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Stanisltaw Sedziwy

Asymptotlc propemes of solutmns of nonlmear dlﬂ'erentlal equatlons of
. the higher order

" 1. Consider a differential equation - ‘
a YO+ oy m Ut Gy Hf(Y) = p (1)
in which a,, ..., a,_; are positive constants and the functlons f{y) and p(¥)
are contmuous in their respective arguments

_ It will be assumed in the sequel mthout any- further exphclt mention that
all the roots of the' polynomlal :

"l’(l) e, A + +ﬂm 1
‘have negatlve ‘real parts (wp(l) is a Hurwltz polynomla,l) and that
| yf(y) > 0

' for all ¥y #0, o : J
' The solutlons of (1) are said to be globally bounded, if there is a constant

" D >0 such that for any solution: ¥(t) of (1) we have
ly(®)| <D, W) < D, ..., ly»=(t)] < D

for ¢ > T, where T depends only on the solution y(f).
The trivial solution, y(f) =0, of (1) is said to be globally asymptotwally
stable, 1f for every solutlon y (1) of (1) we have ,

hm (iy(t)|+iy O+ ... +ly=2) = 0.

- The object of this note is to give, sufﬁclent conditions of the global bounded-

E , ness {the glohal asymptotic stability) of the -solutions of the equa.tlon ).

The results of the note are obtained by the apphcatlon of the Liapunov di-
reet (or second) method.

We replace (1) by the eqmvalent system of the ﬁrst ordet dlﬂerentlal
equations, considered next as a speclal case of dlfferentlal equatlons of the



a.utoma.tlc control [1]. Such an approach ‘admits the use of the: Lla,punov fune-
© tion ‘without its effective construction; the existence of the Liapunov function
with required properties follows from the sulta,ble theorems of the theory
of automatic control.

The fo]lowmg notations will be used in the sequel. Capital letters 4, q,
H,I,L, P,Q, 8 denote matrices, small letters a, b, c, ¢, 7, ¢ denote the co-
lumn-vectors. An asterisk, denotes the hermitian tra,nsposiﬁion and thus a*b
= (@, b) is a scalar product of the vectors’'e and b. |a| ‘denotes the norm of
the vector a and is defined as la| = }/{a, a)# A > 0 denotes that the matrix
A i3 symmetric and that the quadratic form (2, Ax) is positive definite. I de-
notes the unit matrix. If 4 is square its determinant is |A4].

We will consider the cases of bounded and unbounded f(y) separately.
The case of the function f{y) bounded as a simpler one will be considered
firstly. The theorems of the subsequent section are the n-dimensional ana-
logue of the results given in [13]. : , )

2. Theorem 1. If the functions f(y), p(t) satisfy the inequalities

i< for’ ye(—oo, 00),

(@) ¥ |
1 ()] < M, pr(sms} <M, for t>0,

then the solutions of (1) are globally bounded. . s
Proof. In place of (1) let us consider the equwalent system
- 3) ‘o = Avtalj(e)—p(®)], o —(b,a),
where '
0 1 0. 0 0 1
0 ¢ 1.. 0 0 0
A= . BRI . N a=] "1, b = y
0 0. 0.. 1 10
~lp—-1 —On_p —‘a]_ 1 0
Ty
/
z=]" y . Y=0 ‘
Tn—1

The prooi of the theoremis reduced to showing that all solutions of (3)
are bounded.
Let the funetions V(m) and W(w, g, t} be defined as follows

V@) = (@ Ia),  Wie, 0 1) = (o, 8)+ (@) | po)ds-+ o,
: . ‘ 0



where L, ¢, y satisfy the- conditions

@) - LA+A*L : —@, @>0, arbitrary
A*c+yb =0, (a,¢) = —1. '
Since |4 —AiI| is a Hurwitz p'olynomia.l, there is a positive‘de,ﬁnite symmetric
matrix L satisfying (4) (see [1], pp. 14-19), - : o
Define in (2, o, t)- space the sets

A(0, C) = (@, 0,1: V(@) < O,y |Wia, 0, ] < G,
7(Cyy Oy, 1) = {(%, 0): (@, 0,1) € A(Cy, Cy), t =1}, ,
Z(0i, O =Frd(Cy, 0. .

The sets 4, n, X have the following properties: -

(a) For each pair of contants C, » 0y, there exists a bounded domain
2(0y, Cy) independent of ¢ such that =(C,, 0,, %) C 2(Cy, 0y), for t > 0. Cor-
Tesponding to any point (#,, a,) there are C, 0, such that (2, oy, ) € A(C,, C,)
for all . o

(B) There exist constants €, 0, such that if 4 solution of (3) has an ini-
tial point belonging to the set Z( Cy, Cy) (C, = Oy, 0, > C,) then it enters the
domain 4(C,, C)\Z(C,, C,) and -so_it remains in 4. _ 4 ‘

(y) Corresponding to any 51; c,, o> (72 there is an M ((71, (72) > 0 such

that if (¢, 0,1) ¢ 2(0,, Cy), Cs < O, < Oy, then

AW|jdt < —M(C,, Cy), dVjdt < —M(C,, Ty .

- d|W|[dt, dV|d¢ denote the derivatives of the functions |W|, V along the solu-

tions of (3) (the total derivatives of {W| and V), , .
The property (a) follows from the assumption (2) and the formulas

lim V(#) = oo, ﬁu|1~|sup1W(m, o, 1)} = co..
|#]=»00 - : |2], [a]—+c0 e

Since & consists of the surfaces given by conditions V() = 0y, |W (&, o, t)}

= Uy, so to show (B) it is enough to demonstrate that for sufficiently large

0y, G, if (w,0,1) € Z(C,, C,), then derivatives dV/dt, d|W|/dt caleculated in
- this point are both negative. These derivatives by virtue of (4) are -

dVidt = —(@, Qa)+2(z, La)[f (s) —p (1)]
(5) | < — (@, Q)42 My( M+ M) |z| (@, La)| < M),
' d|W|jdt = —f (o) sgn W (z, o, t).

If o, is large enough, then for |x| > g, the first of the formulas (5) implies
dV|(dt < 0. By the second of the formulag (6) the inequality d|W|/dt < 0 holds
if and only if the points (v, 0, ) ¢ 2 satisfying W(z, o, t) — C, lie in the half-
Space ¢ > 0, and the points satisfying W(z, 0,?) = —C, lie in the half-space

0 < 0. This property of X will take place, if corresponding te C, we shall

\ .




‘thoose (wha,t always can be done) a oonstant C’ (01) suoh, that the system
- of equatlons ; ‘

"W(a": 01 )] = 02(\.01), ( ) =
has no rea.l roots. :

Takmg G %0 1arge that the sphere (@, 2) = gg is oontalned in the set V(w)

< 0, and putting C, = Cyf 01), we obtain constants 01, 0’2 sa.tlsfylng {B8).

The property (y) follows from the definition of numbers C’l, 0, and the
continuity of the funections le{/dt, dv/dt in the set I'= {(z, o t) (m a,t)
aZ2(0y, Cy),. U¢ <O Cc, 1=1,2}

Denote now by x(t), a(t) a solution of the system (3) through the point
(% o, %), By (a) there exist C,,C, such that (av.,,ao,to)eZ(Cl,O,), by (8)
we have (w(t)(, a(t)) ed (C‘l, G,) for t > t, and from (y) it follows that (w(t), a(d) -
reaches the set 4G, 2) in a finite time. As n(C’l, 02, t) is bounded, 80.3ll
soliations of (3) are bounded and the “assertion of Theorem 1 holds.

Theorenﬁ 2. If the functwns f(y), p(t) satisfy the conditions
) : 0<M2<fy>sgny My, Jor yl>y,,
|p(t)| M0<M29 _ Jor , t=>90,

‘then the solutions of (1) are globally bounded. ‘ T

~ Proof. As previously we will demonstrate the boundedness of solutlons

of the equivalent system (3). co -
Define the functions Vl(w), Wiz, o) by ‘ ’

j Vl("v’) (.'D L‘v), - Wiz, o) = (e, 97)+7'°'7
where L ey y sa.tlsfy (4 and let Al, Z; be the sets
4,(C4, Oz) = {(m o): V1(5v) s 01: | Wy, 0)] < 0y,
2(019 Ca) =Frdy 0y, 0y). . ‘ !

The sets A4,, X, have the properties (a), () (y) formulated in the proof
of Theorem 1. We shall prove (f), the. rema,uun,g propertles are demonstrated
‘a8 previously.

" The total derivatives of V1 and [W;| are
| Vit = — (@, Q@) +2(@; La)[f (o) —p (9],
leIth =—[f(0) —P(t)}SgnWI(w o) .
. So 4V 1/dt <0 m the points of X, sa.tlsfymg the condition Vl(m) C; w1th
- sufficiently large 01 Let 03(6,) be chosen so.large that the system

: Wy, yo) = 027 Vi) = 61
or the system . : R _
. ‘ - Wi, —yo) = ""_025 Viwy = C,
has no real roots. '



Then in the pomts (w, a) satlsfymg IWl(w, g)] = Gg ((3’2 G’a) we . have
d1W1|/dt -what ' shows. the property (f). .

From (a), (8), (») in the way just described the dn*ect proof of Thﬁorem 2-
follows at once.- .-

- Corollary. If the funcmo'n p(t) is periodic with the perwd ) wnd the agsum-
ptions of Theorem 1 or 2 hold, then the equamon (1) has at least one periodic
solution with. the ‘period o.

Proof (see [12]). Let a(t; @y, 0o, b))y (15 wo, 6,y 1) be a solution eof (3)
.through the pomt (g, Ggy To)- We defme the transformation 7, of {», o)+ space

ot {Zos Uo)-’{$(to+ w5 moy "o: to), o(to+ w, @gy Goy to)} -

The sets 4, and- n(Gl, Cyy 1o) (2o flxed) ‘are homeomorphlc with a closed
n-cell and are mapped by 7, onto itself. So by the Brouwer fixed-point theo-
Tem the mapping 7, has a fixed point and this proves the corollary.

3. In the subsequent sections the case of unbounded function f(y) will be
considered. We will be concerned with equations of more general form (in-
‘cluding (1) as a special case) ' ‘

M Y™t YO ED A i y‘“*"’)+ak+1y<’”"‘"”+ A any = p(t),

where a; (y =1, ..,1m, §#k) are posmve consgtants.

Agsume that, correspondmg to numbers ajs, there is a posmve consta.nt hi
such that
E p(4) ﬁA"‘+a11"-’1+.;.+hka”“"+....+an

is a Hurw1tz polynomial.

“For k ='n this assumption is reduced to the one given in Section 1.

The third-order equa,tmns of the form considered have been investigated
by E. A. Barbasin [2],-J. O. C. Ezeilo [4], [5], A. J. Ogurtsov [9], V. A. Pliss
[10], [11], M. Cartwright [3] and J. O. C. Ezeilo [67.

- Our hypotheses on f(y) are weaker-than the correspondmg conditions in
the quoted papers, except [11]. Instead of assumption of the clags O for f(y)
and hypotheses concerning the derivative of f(y), we consider more ‘general
assumption (10). But eonditions hm 1f(y)} = oo, hm |ky — f(y)} = oo as-

sumed in [12] are repla,ced by ﬁhght more restrlctlve (13), (21) It allows to
shorten and simplify the proof of Theorem 6.
We replace (7) by the equivalent system

(8) ' @ = Ax+-ap(o)+ep(t), o=(b,w)
putting : 4 ‘ )
, ' ‘ o]  Jo
0 1. 0 o ... O . . | -1 (the unity on
A:[ | |, ae=] o], b®=]1} the n+1—kth
—Op e —hpr — Ok e — =i 0] place),

%
o* = (Ly; Loy ooy Tn),y c\: — @, =Y
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and ¢(o) = f(o) —ers, for k <n; p(o) = e,,aff(a), a* ={0,..,0,1), a= c;
for k =mn.

Positive numbers ¢x, ¢n are 80 chosen that: elgenvalues of 4 lie in the half
plane Re 2 < 0.

We call the autonomous system of dlfferentlal equatlons

(9) s @ —-Am—{—mp(a), a_(b )

 absolutely stable, provided the trivial soiutlon of (9) is globally a,symptotlcally
~ stable for every continuous function (o) satlsfymg '

(10) c A 0 <gplo)o < kot

We will 1nvest1ga,te the bOundedness of solutlons of (8) by-use of the Lia-

punov funection of the form .

(11) ' ‘ V(a:) (a, Lw)+0f(p(u du,

which assures the absolute stabﬂity of (9). I
Denote (1) = (b, (4 —AI)"'a) and assume that A has exactly two cha-

racteristic roots on an imaginary axis, +w,¢ say. Then x(A) is of the form
LO0= (A + (@d+ B)(F+ of),

where y,(4) is holomorphic on an imaginary axis.

The following result of V. A. Yakubovich [8] gives the sufficient condltlon
for the existence of the Ll&punov function in this case:

If for every real w

(12)  a(e) =& flab+ Re[(1+ ifo(and) plwi)] > 0,

Ay

~ then there emists a Liapunov function of the form (11) which guarantees the ab-
solule stability of (9) in the class of functions @(o) satisfying (10).

Using this condition, we shall prove the global asymptotic stability of
the trivial solution of (7) for n =3.

4. Theorem 3. Let a; > 0, ay > 0, fo(y) be continuous, f3(0) =0 and

(13) . , ‘0<e<mwm<%%, if  y#0,

then the trivial solution of the d@ﬁerentml equation

(14) Y ey ey -I-fa(y) =0

8 globally asymplotically stable ‘
Theorem 4. If the function fy(y) is continuous and satisfies the conditions

15 0 =0, wa<fh@u<K<oco for w0



where a,, a, are positive, then the trivial .é'olution of ‘the- equation
(16) ”'+a1y"+f2‘(y'-)+_aay,=o

8 globalby asymlgtomcally stable.
" Theorem 5. Let a,,a, be posztwe constants Let f1(v) be continuous, f,(0)
=0, and A

a7) a3/ < fl("))/'v /“3) + (as/as) —&
with arbitrary small posmve &. '
Then the solution y = 0 of the equation

(18) o - v Hh() ey’ +ay =0
is globally asymptotically stable.

Proof of Theorems 3, 4, 5. Consider instead of (14), (16), (18) the
equivalent system (9) (in every case the parameters A,a,b of this systenr
will be different of course). Let a matrix A of (9) have in any case exactly
two pure imaginary elgenvalues ‘For this sake let us pug €3 = OOy, €y =
+ Gg/ay, €; = s @, Tespectively in equlvalent systems corresponding to (14),
{16), (18). ‘ _ ‘,

_ BY (13), (15), (17), functions %( ) = 48,0 —fy(0), @a(0) = fz(a)*-ot,ts/al

(o) = fl(o)—aaslag satisfy the inequalities ‘ .
0 <qio)fo<hke (¢=1,2,3),

in Wlnch ky, = azjag—e, by = K —ayjay, ks = a0, —e. :

To prove the theorems it is enough tb examine that (12) in every case holds

Let us denote by A, we%, —wyi the characteristic roots of A4 and let
p(A) = —|A—AI| be its characteristic polynomial.

- For (14) we have
. =t 1 0 0
) =tp@r] 0 T L () = pl— )+ (aht B+ o)
—0,8, —@y — a,—A 1 , : "
’ 1 0 o 0
where y =—11P, a=1/p, p'=klp, p =M+ oi. (12) takes the form
b Aol (poy) + Re[(1+ iwhofwp) (phy —posi) ™ ]>0
The latter inequality holds, if
0" pasg-+ plo(-+ wohg) > 0

e, if k< —wgly == a,a,. But this 1nequahty is satisfied by virtue of the de-
finition of %, : )
For the equation (16) we have .analogously

D) =Apa) = PI(A—Ro) + (ak 4 P&+ %) 5
where y = 4/p, a =—Alp, f = wilp.
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Subsmtutmg these constants m (12) after sunple caleulations we obtam
n(w) = 1/16,

The c.ondltion of Yakubomch will hold 1£ 0 < kz < ©oq, What proves Theo- -

rem 4.
The characteristic x(l) in the case of Theorem 5i8

, 2 = Flp().

The coefficients of 2 partial fraction decomposmon are: a = coo/p, y = Xa/p,
B = Jywelp, p = A5+ ws. The simple ca,lculatlon gives '

(@) = [P (ky Ao+ @) -+ B wlp] [k, (e + 10)]_ >0.

a(w) >0 pr0v1ded by < —wglg = a3jay. By an k1< agjas, thus Theorem 5
is proved. . .
Remark 1. The stablhty of solutions of ‘the equation (18) is shown only

for functions f,(v) satlsfymg
¢ (19) | 0 <k < hv)fo <k

although the linear equation ¥+ ky”’ + ayy’ +asy =0 ha,s a,symptotlcally,
stable solutions for all positive k. But V. A. Pliss [10] has constructed the
‘equation with non-linear function f;(v) not belonging to the class (19), which
 has the periodic solution. - .
Remark 2. Generally in the case of differential equations of the order higher
than three, it is impossible to find a Liapunov function of the form (11) as-
suring the global stability of the trivial solution of (9) (see [7]). It follows
from the fact that some eigenvalues of A may lay too close. to the imaginary
axis, and it makes impossible to construct the function V belonging to the

" class given by (11).
5. Tn this section we deal with the equatlon

(20) Yt ay ey i) =pl)
in which ¢, > 0, a,; > 0, ﬁ(t) is cbﬁtinuqus and for t >0
o<,
Theorem 6. If f(y) is continuwous, f(0) — 0 and for y #£0
@ : 0<e<fOy<ame—e

 with arbitrary small &, then. solutions of (20) are globally bounded.
Proof. As mentioned in Sectlon 3 -we will study behaviour of solutions
of the equivalent system

(22) 2= '772; Xy =@y, By = —0O AT — ATy — T3+ @(0)+ (1), g =%,

where ¢(0) = 48,0 —](0).
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where # = §*HS, HP+PH = —6 = —[

-+

By Theorem 3 there exists a function V(») defined.by S

23) V(o) = (@, Hoy 49 [ pluydu o = (@, 25 20)
.0 N R .

which is & Liapunov function for the system ‘' - o
(24) @] =@y,  Xp= Ty, L5 = —“i“}"’l'faawz"al%‘*‘q)(a) , o= By- v

, Using the function V(x) we will construct - the Liapunov, function; that
will be applied in the proof of the theorem. Our procedure ‘is based on the
following lemmas concerning the properties of V(z). . -

Lemma 1. The derivative of V() along the solutions of (24) satisfies the
inequality o . o o

(25) A dv/dt < ‘“‘Ml[(az“’ld“ zs?+¢¥o)], M;i>0.

Pro of. By means of nonsingular transformation x = 8%, N
| 1 oo o]
8=1—-a O Vag |
a%"—az 0

~ we transform (24) into the system/

| &y = P&+ qip(o), &= P+ (o), = (@1, 1)+ (@) 72)
where ;, 4 : o

— - o 0 0
‘ ~ & ~ 0 ~ £ B : P, 0 -1
7 52] ¢ [q] ’ H “"'] :[o PJ As

0 —wy O

F= 87 'z, § = Sa, ¥ = 8* and V(z) into the form

V@) =@, 35)+9 [ plwydu,
G 0
0 0

It may be proved (see [8])‘that‘the total derivative of V is nonpositive
and, when (12) holds, it satisfies the inequality ' :

~ t \PE B[~ v P
(-Wl’«gl—‘f 57’1) T 7 ,[(mu 91—%?';)4-7;‘?(0)].

(r=0is a suitaable.consta‘_nt, —g; = H1;11+§P’{‘71‘), from which it follows

],‘ Gy > 0. !

avjat < — (@, GF)+

20 V< — M@, B ]

for the éufﬁciehtly small positive constant M,. (26) and the formula

T~

T = —ay(a,2+2,)/|8] gives us (25).
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Lemma 2. If n> 0 i &uﬁieiently small, then the function W(w) ﬁ“V(éH— ‘
+ nwyws is a Liapunov function for (24) The derwatwe of- W alo%g the solu-
“tons of (24) is negative,

Proof. Since W{») is continuous (uniformly over the sphere (z,x) = 1)
in 7, the assumption (21) and the inequality V(«) > 0 imply W(z) > 0 if 5 is
small enough. From the formula hm V(x )= oo it follows that W(m)»oo
as |@|->00.

By virtue of Lemma 1 the total derlva.tlve of W satisfy the 1nequahty

AW |dt — M, [( a2w1+w8) +‘P 0')]""7[“’8‘"“1%%"‘““2‘172 al“za"'la’z‘i"l’(o')wz]
from which in view of formulas

e < @(0)Jo < My,  —a1 8217, (o), = '"%@(@1“2—9’(‘7)/“)
we have '

AW/dt < —M1{(a2$1+ 35'3)2'*‘ 82“/'?} +7 {w§ — O &y g —aﬁwg} _77-’”1"1’2("‘1% —p(o /0')

The right-hand side of ‘this mequahty is negative, if there is » > 0 such' that
the quadratic form

Ml{(a'zwl + ms)2+ 3239?} —n {-'”g — A Ty “‘azmg} + 1y @y(ay ay —e)
is positive-definite. ’ o

The matrix A4 () of this form is L . .
My(a3+€)  1/2n(aye,—e) Myay | T
A(n) 1/2’?5(“1“'2‘*{) Nl 1/2"7.“1
M a, 1/2na, M, —e¢
It is easy to see that for sqfﬁclently small positive #,, A (7, is posmve de-
finite and corresponding to 7o there is an Ms(%) > 0 such that
27) ‘ AW |dt < — My(n,) (2, x) <0.
The function W (z) considered above.will be used in the proof of Theo-
rem 6. ,

The derivative of W(w) along the solution of (22) ma,y be written down
as a sum

dW/dt dW/dt)(m—!—Z(w, p(t)) )
Where (AW/dt)ey denotes the derivative of W () along the solutions of (24)
and I(w; p(¢)) is a linear form whose coefficients depend on p(?) and ard
n‘bounded for ¢ > 0. Let Jl w,p(t))l M,|z|. By (27) we have
AW/dt < —My(@, x)+ M,V (@, 2).
For sufficiently large |#| we have dW/dt < 0, what ends the proof of
Theorem 6.

Corolla,ry If the function p(t) is periodic with the perwd w and the assum-

ptions of Theorem 6 hold, then the equation (20) has at least one periodic solu-
tion with the period w. ~
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Proof. Let 2(C) = {w: W(x) < C}, where W(#) is’ the Liapunev function
considered above. We shall show that for sufficiently large ¢ !2(0') is starhke
For this sake consider the equation

(28) - . Wi(st) =0,

where s is an arbitrary vector, |s| =1 and 7 is real positive number Notice
that (28) bas arbitrary large roots if ¢ is large enough.
For. sufficiently large = dW (sv)/dz > 0 In fact; we have W(z) = (a: Km)—i—

+ 9 f @ (u)du, where the form (, Kw) is posmve-deﬁmte, 80

dW(sr)/d'r: = 2v(s, Ks)4(b, s ﬁqo(-r (b s)) = 2[t[(st, Ksv)+du(b, sr)?/2],
#=1g(o)o

and by the assumptions involving ¢(o) and V() is posfmve for large z. Thus
for C large enouigh (28) has exactly one root and so Q(0) is starlike. From
this it follows that 2(C) is homeomorphic to the “solid” sphere.

From the proof of Theorem 6 it is easy to see that for large € all trajec-
tories of (22) starting from the pomts _belonging to FrQ(C), enters the do-
main 2(0).

Repeating the reasoning used in the end of Section 2 we obtain the as-
sertion of Corollary.

6. As it was mentioned in Remark 2, for » > 3 it is impossible to obtam
any stability conditions by use of the Liapunov function of the form (11).
But if we make the additional assumption concerning the eigenvalues of A,
we obtain the following ,

5 Theorem 7. Let coefficients a,, as, ay of the differential equation

(29) YOt ay ay + ey +f(y) =0
satisfy the assertion of Section 1. Let a, be such positive constant that
}*4"1‘ “1;‘3+ azl ‘f“%l“‘l‘ Ay = (12‘}‘ wo)(A—24) (A—24,),

where Rel; < 0. )
If the function f(y) is continuous and

(30) - ey <f(Y)Y < @y,
the root A, 3at@sﬂes the condition :
- (31) . o lIm/hI<|Re/11I,

then the trwml solution of (29) is globally asymptotically . stable.

Proof. We will proceed as in the proof of Theorems 3, 4, 5. The matrix
of the system (9) equivalent to (29) has two pure 1mag1nary eigenvalues.
By (30) the function q:( ) = a,0—f (o) satisfy

(32) 0 <gplo)o<ko®, k=a,—¢.
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Usmg the nota.tlons of Sectlon 3 we ha,ve
2(R) = (b_, (a—AI)"a) =1/'P(l) (?R+ A —4)(A— ﬂe)+(aﬁ-+ﬁ) (12+ o) 5

. where S
o Ty =p/M, 8=—(+oIM, i, p=
p=hth, ¢=oi—hi) M;<wo+lx«¥swo+ﬂa>--

) Applying these formulas to (12) a,fter'straightforwa.rd ca,lculation we obtain

o Mok + o woM(h—l—lz)-l‘M}uls(wo%ﬂa k)
Mwo(w + AN+ &)

< A w(w) =

this inequality holds for all real o, if
(33) ' B0, %&%—k>0

(31) lmphes the flrst of inequalities (33), the other fo]lows from (32) and the
formula a,, = WAy As.
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