

*Jan Bochenek*

## On an oscillation problem for selfadjointed elliptic equation

1. Let  $D$  be a simply connected domain in  $(x, y)$ -plane and let the boundary  $F(D)$  of  $D$  be a piecewise regular curve. It is well known that the first eigenvalue of the equation

$$u''_{xx} + u''_{yy} + \lambda u = 0$$

with the boundary condition  $u = 0$  on  $F(D)$  for domains  $D$  with the same area is smallest if  $D$  is a circle. This may be also formulated in the form of the following inequality important for applications

$$(1) \quad \lambda_1 |D| \geq \pi j_0^2,$$

where  $|D|$  is the area of  $D$  and  $j_0$  is the smallest positive zero of Bessel's function  $J_0(x)$ .

The inequality (1) has been derived for a more general equation by Z. Nehari [2]. He namely proved that the first eigenvalue  $\lambda_1$  of the equation

$$u''_{xx} + u''_{yy} + \lambda \varrho(x, y) u = 0$$

with boundary condition  $u = 0$  on  $F(D)$ , where  $\varrho(x, y) > 0$  and  $\log \varrho(x, y)$  is subharmonic function in the closure  $\bar{D}$  of  $D$ , satisfies the inequality

$$\lambda_1 \iint_D \varrho(x, y) dx dy \geq \pi j_0^2.$$

The purpose of this paper is to extend the result of Z. Nehari to the equation

$$(2) \quad (p(x, y) u'_x)' + (p(x, y) u'_y)' - q(x, y) u + \lambda \varrho(x, y) u = 0$$

with boundary condition  $u = 0$  on  $F(D)$  and by means of this generalization to estimate the number of nodal domains of the  $n$ -th eigenfunction of (2).

2. Theorem 1. If  $p(x, y) > 0$  is a function of the class  $C^2$ ,  $q(x, y) \geq 0$ ,  $\varrho(x, y) > 0$  in the closure  $\bar{D}$  of  $D$  and if  $\log p(x, y)$  and  $\log \varrho(x, y)/p(x, y)$  are functions subharmonic in  $\bar{D}$ , then the first eigenvalue  $\lambda_1$  of the equation (2) with the boundary condition  $u = 0$  on  $F(D)$  satisfies the inequality

$$(3) \quad \lambda_1 \iint_D \frac{\varrho(x, y)}{p(x, y)} dx dy \geq \pi j_0^2.$$

Proof. Put

$$(4) \quad v(x, y) = \sqrt{p(x, y)} u(x, y).$$

Then (2) takes the form

$$(5) \quad v''_{xx} + v''_{yy} - Q(x, y)v + \lambda \frac{\varrho(x, y)}{p(x, y)} v = 0$$

where

$$(6) \quad Q(x, y) = \frac{1}{2} \Delta [\log p(x, y)] + \frac{1}{4p^2} \operatorname{grad}^2 p(x, y) + \frac{q(x, y)}{p(x, y)}.$$

Observe that due to (4) the first eigenvalue of the equation (2) with boundary condition  $u = 0$  on  $F(D)$  is the first eigenvalue of the equation (5) with boundary condition  $v = 0$  on  $F(D)$  and vice versa.

Take the equation

$$(7) \quad w''_{xx} + w''_{yy} + \mu \frac{\varrho(x, y)}{p(x, y)} w = 0$$

with boundary condition  $w = 0$  on  $F(D)$  and observe that by the assumptions of Theorem 1 the function  $Q$  given by (6) is nonnegative in the closure  $\bar{D}$  of  $D$ . Therefore (see [1], p. 412)

$$(8) \quad \lambda_1 \geq \mu_1$$

where  $\lambda_1$  and  $\mu_1$  are the first eigenvalues of the equations (5) and (7) with the boundary conditions  $v = 0$  and  $w = 0$  on  $F(D)$  respectively. Since due to our assumptions the equation (7) is the equation considered by Z. Nehari in [2], so

$$(9) \quad \mu_1 \iint_D \frac{\varrho(x, y)}{p(x, y)} dx dy \geq \pi j_0^2.$$

The inequalities (8) and (9) imply the inequality (3).

3. Theorem 2. If the functions  $p(x, y)$  and  $\varrho(x, y)$  satisfy the assumptions of Theorem 1 and if  $N(n)$  denotes the number of nodal domains of the  $n$ -th eigenfunction of the equation (2) with boundary condition  $u = 0$  on  $F(D)$ , then

$$(10) \quad N(n) \leq 0,7n$$

for  $n$  sufficiently large.

**Proof.** Let  $D_1, \dots, D_{N(n)}$  be nodal domains of the  $n$ -th eigenfunction  $u_n(x, y)$  of the equation (2) with boundary condition  $u = 0$  on  $F(D)$ . Due to [1] (p. 451), the function  $u_n(x, y)$  and the eigenvalue  $\lambda_n$  are the first eigenfunction and the first eigenvalue respectively, for every domain  $D_i$  ( $i = 1, \dots, N(n)$ ) and for the equation (2) with the boundary condition  $u = 0$  on  $F(D_i)$ . Therefore due to Theorem 1

$$\lambda_n \iint_{D_i} \frac{\varrho}{p} dx dy \geq \pi j_0^2 \quad i = 1, \dots, N(n),$$

whence

$$(11) \quad \iint_D \frac{\varrho}{p} dx dy \geq \frac{N(n)}{\lambda_n} \pi j_0^2 = \frac{n}{\lambda_n} \cdot \frac{N(n)}{n} \cdot \pi j_0^2.$$

Since (see [1], p. 436)

$$\lim_{n \rightarrow \infty} \frac{n}{\lambda_n} = \frac{1}{4\pi} \iint_D \frac{\varrho}{p} dx dy,$$

we get from (11)

$$\iint_D \frac{\varrho}{p} dx dy \geq \frac{j_0^2}{4} \iint_D \frac{\varrho}{p} dx dy \cdot \liminf_{n \rightarrow \infty} \frac{N(n)}{n},$$

whence

$$\liminf_{n \rightarrow \infty} \frac{N(n)}{n} \leq \left(\frac{2}{j_0}\right)^2.$$

Since  $j_0 = 2,408$ , the last inequality implies (10) for all  $n$  sufficiently large.

**Remark.** The inequality (10) sharpens the well known Courant's inequality  $N(n) \leq n$  (see [1], p. 454) and generalizes the inequality proved by Pleijel [3] in the case  $p(x, y) \equiv \varrho(x, y) \equiv 1$ ,  $q(x, y) \equiv 0$ .

#### REFERENCES

- [1] R. Courant, D. Hilbert, *Methods of mathematical physics*, New York 1953.
- [2] Z. Nehari, *On the principal frequency of a membrane*. Pacific Journ. Math. 8 (1958), 285-293.
- [3] A. Pleijel, *Remarks on Courant nodal line theorem*, Comm. Pure Appl. Math. 9 (1956), 543-550.