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. ~On a Boundary Value Problems for Systems
of Ordinary Drfferentlal Equatlons of Second Order

INTRODUCTION
/

In the present note we are concerned w1th a system of ordinary differential

equatlons

0.1 - x;) = fi(¢, Xys s Xy e X)) (G=1,..,m),

and . the boundary value problem o | '
. (0.2) : x0)=xh) =0 (i=1,..,m).
a ' Problem (0. 1)—-(0 2) can be written shortly in vector notation as

©3) = fxx),  x0)=x(h) = g

where x = (%15 eees Xp)s £ = (S35 eees fo)-

By a solution- of (0.3) we mean any function x: [0, A]—R™ with absolutely
continuous derivative x'(¢), satisfying (0.3) almost everywhere on [0, A}.

Problem (0.3) has been considered by I. Kova¢ and I. Savtchenko [3]; they
have given a solution to this problem in the case of f(¢, x, x") = f(¢, x). In the
present note, making use of the method of A. Lasota and Z. Opial [4], we give
a generalization and an extension of their results.

Section 1 contains some inequalities of Wirtinger’s and Opial’s type. Sectlon 2

" is devoted to some differential 1nequa11t1es and in Section 3 we formulate and prove
the main theorems ~ -

1. INEQUALITIES

For x € R™, |x| denotes the Euclidean norm of x. In what follows all functions
: [0, k] R™ are supposed to be absolutely continuous and such that x(0) = x(#)

§ o
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Inequality 1. If the &erivative x'(?) is absolutely continuous, then
) . , , .
[1x'(B)Fdr < [ lx(@llx"(5)ldt .
0 0

The equality becurs for x(8) = (%,(t), -, X}, where x(f) = Asin %’ (=1, ..., m).

- Inequality 2 ([2], p. 184). Under the general assumptions,
h h2 h
Jwra <2 [wora.
0

The equality occurs for x(t)'= (xl(t) » X,(1)), where x(f) = 4 sm — (1 =1,..,m).

Inequality 3 [6]. Under the general assumptlons

h

[ oo <g [wora.

0

The equality occurs for x() = (x'l(t), , X,,(1)), where S
-;- t for 0<1¢ <g A ‘
x{t) = 1. B i=1,..,m).

Inequahty 4. For any summable function p: [0, #]—>[0, 4 o0),

f POX()dt < J P f s
This inequality is the best possible and we have the equahty only if x(f)=0 or

p(t) = 0 almost everywhere in [0, A].
Inequality 5. For any square summable function p: [O h]—[0, 4 o),

[pox@ixa <3 f rod) J wrdr.

Proof of Inequality 1. For x(f) = (x,(?), ..., xm(t)) x(O) = x(h) = 0, inte-
grating by parts yields ‘

3 : h‘ .
R CEACL A EACL

and hence

h ok : )
[xXydr < [ ix@llx/@lde.




: Using the Cauchy inequality, we obtain

A m k . m: ke ,
[Ix@pde = Y [xx@0de < 3 [ 1x@lx@de

i=10 | =1
o< f O Zm_x;"(t))‘idt =[xl ).

< fe=1

Proof of Inequality 2. From the well-known Wirtinger inequality [2] it

follows that
h m h
f lx(@Pde =D [ xi(e)at

i=10

<2 fx, (Hydt = —J |x'()*de .

“Proof of Inequahty 3. Our proof is a smple modification (for the vector
case) of the proof give in [5] (see also [6]) for the one dimensional version of this
inequality.

For

t h
y(t) = f x(Oldt  and  z() = f |x'(2)dt

we have y'(f) = (x'(f)] = —z (t) and |x(0)] < y(@), |x@)| <z(?) for te |0, h]
Hence
hj2 - K2

[ v ol < [ yorod=35(),

ko A
[ oo <— [20:0d=3 ().
2 hf2 ‘ .

Thus , | '
[ oo <3| G+ G

" Furthermore, using the Buniakowski ‘inequality we get
) ]
h ,
) <3 f x@ra, 2o <; [Iord
' hj2

and thlS proves Inequality 3.
Proof of Inequality 4. We have, for every te [0 h],

X1 < [ ¥l 5] < [ Wl
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Hence |

<o) <§ [ wea

and therefore

an f PO <3 f Py [ f o]
Fmally, applylng the Schwartz inequality
(1.2) | { f x’ (t)ldt] <h f |x'(P)2dt

we get Inequality 4. It is easy to see that equalities in (1.1) and (1.2) with assumption
h .
[ p(#)dt > 0 imply x(z)=0 in [0, A].

[}

. ‘ ‘Thg following example shows that, if we replace g by any number o < P
then Inequality 4 fails to be true. Let :
¢ for 0<1<k
x(H=1k for k<t<h—k
—t+k for h—k<t<h,
0 for 0<t<k
p( =11 for k<t<h—Fk
0 for h—k<t<h,

where 2a < k < ]E'z, i=1,..,m ‘We have

fh p(D)x (D)t = mk*(h—2Kk)

h - h
[pydt=h—2k, [Ix'@)Pdt=2km.
0 S0 ’ :

Hence mk*(h—2k) < 2amk(h—2K), in contradiction with 2a < k.
Proof of Inequality 5 is an immediate consequence of Imequality 4 and
the Schwartz inequality. :
) B

fp(t)lx(t)nx'(mdt <(f pz(t)lx(t)i,zdt)% ( f |x'(z)|2'd¢)%

]

<(%f P fh o (f oraf <G f P (t)d’)éfh X't
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2. DIFFERENTIAL INEQUALITIES
Throughout this Section the function x : [0 hl—>R is assumed to have absolutely

continuous. ﬁrst derivative x’ and to vanish at both ends of the interval [0, 4], i.e.,
x(0) = x(h) =

Lem;na 1. If o
2.1) Ix"()] < Nix (@)
almost everywhere on [0, h] and
(2.2) ‘ h<-Z

. , VN’
‘then x(0)=0 in [0, h).
Condition (2.2) is the best possible.

Proof. Inequality 1 and (2.1) imply that

] h . A
[ X @ < [Ix"@llx@ldt <N [ 1x(@)Pdr.

Hence, by Ineqhality 2,
. h

) F ]
2
[ wera <n [ wora.
] Ty

Iz ) 2 " .
If %())# 0 in [0, ], then [I¥()ldt >0 and -therefore 1 <N 2. Thus (22)
0

implies that x(f)=0. For h=—= the function x(f) = (x,(t), ..., %)), Where

VN
x(f) = AsinVN t (i =1, ..., m), satisfies (2.1).
Lemma 2. If
(2.3) - X S Nix@l+MIx'()
* almost everywhere on [0, h] and ,
2.4) th—i—Mh<1

then x()=0 in [0, A).
Proof. By Inequalities 1, 2, 3 and (2 3) we have

f lx'())Fdt < r Ix"(@llx(®)ldt < N f lx(5)Pdt+M f (%' (0)\de

N f ¥ OPdr-be f O,




.
i

foadt TR T

’ 14 R .=’: R RPN L

Therefore, if x(f) #0, we would have 1<N 2—2'+M ;, in contradiction with
@4). \ |
Lemma 3 If the function p: [0 hl—[0, +oc>) is summable, if

@5 : XA <p@Ix ()|

almost everywhere on [0, h] and

h
(2.6) | f Pt <3,

then x()=0 in [0, A].
Condition (2.6) is the best possible.

o - h .
Proof. The assumption x(¢) # 0 implies that [ |x'(f)|*d¢ > 0. Since, by Inequa-
0 N B
lities 1,4 and (2 5), we have

f 1x(r>12dt < f lx"(t)llx(t)ldt < f PO dt

<k f p(ydt f W,

- it follows that

. h
h
1<g of p()dr.
‘ 4
A simple modification of the example of Denkowski [1] shows that the number —

h
cannot be replaced by any greater.

Lemma 4. If the function p: [0, k][0, +oc) is summable and the functzon
g: [0, h]—[0, +00) is square summable, if the inequality

.7 Ix"(O] <p@Ix@I+q@)x'@)
is fulfiled almost everywhere on '[0, h] and
2.8) | b [ pyar+ ]/gf [qwa<1,

then x(t)=0 in [0, h].
Proof Using Inequah’ues 1,4, 5 and assumptlon (2.7), we have

f XAt < f i @lIx@ldt




!

o h ' h ‘ -
- < [p@lx(Pdr [ q@x@Ix()lde

h ko SRk
< f p(dt f O Pde+ ]/% f ot f @)

Hence for x(t) # 0, it follows that.

-2 th (t)dt—!—l/ f q(t)dt

in contradiction with (2.8).
3. APPLICATION TO DIFFERENTIAL EQUATIONS

Now we state and prove two theorems which are particular cases of the general
theory of Lasota and Opial [4]. _

We shall say that the function f: [0, h] X R*-> R™ satisfies condition (C) (Cara-
théodory’s condition), if for every fixed t e [0, ], f(¢, p) is contmuous in p and for
every fixed pe R* f(¢, p) is measurable with respect to f.

Theorem 1. Suppose that in (0, 3) the functton S [0, B} X R™X R™-> R™ satisfies
condition (C) and the inequality ' :

6D L % ) < PO+ g@ 48, x, )

Jor te [0, k], x,y € R™, where p(t) and q(t) are summable on [0, k] and the function
g:[0,h]x R"x R™—~R satisfies condition (C) and the following assumption

(32 1

@2 s ot =

Under these assumptions, if x(f)= 0 is the unique solution on [0, h) of the unequ-
ality : :

1 (3.3) N Ix"(0)] < P(t)lx(t)]+61(t)IX'(f)l

satisfying the boundary condition x(O) =xM)=0, then problem (0. 3) has at least
one solution.

Theorem 2. Suppose that in(0. 3) the function [0, A] >5R’",>< R™—>R™ satisfies
condztton (C) and the Lipchitz inequality

(34) L@ u, ) —ft, u, 9)| < p()lu—ul+q@)v—|

N Jor each u, u, v, v« R™, where the functions p(f), q(f) are summable on [0, h] and
J(¢,0,0) is summable over [0, h]. Under these assumptions, if x(t)=0 is the unique
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solutzon on [0, ] of inequality (3.3) satisfying the boundary condztton x(0) = x(k)
=0, then problem (0.3) has exactly one solution.

By a_solution of inequality (3.3) we mean any function x: [0, #]-R™ with
absolutely’ continuous derivative x'(¢) satlsfylng this 1nequa11ty almost everywhere
on [0, A]. ,

Proof of Theorem 1. In order to prove Theorem 1, it is sufficient to verify
the assumptions of Theorem 2.1 in [4]. For t€[0, A], x,y ¢« R™ we set:

7%, ) = (9.1, %, ). |
F(t,x,y) = {u,v) e R"X R™; u=y, [v| <p@xI+q@yl},
L(x, ) = (x(0), x(h).
From the definition it is clear that %(t x,y) e cf (R™) is homogeneous and con-
tinuous. in (x, y) for each te[0,Al.IfAC R’"8 is closed then for every fixed (x, »)
we have
{te[0,h]; F(t,x,5) 0 A # B} |
= {te[0,2]; p(O)Ix|-+q@®Iyl = 60, 4N {(y,v); veR™}).

Hence ?‘(t, x, ) is Lebesgue measurable.in t. Setting ¢ (7) = p(¢)-+ g () we have
@) <g() for (@Me U Ft,x,)

[ =1

-

and ¢(f) is summable on [0, A].
Condition (C) follows from the assumptions of Theorem 1. Note that & fN(t, x,¥),
FN(t, x, y)) < g(t, x,y) so (3.2) implies assumption (2.1) in Theorem 2.1 of [4].
It follows from the definition that f(x, y) is continuous and homogeneous.

Thus conditions 1°, 2°, 3.° of Theorem 2.1 in [4] are fulfiled. Finally, the uniqueness
of solution of the homogeneous boundary value problem

(X', Y @) € Flt, x(®), »(8), L(x,») = (0,0)

is assumed in our theorem. ‘
Now, a straightforward apphcatlon of Theorem 2.1 of [4] completes the proof.
Proof of Theorem 2. By condition .(3.4), the integrability of f(¢,0,0) and
Theorem 1, the existence of a solution of problem (0. 3) is evident. ,
For to prove its. uniqueness, suppose that x,(), x,(?) are two solutions of (0. 3)
then x(f) = x,(f) = x,(¢) satisfies (3.3) and the boundary condition x(f) = x(h) =
so that from the assumptions of Theorem 2 we have x(#)= 0, which proves our _
theorem. :
The following theorems and corollary are snnple conclusmns from Theorems 1
and 2 and Lemmas 1—4, respectively.

Theorem 3. Assume that the function f: [0, h]xX R+ R" satzsﬁes condztzon
(C) and the inequality

D) < Nixl+g(t,x) for te[0,h], xeR”




- (3.5) - . llmkfsupg(t x)dt = 0.

where  the ﬁmctzon g:[0, Al x R'”+R satlsﬁes condition (C) and the followmg
assumptzon

Under these hypotheses, if condition (2.2) holds true, then there exists at least one
solution of problem (0. 3).

Corollary 1. If functzon f(t, x) satisfies condztzon (C) and the mequahty
Lf(t, )—f(t,v)] < Nlu—v| for every u,ve R™, ’

wzth f(t,0) summable on [0, h] and, if condition (2 2) holds true, then there exists
exactly one solution of problem (0. 3).

The proof of Theorem 3 (Corollary 1) follows 1mmed1ately from Theorem 1
(Theorem 2, respectively) and Lemma 1.

Theorem 4. Suppose that the function f: [0, h]xR’”x R™—>R™ satisfies con-

dition (C) and the inequality
1At x, 9| < Nix|+Mlyl+g(t,x,y) for te[0,h], x,yeR"

where the function g: [0, h] X R™ X R™—>R satisfies condition (C) and the following
hypothese .

3.6 t, dt ~0.

(3.6) im - f |x|§f‘;1y?<kg( X, )

Under these ass'umptions if condition (2, 4) holds true, then there exists at least one
solution of problem (0, 3).

Corollary 2. If function f(t,x,y) satzsﬁes condition (C) and the inequality
LG u,v) =12, u, v)| < Nlu—~ul+Mp—|

Jor every te[0,h), u,v,u,veR™ with f(t,0,0) summable on [0, h] and, if con-
dition (2.4) holds true, then there exists exactly one solution of problem (0. 3).

The proof of Theorem 4 (Corollary 2) is an immediate conclusion from Theo-
rem 1 (Theorem 2, respectively) and Lemma 2.

- Theorem 5. Assume that the functwn f:10, h]><R”’—>R’" satisfies condition

(C) and the inequality

|/, )l <p()lx]+g(t,x) for te[0,h], xeR",

where the functzon 2:10, k] X R™— R satisfies condition (C) and the assumption (3.5)
and the function p: [0, h]—[0, + oo) is summable on [0, h].

* Under these hypotheses, if condition (2.6) holds true, then there exists at least
one solutton of problem (0. 3).

Corollary 3. If function f(t, x) satisfies condition (C) and the mequaltty
[f(t, w)—f(t, )| <p(®)|u—v| for every u,veR",

167
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with f(r 0) and p(?) summable on {0, h] and zj’ comhﬁon (2 6) holds true, then there :
exists exactly one solution of problem (0. 3). ;
The proof of Theorem 5 (Corollary 3) is an lmmedlate conclusion from Theo-
rem 1 (Theorem 2, respectlvely) and Lemma 3.
Theorem 6. Suppose that the function f: [0, h]X R"X R"—>R™ satisfies con-
dition (C) and the inequality

£, %, ) <pOixl+a@ -+, x,5) for 1[0, A, x,yeR'f’,

where the function g : [0, h}x R™X R™ R satisfies condition (C) and the assumption
(3.6). Suppose that the function p: [0, h]—[0, 4 o) is summable and the function
q: [0, h]—[0, 4 o0) is square summable.

Under these hypotheses, if condition (2.8) holds true, then there exists at least
one solution of problem (0. 3).

Corollary 4. If function f(t, x,y) satisfies condition (C) and the inequality

Jor every u,u,v,veR" with f(¢,0,0) and p(f) and q*(t) summable on [0, k] and,.
if condition (2.8) holds true, then there exists exactly one solution of problem (0. 3).

The proof of Theorem 6 (Corollary 4) follows immediately from Theorem 1
. (Theorem 2, respectively) and Lemma 4. :

-
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