)| + q(t)|x'(t)|$$

satisfying the boundary condition  $x(0) = x(h) = 0$ , then problem (0. 3) has at least one solution.

**Theorem 2.** Suppose that in (0, 3) the function  $f: [0, h] \times R^m \times R^m \rightarrow R^m$  satisfies condition (C) and the Lipschitz inequality

$$(3.4) \quad |f(t, u, v) - f(t, \bar{u}, \bar{v})| \leq p(t)|u - \bar{u}| + q(t)|v - \bar{v}|$$

for each  $u, \bar{u}, v, \bar{v} \in R^m$ , where the functions  $p(t), q(t)$  are summable on  $[0, h]$  and  $f(t, 0, 0)$  is summable over  $[0, h]$ . Under these assumptions, if  $x(t) \equiv 0$  is the unique

solution on  $[0, h]$  of inequality (3.3) satisfying the boundary condition  $x(0) = x(h) = 0$ , then problem (0.3) has exactly one solution.

By a *solution* of inequality (3.3) we mean any function  $x: [0, h] \rightarrow R^m$  with absolutely continuous derivative  $x'(t)$  satisfying this inequality almost everywhere on  $[0, h]$ .

**Proof of Theorem 1.** In order to prove Theorem 1, it is sufficient to verify the assumptions of Theorem 2.1 in [4]. For  $t \in [0, h]$ ,  $x, y \in R^m$  we set:

$$\begin{aligned}\tilde{f}(t, x, y) &= (y, f(t, x, y)), \\ \tilde{F}(t, x, y) &= \{(u, v) \in R^m \times R^m; u = y, |v| \leq p(t)|x| + q(t)|y|\}, \\ \tilde{L}(x, y) &= (x(0), x(h)).\end{aligned}$$

From the definition it is clear that  $\tilde{F}(t, x, y) \in \text{cf}(R^m)$  is homogeneous and continuous in  $(x, y)$  for each  $t \in [0, h]$ . If  $A \subset R^m$  is closed, then for every fixed  $(x, y)$  we have

$$\begin{aligned}\{t \in [0, h]; \tilde{F}(t, x, y) \cap A \neq \emptyset\} \\ = \{t \in [0, h]; p(t)|x| + q(t)|y| \geq \delta(0, A \cap \{(y, v); v \in R^m\})\}.\end{aligned}$$

Hence  $\tilde{F}(t, x, y)$  is Lebesgue measurable in  $t$ . Setting  $\varphi(t) = p(t) + q(t)$  we have

$$|(u, v)| \leq \varphi(t) \quad \text{for } (u, v) \in \bigcup_{|(x, y)|=1} \tilde{F}(t, x, y)$$

and  $\varphi(t)$  is summable on  $[0, h]$ .

Condition (C) follows from the assumptions of Theorem 1. Note that  $\delta(\tilde{f}(t, x, y), \tilde{F}(t, x, y)) \leq g(t, x, y)$  so (3.2) implies assumption (2.1) in Theorem 2.1 of [4].

It follows from the definition that  $\tilde{L}(x, y)$  is continuous and homogeneous. Thus conditions 1<sup>o</sup>, 2<sup>o</sup>, 3<sup>o</sup> of Theorem 2.1 in [4] are fulfilled. Finally, the uniqueness of solution of the homogeneous boundary value problem

$$(x'(t), y'(t)) \in \tilde{F}(t, x(t), y(t)), \quad \tilde{L}(x, y) = (0, 0)$$

is assumed in our theorem.

Now, a straightforward application of Theorem 2.1 of [4] completes the proof.

**Proof of Theorem 2.** By condition (3.4), the integrability of  $f(t, 0, 0)$  and Theorem 1, the existence of a solution of problem (0.3) is evident.

For to prove its uniqueness, suppose that  $x_1(t), x_2(t)$  are two solutions of (0.3); then  $x(t) = x_1(t) - x_2(t)$  satisfies (3.3) and the boundary condition  $x(t) = x(h) = 0$ , so that from the assumptions of Theorem 2 we have  $x(t) \equiv 0$ , which proves our theorem.

The following theorems and corollary are simple conclusions from Theorems 1 and 2 and Lemmas 1—4, respectively.

**Theorem 3.** Assume that the function  $f: [0, h] \times R^m \rightarrow R^m$  satisfies condition (C) and the inequality

$$|f(t, x)| \leq N|x| + g(t, x) \quad \text{for } t \in [0, h], x \in R^m$$

where the function  $g: [0, h] \times R^m \rightarrow R$  satisfies condition (C) and the following assumption

$$(3.5) \quad \lim_{k \rightarrow \infty} \frac{1}{k} \int_0^h \sup_{|x| \leq k} g(t, x) dt = 0.$$

Under these hypotheses, if condition (2.2) holds true, then there exists at least one solution of problem (0.3).

Corollary 1. If function  $f(t, x)$  satisfies condition (C) and the inequality

$$|f(t, u) - f(t, v)| \leq N|u - v| \quad \text{for every } u, v \in R^m,$$

with  $f(t, 0)$  summable on  $[0, h]$  and, if condition (2.2) holds true, then there exists exactly one solution of problem (0.3).

The proof of Theorem 3 (Corollary 1) follows immediately from Theorem 1 (Theorem 2, respectively) and Lemma 1.

Theorem 4. Suppose that the function  $f: [0, h] \times R^m \times R^m \rightarrow R^m$  satisfies condition (C) and the inequality

$$|f(t, x, y)| \leq N|x| + M|y| + g(t, x, y) \quad \text{for } t \in [0, h], x, y \in R^m$$

where the function  $g: [0, h] \times R^m \times R^m \rightarrow R$  satisfies condition (C) and the following hypothesis

$$(3.6) \quad \lim_{k \rightarrow \infty} \frac{1}{k} \int_0^h \sup_{|x| + |y| \leq k} g(t, x, y) dt = 0.$$

Under these assumptions, if condition (2.4) holds true, then there exists at least one solution of problem (0.3).

Corollary 2. If function  $f(t, x, y)$  satisfies condition (C) and the inequality

$$|f(t, u, v) - f(t, \bar{u}, \bar{v})| \leq N|u - \bar{u}| + M|v - \bar{v}|$$

for every  $t \in [0, h]$ ,  $u, v, \bar{u}, \bar{v} \in R^m$  with  $f(t, 0, 0)$  summable on  $[0, h]$  and, if condition (2.4) holds true, then there exists exactly one solution of problem (0.3).

The proof of Theorem 4 (Corollary 2) is an immediate conclusion from Theorem 1 (Theorem 2, respectively) and Lemma 2.

Theorem 5. Assume that the function  $f: [0, h] \times R^m \rightarrow R^m$  satisfies condition (C) and the inequality

$$|f(t, x)| \leq p(t)|x| + g(t, x) \quad \text{for } t \in [0, h], x \in R^m,$$

where the function  $g: [0, h] \times R^m \rightarrow R$  satisfies condition (C) and the assumption (3.5) and the function  $p: [0, h] \rightarrow [0, +\infty)$  is summable on  $[0, h]$ .

Under these hypotheses, if condition (2.6) holds true, then there exists at least one solution of problem (0.3).

Corollary 3. If function  $f(t, x)$  satisfies condition (C) and the inequality

$$|f(t, u) - f(t, v)| \leq p(t)|u - v| \quad \text{for every } u, v \in R^m,$$

with  $f(t, 0)$  and  $p(t)$  summable on  $[0, h]$  and, if condition (2.6) holds true, then there exists exactly one solution of problem (0. 3).

The proof of Theorem 5 (Corollary 3) is an immediate conclusion from Theorem 1 (Theorem 2, respectively) and Lemma 3.

**Theorem 6.** Suppose that the function  $f: [0, h] \times \mathbb{R}^m \times \mathbb{R}^m \rightarrow \mathbb{R}^m$  satisfies condition (C) and the inequality

$$|f(t, x, y)| \leq p(t)|x| + q(t)|y| + g(t, x, y) \quad \text{for } t \in [0, h], x, y \in \mathbb{R}^m,$$

where the function  $g: [0, h] \times \mathbb{R}^m \times \mathbb{R}^m \rightarrow \mathbb{R}$  satisfies condition (C) and the assumption (3.6). Suppose that the function  $p: [0, h] \rightarrow [0, +\infty)$  is summable and the function  $q: [0, h] \rightarrow [0, +\infty)$  is square summable.

Under these hypotheses, if condition (2.8) holds true, then there exists at least one solution of problem (0. 3).

**Corollary 4.** If function  $f(t, x, y)$  satisfies condition (C) and the inequality

$$|f(t, u, v) - f(t, \bar{u}, \bar{v})| \leq p(t)|u - \bar{u}| + q(t)|v - \bar{v}|$$

for every  $u, \bar{u}, v, \bar{v} \in \mathbb{R}^m$  with  $f(t, 0, 0)$  and  $p(t)$  and  $q^2(t)$  summable on  $[0, h]$  and, if condition (2.8) holds true, then there exists exactly one solution of problem (0. 3).

The proof of Theorem 6 (Corollary 4) follows immediately from Theorem 1 (Theorem 2, respectively) and Lemma 4.

#### REFERENCES

- [1] Z. Denkowski, *On the boundary value problems for the ordinary differential equation*, Zeszyty Naukowe UJ, Prace Matematyczne 12 (1968), 11—16.
- [2] G. Hardy, J. Littlewood, G. Polya, *Inequalities*, Cambridge 1934.
- [3] Ю. И. Ковач, Л. И. Савченко, *Решение одной краевой задачи для нелинейной системы обыкновенных дифференциальных уравнений второго порядка*, Украинский Математический журнал 20 (1968), 34—45.
- [4] A. Lasota, *Une généralisation du premier théorème de Fredholm et ses applications à la théorie des équations différentielles ordinaires*, Ann. Polon. Math. 18 (1966), 65—77.
- [5] C. Olech, *A simple proof of a certain result of Z. Opial* Ann. Polon. Math. 8 (1960), 61—63.
- [6] Z. Opial, *Sur une inégalité*, Ann. Polon. Math. 8 (1960), 29—32.