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On an oscillation problem for selfadjoined elliptic equation

1. Let D be a simply connected domain in (x,y)-plane and let the
boundary F (D) of D be a piecewise regular curve. It is well known that the
first eigenvalue of the equation

Ui+ Uy -+ Atk = 0

with the boundary condition 4 = 0 on F(D) for domains I) with the same
area is smallest if D is a circle. This may be also formulated in the form of
the following inequality important for applications

1) ML|D| = mjs

where |D| is the area of D and j, is the smallest positive zero of Bessel’s
function Jy(x).

The inequality (1) has been derived for a more general equation by
Z. Nehari [2]. He namely proved that the first eigenvalue 4, of the equation

Uiz + Uy + Ao (@, Y)u = 0

with boundary condition 4 = 0 on F(D), where o(x,y)> 0 and logo(x,y)
is subharmonic function in the closure D of D, satisfies the inequality

[ [o(@, y)dwdy > =j;
D

L

The purpose of this paper is to extend the result of Z. Nehari to the
equation

(2) (0 (@, y)uz)e+ (p (@, ¥)uy)y —q(@, y)u+ Aoz, y)u =0

with boundary condition 4 = 0 on F(D) and by means of this generalization
to estimate the number of nodal domains of the n-th eigenfunction of (2).
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2. Theorem 1. If p(z,y)> 0 is a function of the class C?% q(x,y) >0,
o(@,y) > 0 in the closure D of D and if logp(z,y) and logo(x,y)/p(x,y) are
functions subharmonic in D, then the first eigenvalue A, of the equation (2) with
the boundary condition w = 0 on F (D) satisfies the inequality

(3) ffg @, 7) dw y e .

Proof. Put
(4) l/p z,Y) -
Then (2) takes the form
? Pty =0l v A =
where

1

(6) Q(@,y) =5 Allogp (@, )]+ 5 grad2 (@ ,yH%(é:yy))_

Observe that due to (4) the first eigenvalue of the equation (2) with boundary
condition 4 =0 on F(D) is the first eigenvalue of the equation (5) with
boundary condition v =0 on F (D) and vice versa.
Take the equation
e, y)

7 Wiy + W0y, w=20
(7) + W+Mp(.€6,y) \

with boundary condition w = 0 on F(D) and observe that by the assump-
tions of Theorem 1 the function ¢ given by (6) is nonnegative in the clo-
sure D of D. Therefore (see [1], p. 412)

(8) 2-1 = Uy

where 4, and u, are the first eigenvalues of the equations (5) and (7) with
the boundary conditions » =0 and w = 0 on F (D) respectively. Since due
to our assumptions the equation (7) is the equation considered by Z. Nehari
in [2], s0

9 ff@ ) dwdy > il .
() ’ a:’/) y ,W?O

The inequalities (8) and (9) imply the inequality (3).

3. Theorem 2. If the functions p(x,y) and o(x,y) satisfy the assum ptions
of Theorem 1 and if N (n) denotes the number of modal domains of the n-th
eigenfunction of the equation (2) with boundary condition u = 0 on F (D), then
(10) N(n) <0,Tn

for n sufficiently large.
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Proof. Let Dy,..., Dym be nodal domains of the m-th eigenfunction
unfx,y) of the equation (2) with boundary condition w = 0 on F(D). Due
to [1] (p. 451), the function u,(x, y) and the eigenvalue A, are the first eigen-
function and the first eigenvalue respectively, for every domain D; (i = 1,

N (n)) and for the equation (2) with the boundary condition 4 = 0 on F(D )
Therefore due to Theorem 1

anf—gdwdy> mji =1, .., N(n),
D; p

whence
. n N n .2

Since (see [1], p. 436)

SEAIL
tin =g [ §aeay,

D

ff—g dedy > ff dxdy - hmmfN( )
D P N—>00 n

ming ¥ (2]
n—00 n \jO )

we get from (11)

whence

liminf

Since j, = 2,408, the last inequality implies (10) for all n sufficiently large.

Remark. The inequality (10) sharpens the ‘well known Courant’s in-
equality N(n) <n (see [1], p. 454) and generalizes the inequality proved by
Pleijel [3] in the case p(x,y) = o(x,y) =1, q(@,y) =0.
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