
S e©MR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Том 6, стр. 312–325 (2009) УДК 510.64
MSC 03B44, 03B45

ВРЕМЕННАЯ ЛОГИКА ЛИНЕЙНЫХ ПО ВРЕМЕНИ
ФРЕЙМОВ С АКСИОМОЙ ИНДУКЦИИ

В.Ф. ЮН

Abstract. A class of frames based on a class of frames with discrete
linear time with current time point clusters is considered. The temporal
calculus LInd is found which is complete with respect to this class. It
is proved that LInd has the finite model property and therefore it is
decidable.
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Введение

Модальная логика отличается большим разнообразием синтаксиса и семан-
тики: кроме обычных логических связок используются различные модальности
типа необходимости и возможности. Этим можно объяснить широкое примене-
ние модальных и временных логик, например, в информационных технологиях,
теории искусственного интеллекта, математической лингвистике (см., напри-
мер, [5], [8]).

В последнее время модальные логики также применяются и к изучению
геометрических структур ([1], [2], [6]). Так, например, в [6] исследуется поли-
модальная логика линейных временных моделей с моментами времени, кото-
рые являются кластерами состояний. Более точно, рассматриваются фреймы
〈⋃i∈N C(i), R〉 с линейно упорядоченными R-кластерами состояний C(i), и
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исследуется логика таких фреймов в языке с временными модальными опера-
торами ¤, ¤∗ и слабыми модальностями ¤w, ¤∗w. Такие фреймы вполне есте-
ственно возникают в информатике и теории искуственного интеллекта: кла-
стерами могут быть люди с их общим знанием, или все ресурсы в интернете и
другие информационные узлы, доступные в данный момент.

Мы введем дополнительное отношение R1 между элементами соседних кла-
стеров и рассмотрим более широкий класс фреймов вида 〈X, R, R1〉, которые
назовем линейными по времени (S ⊆ R)Ind-фреймами. При задании логики по-
средством моделей важнейшей проблемой является выбор модального языка и
проблема аксиоматизации данной логики. Заметим, что слабые модальности не
являются нормальными, то есть не верны формулы ¤wA&¤wB −→ ¤w(A&B),
¤∗wA&¤∗wB −→ ¤∗w(A&B) [6]. Это существенно усложняет задачу аксиома-
тизации. Если добавить к языку временные модальности ¤1, ¤∗1, то можно
доказать, что слабые модальности ¤w и ¤∗w выражаются через другие. По-
этому при аксиоматизации класса линейных по времени (S ⊆ R)Ind-фреймов
естественно выбрать временной язык с четырьмя модальностями ¤, ¤∗ и ¤1,
¤∗1.

В этом языке строится исчисление LInd, содержащее аксиому, похожую на
аксиому индукции [7], полное относительно линейных по времени (S ⊆ R)Ind-
фреймов. Доказывается, что оно финитно аппроксимируемо и, следовательно,
является разрешимым.

1. Исчисление LInd и теорема о корректности

Будем рассматривать язык с модальными операторами будущего ¤, ¤1 и
модальными операторами прошлого ¤∗, ¤∗1.

Рассмотрим фреймы 〈X, R, R1〉 и модели вида 〈X, R, R1, |=〉, где X —
непустое множество, R, R1 — бинарные отношения на множестве X, |= — би-
нарное отношение истинности между элементами множества X и множеством
формул, определяемое стандартным способом [4].

Полагаем для любого x ∈ X:

x |= ¤A ⇐⇒ ∀y(xRy =⇒ y |= A),

x |= ¤1A ⇐⇒ ∀y(xR1y =⇒ y |= A),

x |= ¤∗A ⇐⇒ ∀y(yRx =⇒ y |= A),

x |= ¤∗1A ⇐⇒ ∀y(yR1x =⇒ y |= A).
Говорим, что формула A истинна в модели M = 〈X, R, R1, |=〉, если x |= A

для любого x ∈ X. Формула A общезначима в фрейме, если она истинна в
любой модели, основанной на этом фрейме.

Введем вспомогательное отношение S:

xSy ⇐⇒ (a) xR1y или(b) ∃z(xR1z и yR1z) или (c) ∃z(zR1x и zR1y).

Будем рассматривать фреймы со следующими условиями:
(1) для любых x,y ∈ X верно: xRy или yRx;
(2) R является транзитивным отношением;
(3) R является рефлексивным отношением;
(4) xR1y =⇒ xRy;
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(5) если zR1x и zR1y, то yRx и xRy;
(6) если xR1z и yR1z, то yRx и xRy;
(7) для каждого x ∈ X существует y ∈ X такой, что xR1y;
(8) xRy =⇒ (x = y или существуют x1, . . . , xn ∈ X такие, что x =

x1S . . . SxnSy).
То, что существуют x1, . . . , xn ∈ X такие, что x = x1S . . . SxnSy обозначим

более коротко через xSny. Таким образом, свойство (8) означает, что выполнено
R ⊆ S∗, где S∗ — рефлексивное, транзитивное замыкание отношения S. Кроме
того, из свойств (4)–(6) получаем, что S ⊆ R. Отсюда по рефлексивности и
танзитивности отношения R имеем: S∗ ⊆ R. Таким образом, верно следующее
Замечание. Если фрейм удовлетворяет свойствам (2)–(6), (8), то R = S∗.

Если фрейм 〈X, R, R1〉 удовлетворяет условиям (1)–(8), будем называть его
линейным по времени (S ⊆ R)Ind-фреймом. Модель 〈X, R, R1, |=〉, основан-
ную на таком фрейме, будем соответственно называть линейной по времени
(S ⊆ R)Ind-моделью.

Введем кроме того понятие линейного по времени (S ⊆ R)-фрейма. Тройку
〈X, R, R1〉 будем называть линейным по времени (S ⊆ R)-фреймом, если
она удовлетворяет свойствам (1)–(7). Модель, основанную на линейном по
времени (S ⊆ R)-фрейме назовем линейной по времени (S ⊆ R)-моделью.

Пусть LInd — логическое исчисление, полученное добавлением к минималь-
ной временной логике Kt(R, R1) [4] следующих аксиом:

(1) ¤(¤A1 −→ A2) ∨¤(A2&¤A2 −→ A1);
(1∗) ¤∗(¤∗A1 −→ A2) ∨¤∗(A2&¤∗A2 −→ A1);
(2) ¤A −→ ¤¤A;
(2∗) ¤∗A −→ ¤∗¤∗A;
(3) ¤A −→ A;
(3∗) ¤∗A −→ A;
(4) ¤A −→ ¤1A;
(4∗) ¤∗A −→ ¤∗1A;
(5) ♦1A −→ ¤1(♦A&♦∗A);
(6) ♦∗1A −→ ¤∗1(♦A&♦∗A);
(7) ♦1>;
(8) A&¤(A −→ (¤1(A&¤∗1A)&¤∗1¤1A)) −→ ¤A.
Здесь и далее ♦F — сокращение для ¬¤F¬, и ♦∗F — сокращение для ¬¤∗F¬

(F ∈ {R, R1}).
Заметим, что аксиома (8) похожа на аксиому индукции, а свойство (8) очень

похоже на свойство индуктивности [7], [9].
Теорема 1.1 (о корректности). Для любой формулы A верно: если A выво-
дима в LInd, то A общезначима в любом линейном по времени (S ⊆ R)Ind-
фрейме.

Доказательство. Общезначимость аксиом (1)–(3) и (1∗)–(3∗) следует из
свойств линейности, транзитивности и рефлексивности отношения R соответ-
ственно. Общезначимость формул (4), (4∗) следует из того, что для любых
x, y ∈ X верно: xR1y влечет xRy.

Общезначимость аксиомы (5) следует из свойства (5): если xR1y и xR1z, то
yRz и zRy.
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Пусть x |= ♦1A, тогда найдется y такой, что xR1y и y |= A. Выберем произ-
вольный z такой, что xR1z, тогда по свойству (5) ыполняется yRz и zRy. Так
как y |= A, то z |= ♦A&♦∗A. Следовательно x |= ¤1(♦A&♦∗A).

Общезначимость аксиомы (6) следует из того, что если yR1x и zR1x, то yRz
и zRy.

Общезначимость формулы (7) следует из того, что для любого x найдется
y такой, что xR1y.

Докажем общезначимость формулы (8). Пусть x |= A и x |= ¤(A −→
(¤1(A&¤∗1A)&¤∗1¤1A)). Пусть xRy, тогда по свойству (8) верно: xSiy для неко-
торого натурального i. Докажем индукцией по i, что y |= A.

i = 0. Тогда x = y, и так как x |= A, то y |= A.
i = k+1. Пусть для любого z ∈ X верно: если xSkz, то z |= A. Предположим,

что xSk+1y, докажем, что y |= A. Поскольку xSk+1y, то существует z такой,
что xSkzSy. По индукционному предположению тогда z |= A. Так как xSkz и
S∗ ⊆ R, то xRz. Поскольку xRz и x |= ¤(A −→ (¤1(A&¤∗1A)&¤∗1¤1A)), то z |=
A −→ (¤1(A&¤∗1A)&¤∗1¤1A). Поскольку z |= A, то z |= ¤1(A&¤∗1A)&¤∗1¤1A,
то есть z |= ¤1(A&¤∗1A) и z |= ¤∗1¤1A.

Так как zSy, то возможны следующие случаи: (a) zR1y или
(b) ∃u(zR1u и yR1u) или (c) ∃u(uR1z и uR1y). Докажем, что в любом из
этих случаев y |= A.

(a) Пусть zR1y. Так как z |= ¤1(A&¤∗1A), то y |= A&¤∗1A, следовательно
y |= A.

(b) Пусть существует u такой, что zR1u и yR1u. Так как z |= ¤1(A&¤∗1A),
то u |= A&¤∗1A, следовательно u |= ¤∗1A. Так как yR1u, то y |= A.

(c) Пусть найдется u такой, что uR1z и uR1y. Поскольку z |= ¤∗1¤1A, то
u |= ¤1A. Так как uR1y, то y |= A.

Таким образом, общезначимость формулы (8) в любом линейном по времени
(S ⊆ R)Ind-фрейме доказана. ¤

Пусть XLInd - множество полных LInd-непротиворечивых LInd-теорий.
Определим отношения R, R1 на множествеXLInd следующим образом

x1Rx2 ⇐⇒ {A : ¤A ∈ x1} ⊆ x2,

x1R1x2 ⇐⇒ {A : ¤1A ∈ x1} ⊆ x2 .

Замечание [4]. x1Rx2 ⇐⇒ {A : ¤∗RA ∈ x2} ⊆ x1 .

Определение [4]. Рассмотрим модель MLInd = 〈XLInd, R, R1, |=LInd〉 ,
где полагаем x |=LInd p ⇐⇒ p ∈ x для любой переменной p и любого элемента
x ∈ XLInd. Назовем MLInd канонической моделью исчисления LInd.

Теорема 1.2. Каноническая модель MLInd для LInd удовлетворяет услови-
ям:

(M1) если tRx, tRy, то xRy или yRx;
если xRt, yRt, то xRy или yRx;
(M2) R является транзитивным отношением;
(M3) R является рефлексивным отношением;
(M4) xR1y =⇒ xRy;
(M5) если xR1y и xR1z, то yRz и zRy;
(M6) если yR1x и zR1x, то yRz и zRy;
(M7) для каждого x ∈ XLInd существует y ∈ XLInd такой, что xR1y.
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Доказательство. Свойства (M1)-(M4) доказываются стандартным образом
из соответствующих аксиом исчисления LInd [4].

Докажем, что если xR1y и xR1z, то yRz и zRy. Предположим противное:
пусть xR1y, xR1z и не верно, что yRz и zRy.

Если не верно, что yRz, то существует формула C такая, что ¤∗C ∈ z и
¬C ∈ y. Так как ¬C ∈ y и xR1y, то ♦1¬C ∈ x. Следовательно по аксио-
ме (5) ¤1(♦¬C&♦∗¬C) ∈ x. Поскольку xR1z, то ♦¬C&♦∗¬C ∈ z. Но ¤∗C ∈ z,
следовательно ♦∗¬C 6∈ z. Таким образом получаем противоречие, и наше пред-
положение не верно.

Если не выполняется, что zRy, то существует формула D такая, что ¤D ∈ z
и ¬D ∈ y. Так как ¬D ∈ y и xR1y, то ♦1¬D ∈ x. Следовательно по аксиоме
(5) ¤1(♦¬D&♦∗¬D) ∈ x. Поскольку xR1z, то ♦¬D&♦∗¬D ∈ z. Но ¤D ∈ z, то
есть ♦¬D 6∈ z. Таким образом и в этом случае получаем противоречие, и наше
предположение не верно.

Утверждение пункта (M6) доказывается аналогично, с использованием ак-
сиомы (6).

Докажем, что каноническая модель для LInd обладает свойством (M7).
Пусть x ∈ XLInd и s = {A | ¤1A ∈ x}.

Докажем, что множество s является непротиворечивым. Предположим про-
тивное, тогда существуют формулы A1, . . . , An, такие, что ¤1Ai ∈ x, i =
1, . . . , n, и в исчислении LInd выводится следующая формула:

A1& . . . &An −→ ¬>.

Следовательно, в LInd выводится формула:

¤1A1& . . . &¤1An −→ ¤1¬>.

Так как ¤1Ai ∈ x (i = 1, . . . , n), то ¤1¬> ∈ x , то есть ♦1> 6∈ x, что
противоречит аксиоме (7). Следовательно множество s является непротиво-
речивым, и множество s можно расширить до LInd-непротиворечивой полной
LInd-теории y ∈ XLInd. Из определения отношения R1 в канонической модели
следует, что xR1y.

¤

2. Линейная по времени (S ⊆ R)-подмодель.

Цель этого раздела — доказать следующую теорему:
Теорема 2.1. Если формула A истинна во всех линейных по времени (S ⊆ R)-
моделях, то A выводима в исчислении LInd.

Доказательство. Заметим, что каноническая модель не является линейной по
времени (S ⊆ R)-моделью, так как она не удовлетворяет условию (1) опреде-
ления линейной по времени (S ⊆ R)-модели. Выберем специальным образом
подмодель M ′ канонической модели так, чтобы невыводимая в LInd формула
A0 опровергалась в выбранной модели M ′, и модель M ′ являлась линейной по
времени (S ⊆ R)-моделью.

Если формула A0 невыводима в исчислении LInd, то существует элемент t
канонической модели MLInd = 〈X, R, R1, |=〉 такой, что t 6|= A0.

Рассмотрим множество Sub(A0) подформул формулы A0. Можем считать,
что A0 содержит модальности только вида ♦, ♦∗ и ♦1, ♦∗1, так как ¤, ¤∗ и ¤1,
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¤∗1 выражаются через ♦, ♦∗ и ♦1, ♦∗1 соответственно. Выбираем элементы из
X следующим образом:

Шаг 0. Сначала проверяем на элементе t истинность всех формул из мно-
жества Sub(A0). Если t |= ♦Bi, где ♦Bi ∈ Sub(A0), то существуют xi ∈ X
такие, что tRxi и xi |= Bi. Если t |= ♦1Cj , где ♦1Cj ∈ Sub(A0), то существуют
yj ∈ X такие, что tR1yj и yj |= Cj .

Если t |= ♦∗Dl, где ♦∗Dl ∈ Sub(A0), то существуют x′l ∈ X такие, что x′lRt и
x′l |= Dl. Если t |= ♦∗1Fk, где ♦∗1Fk ∈ Sub(A0), то существуют y′k ∈ X такие, что
y′kR1t и y′k |= Fk.

Добавляем к t элементы xi, x′l, yj , y′k, и таким образом формируем мно-
жество X(0) ⊆ X.

Шаг 1. На следующем шаге добавляем к X(0) ⊆ X недостающие элементы.
Рассмотрим произвольный x ∈ X(0). По свойству (M7) канонической модели
существует y ∈ X такой, что xR1y. Для каждого x ∈ X(0) добавляем y к
элементам множества X(0), если его там не было.

Таким образом сформируем множество X(1). Заметим, что X(0) ⊆ X(1), и
для всех x из X(0) найдется y ∈ X(1) такой, что xR1y.

Пусть множество X(i−1) построено, i = 2k.
Шаг i = 2k. На элементах множества X(i−1) проверяем истинность всех

формул из Sub(A0), начинающихся с ♦, ♦∗, ♦1, ♦∗1. Добавляя к X(i−1) нужные
элементы формируем множество X(i).

Шаг i + 1 = 2k + 1. На нечетном шаге формируем множество X(i+1),
рассматривая все x ∈ X(i) и добавляя недостающие элементы (как на шаге 1).
Заметим, что для любого x из X(i) в X(i+1) найдется y такой, что xR1y.

Пусть X ′ =
⋃

i∈N

X(i), R′ = R|X′ , R′1 = R1|X′ , |=′ – ограничение отношения |=
на X ′.

Заметим, что X ′ является не более чем счетным множеством, так как на
каждом шаге добавляли не более чем счетное множество элементов из X.

Лемма 2.2 Для любого x ∈ X ′ и любой формулы B ∈ Sub(A0) верно

x |=′ B ⇐⇒ x |= B.

Доказательство. Лемма доказывается индукцией по длине формулы B. Базис
индукции очевиден.

Пусть B = ¬B1, тогда x |= B ⇐⇒ x 6|= B1. По индукционной гипотезе это
равносильно x 6|=′ B1, т. е. x |=′ B.

Пусть B = B1&B2, тогда x |= B1&B2 ⇐⇒ x |= B1 и x |= B2. По индукцион-
ной гипотезе x |=′ B1 и x |=′ B2, что равносильно x |=′ B1&B2.

Случай, когда B = B1 ∨B2, доказывается аналогично.
Пусть B = ♦C и ♦C ∈ Sub(A0). Предположим, что x |=′ B. Тогда существует

y ∈ X ′ такой, что xR′y и y |=′ C. По индукционной гипотезе y |= C, следова-
тельно x |= ♦C. Пусть x |=′ ♦1C и ♦1C ∈ Sub(A0). Тогда существует y ∈ X ′

такой, что xR′1y и y |=′ C. По индукционной гипотезе y |= C, следовательно
x |= ♦1C.
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Пусть x |= ♦C и ♦C ∈ Sub(A0). Тогда существует некоторое множество
Y ⊆ X, такое, что xRy и y |= C для любых y ∈ Y.

Так как x ∈ X ′, то x ∈ X(i) для некоторого i. Поскольку ♦C ∈ Sub(A0)
и x |= ♦C, то в X(i+2) уже найдется y ∈ Y в случае, если i четное. Если i
нечетное, то на (i + 1)-ом шаге добавили к X(i) элемент y ∈ Y.

Таким образом, существует y ∈ X(i+2) (или y ∈ X(i+1)), такой, что xRy и
y |= C. По индукционной гипотезе y |=′ C. Так как y ∈ X(i+2) (или y ∈ X(i+1)),
то y ∈ X ′ и xR′y. Следовательно x |=′ ♦C.

Если x |= ♦1C и ♦1C ∈ Sub(A0), то существует некоторое множество Y ⊆ X,
такое, что xR1y и y |= C для любых y ∈ Y.

Поскольку x ∈ X ′, то x ∈ X(i) для некоторого i. Так как ♦1C ∈ Sub(A0) и
x |= ♦1C, то в X(i+2) найдется y ∈ Y в случае, если i четное. Если i нечетное,
то на (i + 1)-ом шаге добавили к X(i) элемент y ∈ Y.

Следовательно существует y ∈ X(i+2) (или y ∈ X(i+1)), такой, что xR1y и
y |= C. По индукционной гипотезе y |=′ C. Так как y ∈ X(i+2) (или y ∈ X(i+1)),
то y ∈ X ′ и xR′1y. Таким образом x |=′ ♦1C.

Случай, когда B = ♦∗1C, доказывается аналогично, и лемма доказана. ¤

Предложение 2.3. Отношение R′ является линейным, то есть выполняет-
ся следующее: xR′y или yR′x для любых x, y ∈ X ′.

Доказательство. Докажем индукцией по i, что для любого i ∈ N верно: если
x, y ∈ X(i), то xR′y или yR′x.

Базис. Если i = 0, то данное утверждение сразу следует из свойств (M1)–
(M4) канонической модели. При i = 1 утверждение также следует из построе-
ния множества X(i) и свойствам (M1)–(M4) канонической модели.

Шаг индукции. Предположим, что для любых x, y ∈ X(i−1) выполняется
xR′y или yR′x. .

Пусть x, y ∈ X(i). Если i нечетное, то множество X(i) получено из X(i−1)

добавлением для каждого x ∈ X(i−1) элементов z из X таких, что xR1z. Сле-
довательно, по построению X(i), свойствам (M1)–(M3) отношений R, R1 и
индукционной гипотезе имеем: xR′y или yR′x.

Пусть x, y ∈ X(i) и i = 0(mod2), тогда X(i) получено из X(i−1) следующим об-
разом: на всех элементах z ∈ X(i−1) проверяем истинность формул из Sub(A0)
и добавляем недостающие элементы. Таким образом формируем множество Yz

и X(i) = X(i−1) ∪ ⋃
z∈X(i−1)

Yz.

Возможны следующие случаи:
(а) x, y ∈ Yz для некоторого z ∈ X(i−1). Тогда по свойствам (M1)–(M3)

сразу получаем, что xR′y или yR′x.

(б) x, y ∈ X(i−1). Тогда сразу из индукционного предположения получаем
требуемое.

(в) x ∈ X(i−1), y ∈ Yz для некоторого z ∈ X(i−1). Так как x, z ∈ X(i−1), то
xR′z или zR′x по индукционной гипотезе. Так как y ∈ Yz, то выполняется:yRz
или zRy. Следовательно, по свойствам транзитивности, праволинейности и
леволинейности отношения R, имеем xR′y или yR′x.
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(г) x ∈ Yz, y ∈ Yt для некоторых z, t ∈ X(i−1). Тогда выполняется: tR′z или
zR′t. Кроме того xR′z или zR′x. Аналогично так как y ∈ Yt, то tR′y или yR′t.
Следовательно xR′y или yR′x, и предложение доказано. ¤

Теорема 2.4. Выбранный фрейм 〈X ′, R′, R′1〉 является линейным по времени
(S ⊆ R)-фреймом, то есть выполнены следующие свойства:

(M 1′) для любых x, y ∈ X ′ верно, что xR′y или yR′x;
(M2) R′ является транзитивным отношением;
(M3) R′ является рефлексивным отношением;
(M4) xR′1y =⇒ xR′y;
(M5) если xR′1y и xR′1z, то yR′z и zR′y;
(M6) если yR′1x и zR′1x, то yR′z и zR′y;
(M7) для каждого x ∈ X ′ существует y ∈ X ′ такой, что xR′1y.

Доказательство. Свойство (M 1′) следует из предложения 2.3. Свойства
(M2)–(M6) следуют из определения отношений R′, R′1 и соответствующих
свойств отношений R, R1 в канонической модели.

Докажем, что выбранный фрейм удовлетворяет свойству (M7). Пусть x ∈
X ′, следовательно x ∈ X(i) для некоторого i. Можно считать, что x 6∈ X(i−1),
то есть элемент x добавлен на i-ом шаге.

Если i четное, то на шаге i + 1 был добавлен элемент y такой, что xR1y.
Если i — нечетно, то на шаге i + 2 был добавлен элемент y такой, что xR1y.

Таким образом существует y ∈ X ′ такой, что xR′1y, и теорема доказана. ¤

Продолжим доказательство теоремы 2.1. По лемме 2.2 невыводимая в ис-
числении LInd формула A0 опровергается в построенной выше модели M ′. По
теореме 2.4 модель M ′ является линейной по времени (S ⊆ R)-моделью. Таким
образом, теорема 2.1 доказана. ¤

3. Финитная аппроксимируемость

Цель этого раздела доказать, что исчисление LInd финитно аппроксимиру-
емо конечными линеными по времени (S ⊆ R)Ind-моделями:
Теорема 3.1. Для любой формулы A верно: формула A выводима в LInd то-
гда и только тогда, когда A истинна в любой конечной линейной по времени
(S ⊆ R)Ind-модели.

Необходимость следует из теоремы о корректности. Докажем обратное
утверждение методом фильтраций.

Определение. Пусть M = 〈X, R, R1, |=〉 — модель, Ψ — конечное множе-
ство формул, замкнутое относительно подформул. Определим на X отношение
эквивалентности ≡Ψ: x ≡Ψ y ⇐⇒ ∀B ∈ Ψ(x |= B ⇐⇒ y |= B). Обозначим через
[x] класс эквивалентности, содержащий x, то есть [x] = {y | y ∈ X, x ≡Ψ y}.
Пусть X ′ = {[x] | x ∈ X} и [x] |=′ p ⇐⇒ x |= p для любой пропозициональной
переменной p.

Пусть R′ и R′1 —- бинарные отношения на X ′. Тогда модель M ′ =
〈X ′, R′, R′1, |=′〉 называется фильтрацией M через Ψ, если выполнено сле-
дующее:

(FRi) xRy =⇒ [x]R′[y];
(FRii) [x]R′[y] =⇒ ∀B((¤B ∈ Ψ и x |= ¤B =⇒ y |= B) и (¤∗B ∈ Ψ и y |=

¤∗B =⇒ x |= B));
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(FR1i) xR1y =⇒ [x]R′1[y];
(FR1ii) [x]R′1[y] =⇒ ∀B((¤1B ∈ Ψ и x |= ¤1B =⇒ y |= B) и (¤∗1B ∈ Ψ и y |=

¤∗1B =⇒ x |= B)).
Известны следующие факты:

Лемма о фильтрации.[3] Пусть M ′ является фильтрацией M через Ψ.
Тогда для любой формулы B ∈ Ψ и любого x ∈ X верно:

[x] |=′ B ⇐⇒ x |= B.

Предложение 3.2. Пусть M ′ является фильтрацией M через Ψ. Тогда для
любого множества Y ⊆ X ′ существует формула A такая, что для любого
x ∈ X верно:

x |= A ⇐⇒ [x] ∈ Y.

Доказательство. Так как Ψ — конечное множество, то X ′ является конеч-
ным. Пусть Y = {[x1], . . . , [xn]}, сопоставим каждому xi формулу &{Bj | Bj ∈
Ψ и xi |= Bj}&{¬Bl | Bl ∈ Ψ и xi 6|= Bl}. Обозначим эту формулу через Ai, и
пусть A = ∨1≤i≤nAi.

Пусть x ∈ X и x |= A, тогда x |= Ai для некоторого i ∈ {1, . . . , n}. Докажем,
что x ≡Ψ xi (тогда [x] = [xi], и следовательно [x] ∈ Y ). Пусть B ∈ Ψ и xi |= B,
тогда x |= B, так как x |= Ai. Пусть B ∈ Ψ и xi 6|= B, тогда x |= ¬B, поскольку
x |= Ai, то есть x 6|= B. Таким образом ∀B ∈ Ψ(x |= B ⇐⇒ xi |= B), то есть
x ≡Ψ xi.

Пусть [x] ∈ Y, тогда [x] = [xi] для некоторого i ∈ {1, . . . , n}, следовательно
x ≡Ψ xi. Поскольку ∀B ∈ Ψ(x |= B ⇐⇒ xi |= B), то x |= Ai, следовательно
x |= A. ¤

Доказательство теоремы 3.1 Пусть формула A0 невыводима в исчислении
LInd. Тогда она опровергается в некотором мире t канонической модели для
LInd, следовательно в выбранной линейной по времени (S ⊆ R)-модели M =
〈X, R, R1, |=〉. Пусть Ψ — конечное множество формул, содержащее Sub(A0),
удовлетворяющее следующим условиям:

(1Ψ) если ¤A ∈ Ψ, то ¤1¤A ∈ Ψ и ¤∗1¤A ∈ Ψ,
(2Ψ) если ¤∗A ∈ Ψ, то ¤1¤∗A ∈ Ψ и ¤∗1¤∗A ∈ Ψ,

и замкнутое относительно подформул.
Построим фильтрацию M через Ψ.
Определим на множестве X ′ отношения R′1, R′ и вспомогательные отноше-

ния R′′, S следующим образом:
[x]R′1[y] ⇐⇒ ∃x′∃y′(x ≡Ψ x′ и y ≡Ψ y′ и x′R1y

′),
[x]R′′[y] ⇐⇒ ∀¤B ∈ Ψ(x |= ¤B =⇒ y |= ¤B) и ∀¤∗B ∈ Ψ(y |= ¤∗B =⇒ x |=

¤∗B).
[x]R′[y] ⇐⇒([x] = [y] или существуют [x1], . . . , [xn] ∈ X ′ такие, что

[x] = [x1]S . . . S[xn]S[y]), где отношение S определяется следующим обра-
зом: [xi]S[xi+1] ⇐⇒ (a) [xi]R′1[xi+1] или (b) ∃[z]([xi]R′1[z] и [xi+1]R

′
1[z]) или

(c) ∃[z]([z]R′1[xi] и [z]R′1[xi+1]).
Предложение 3.3. (1) R′′ является транзитивным отношением;

(2) R′′ является рефлексивным отношением;
(3) [x]R′1[y] =⇒ [x]R′′[y];



ВРЕМЕННАЯ ЛОГИКА ЛИНЕЙНЫХ ПО ВРЕМЕНИ ФРЕЙМОВ 321

(4) если [z]R′1[x] и [z]R′1[y], то [x]R′′[y] и [y]R′′[x];
(5) если [x]R′1[z] и [y]R′1[z], то [x]R′′[y] и [y]R′′[x].

Доказательство. (1) Докажем, что R′′ является транзитивным отношением.
Пусть [x]R′′[y] и [y]R′′[z], докажем, что [x]R′′[z]. Для этого необходимо по-

казать, что для любой формулы ¤B ∈ Ψ (x |= ¤B =⇒ z |= ¤B) и для любой
¤∗B ∈ Ψ(z |= ¤∗B =⇒ x |= ¤∗B). Пусть ¤B ∈ Ψ и x |= ¤B. Так как [x]R′′[y],
то y |= ¤A. Отсюда, поскольку [y]R′′[z], имеем z |= ¤A. Для формулы ¤∗B ∈ Ψ
доказательство аналогичное. Таким образом [x]R′′[z].

(2) Рефлексивность отношения R′′ следует из рефлексивности отношения R
и аксиом (2), (2∗), (3), (3∗).

(3) Докажем, что если [x]R′1[y], то [x]R′′[y]. Пусть ¤B ∈ Ψ и x |= ¤B, дока-
жем, что y |= ¤A. Так как [x]R′1[y], то существуют x′, y′ такие, что x ≡Ψ x′,
y ≡Ψ y′ и x′R1y

′. По пункту (M4) теоремы 2.4 тогда x′Ry′. Так как ¤B ∈ Ψ и
x |= ¤B, то x′ |= ¤B. Тогда по аксиоме (2) x′ |= ¤¤B, следовательно y′ |= ¤B.
Таким образом y |= ¤B. Для формулы ¤∗B ∈ Ψ доказательство аналогичное,
с помощью аксиомы (2∗).

(4) Докажем, что если [z]R′1[x] и [z]R′1[y], то [x]R′′[y] и [y]R′′[x]. Пусть ¤B ∈ Ψ
и x |= ¤B, докажем, что y |= ¤B. Так как [z]R′1[x], то ∃z′∃x′(z ≡Ψ z′ и x ≡Ψ

x′ и z′R1x
′). Так как ¤B ∈ Ψ, то x′ |= ¤B, следовательно по аксиоме (2)

имеем: x′ |= ¤¤B. Поскольку z′R1x
′, то z′ |= ♦1¤¤B. Заметим, что формула

♦1¤A −→ ¤1A выводима в исчислении LInd из аксиомы (5), следовательно
z′ |= ¤1¤B. Так как [z]R′1[y], то ∃z′′∃y′(z ≡Ψ z′′ и y ≡Ψ y′ и z′′R1y

′). По условию
(1Ψ) на множество Ψ имеем, что ¤1¤B ∈ Ψ. Отсюда получаем, что z′′ |= ¤1¤B,
так как z ≡Ψ z′′. Поскольку z′′R1y

′, то y′ |= ¤B, следовательно y |= ¤B.
Пусть ¤∗B ∈ Ψ и y |= ¤B, докажем, что x |= ¤∗B. Так как [z]R′1[y],

то ∃z′∃y′(z ≡Ψ z′ и y ≡Ψ y′ и z′R1y
′). Так как ¤∗B ∈ Ψ, то y′ |= ¤∗B,

следовательно по аксиоме (2∗) имеем: y′ |= ¤∗¤∗B. Поскольку z′R1y
′, то

z′ |= ♦1¤∗¤∗B. Заметим, что формула ♦1¤∗A −→ ¤1A выводима в исчис-
лении LInd из аксиомы (5), следовательно z′ |= ¤1¤∗B. Так как [z]R′1[x], то
∃z′′∃x′(z ≡Ψ z′′ и x ≡Ψ x′ и z′′R1x

′). По условию (2Ψ) на множество Ψ име-
ем, что ¤1¤∗B ∈ Ψ. Отсюда получаем, что z′′ |= ¤1¤∗B, так как z ≡Ψ z′′.
Поскольку z′′R1x

′, то x′ |= ¤∗B, следовательно x |= ¤∗B.
Таким образом получили, что для любой формулы ¤B ∈ Ψ верно: если

x |= ¤B, то y |= ¤. Кроме того, для любой формулы ¤∗B ∈ Ψ : если y |=
¤∗B, то x |= ¤∗B. Следовательно [x]R′′[y]. Доказательство того, что [y]R′′[x]
проводится аналогично, заменяя x на y, y на x. Таким образом, если [z]R′1[x] и
[z]R′1[y], то [x]R′′[y] и [y]R′′[x].

(5) Пусть [x]R′1[z] и [y]R′1[z], докажем, что [x]R′′[y] и [y]R′′[x].
Пусть ¤B ∈ Ψ и x |= ¤B, докажем, что y |= ¤B. Так как [x]R′1[z], то

∃z′∃x′(z ≡Ψ z′ и x ≡Ψ x′ и x′R1z
′). Так как ¤B ∈ Ψ, то x′ |= ¤B, следовательно

по аксиоме транзитивности (2) имеем: x′ |= ¤¤B. Поскольку x′R1z
′, то z′ |=

♦∗1¤¤B. Заметим, что формула ♦∗1¤A −→ ¤∗1A выводима в исчислении LInd
из аксиомы (6), следовательно z′ |= ¤∗1¤B. Так как [y]R′1[z], то ∃z′′∃y′(z ≡Ψ

z′′ и y ≡Ψ y′ и y′R1z
′′). По условию (1Ψ) на множество Ψ имеем, что ¤∗1¤B ∈ Ψ.

Отсюда получаем, что z′′ |= ¤∗1¤B, так как z ≡Ψ z′′. Поскольку y′R1z
′′, то

y′ |= ¤B, следовательно y |= ¤B.
Пусть ¤∗B ∈ Ψ и y |= ¤∗B, докажем, что x |= ¤∗B. Так как [y]R′1[z],

то ∃z′∃y′(z ≡Ψ z′ и y ≡Ψ y′ и y′R1z
′). Так как ¤∗B ∈ Ψ, то y′ |= ¤∗B,
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следовательно по аксиоме (2∗) имеем: y′ |= ¤∗¤∗B. Поскольку y′R1z
′, то

z′ |= ♦∗1¤∗¤∗B. Заметим, что формула ♦∗1¤∗A −→ ¤∗1A выводима в исчис-
лении LInd из аксиомы (6), следовательно z′ |= ¤∗1¤∗B. Так как [x]R′1[z], то
∃z′′∃x′(z ≡Ψ z′′ и x ≡Ψ x′ и x′R1z

′′). По условию (2Ψ) на множество Ψ име-
ем, что ¤∗1¤∗B ∈ Ψ. Отсюда получаем, что z′′ |= ¤∗1¤∗B, так как z ≡Ψ z′′.
Поскольку x′R1z

′′, то x′ |= ¤∗B, следовательно x |= ¤∗B.
Следовательно [x]R′′[y]. Доказательство того, что [y]R′′[x] проводится ана-

логично, заменяя x на y, и y на x.
Таким образом, если [x]R′1[z] и [y]R′1[z], то [x]R′′[y] и [y]R′′[x].

¤

Заметим, что из пунктов (3)–(5) предложения 3.3 получаем, что S ⊆ R′′.
Из транзитивности и рефлексивности отношения R′′ тогда следует, что если
[x]Sn[y], то [x]R′′[y]. Таким образом из определения отношения R′ можно
получить следующее следствие:

Следствие. Если [x]R′[y], то [x]R′′[y].

Предложение 3.4. Модель M ′ = 〈X ′, R′, R′1, |=′〉 является фильтрацией M
через Ψ.

Доказательство. Проверим свойства фильтрации:
(FRi) xRy =⇒ [x]R′[y];
(FRii) [x]R′[y] =⇒ ∀B((¤B ∈ Ψ и x |= ¤B =⇒ y |= B) и (¤∗B ∈ Ψ и y |=

¤∗B =⇒ x |= B));
(FR1i) xR1y =⇒ [x]R′1[y];
(FR1ii) [x]R′1[y] =⇒ ∀B((¤1B ∈ Ψ и x |= ¤1B =⇒ y |= B) и (¤∗1B ∈ Ψ и y |=

¤∗1B =⇒ x |= B)).
Заметим, что отношения R′1 и R′′ удовлетворяют соответствующим свой-

ствам [4].
Докажем, что выполняется свойство (FRii). Пусть [x]R′[y], тогда из след-

ствия имеем: [x]R′′[y]. Так как отношение R′′ удовлетворяет свойству (FRii),
то требуемое доказано.

Докажем, что модель M ′ удовлетворяет свойству (FRi). Пусть xRy, до-
кажем, что [x]R′[y]. Необходимо доказать, что [x] = [y] или существуют
[x1], . . . , [xn] ∈ X ′ такие, что [x] = [x1]S . . . S[xn]S[y]. Пусть Y = {[t] | [x]S∗[t]},
докажем [y] ∈ Y.

По предложению 3.2 существует формула A такая, что для любого t ∈ X
верно: t |= A ⇐⇒ [t] ∈ Y. Таким образом достаточно доказать, что y |= A.

Замечание. x |= A и x |= ¤(A −→ (¤1(A&¤∗1A)&¤∗1¤1A)).

Доказательство. Имеем x |= A, так как [x] ∈ Y.
Докажем, что x |= ¤(A −→ (¤1(A&¤∗1A)&¤∗1¤1A)). Пусть t такой, что xRt

и t |= A. Требуется доказать, что t |= ¤1(A&¤∗1A)&¤∗1¤1A. Докажем снача-
ла, что t |= ¤1(A&¤∗1A). Пусть u, v ∈ X такие, что tR1u и vR1u, докажем,
что u |= A и v |= A. Так как t |= A, то [t] ∈ Y, следовательно [x]Sm[t] для
некоторого m, то есть [x] = [t] или существуют [x1], . . . , [xm] ∈ X ′ такие, что
[x] = [x1]S . . . S[xm]S[t]. Поскольку tR1u, то [t]R′1[u], следовательно [t]S[u]. Та-
ким образом из [x]Sm[t] и [t]S[u] имеем, что, [x]Sm+1[u], следовательно [x]S∗[u],
то есть [u] ∈ Y. Таким образом u |= A.
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Так как vR1u, то [v]R′1[u]. Вместе с [t]R′1[u] это дает, что [t]S[v]. Таким об-
разом из [x]Sm[t], [t]S[v] имеем, что, [x]Sm+1[v], следовательно [v] ∈ Y. Таким
образом v |= A.

Докажем теперь, что t |= ¤∗1¤1A. Пусть z, w ∈ X такие, что zR1t и zR1w.
Докажем, что w |= A, то есть [w] ∈ Y. Так как zR1t и zR1w, то [z]R′1[t] и
[z]R′1[w], следовательно [t]S[w]. Отсюда, поскольку [x]Sm[t], имеем [x]Sm+1[w].
Таким образом [w] ∈ Y, и замечание доказано. ¤

Продолжим доказательство свойства (FRi). По замечанию x |= A и x |=
¤(A −→ (¤1(A&¤∗1A)&¤∗1¤1A)), следовательно по аксиоме (8) имеем x |= ¤A.
Так как xRy, то y |= A, что и требовалось. ¤

Таким образом, из предложения 3.4 и леммы о фильтрации получаем, что
невыводимая в исчислении LInd формула A0 опровергается в построенной вы-
ше фильрации M ′ = 〈X ′, R′1, R′, |=′〉. Для доказательства теоремы 3.1 оста-
лось доказать следующее утверждение:
Теорема 3.5. Модель M ′ = 〈X ′, R′1, R′, |=′〉 является линейной по времени
(S ⊆ R)Ind-моделью.

Доказательство. Проверим, что фрейм 〈X ′, R′1, R′, |=′〉 удовлетворяет всем
свойствам определения линейного по времени (S ⊆ R)Ind-фрейма.

(1) Так как M ′ является фильтрацией линейной по времени (S ⊆ R)-модели
M = 〈X, R1, R, |=〉, то для любых x, y ∈ X верно: xRy или yRx. Следова-
тельно по свойству (FRi) имеем, что для любых [x], [y] ∈ X ′ верно: [x]R′[y]
или [y]R′[x].

(2) Докажем, что R′ является транзитивным отношением. Пусть [x]R′[y]
и [y]R′[z]. Тогда [x]Sn[y] и [y]Sm[z] для некоторых n, m. Следовательно
[x]Sn+m[y]. Таким образом верно, что [x]R′[z].

(3) Отношение R′ является рефлексивным по определению.
(4) Из определения отношения R′ сразу следует, что если [x]R′1[y], то [x]R′[y].
(5) Пусть [z]R′1[x] и [z]R′1[y], докажем, что [x]R′[y] и [y]R′[x].
Заметим, что если [z]R′1[x] и [z]R′1[y], то [x]S[y] и [y]S[x]. По определению

отношения R′ это дает [x]R′[y] и [y]R′[x].
(6) Пусть [x]R′1[z] и [y]R′1[z], докажем, что [x]R′[y] и [y]R′[x].
Пусть [x]R′1[z] и [y]R′1[z], тогда [x]S[y] и [y]S[x]. Тогда по определению отно-

шения R′ получаем, что [x]R′[y] и [y]R′[x].
(7) Свойство (7) сразу следует из пункта (M7) теоремы 2.4 и (FR1i).
Свойство (8) линейной по времени (S ⊆ R)Ind-фрейма сразу следует из

определения отношения R′. ¤
В заключение заметим, что поскольку исчисление LInd финитно аппрокси-

мируемо (конечными линейными по времени (S ⊆ R)Ind-моделями) и конечно
аксиоматизируемо, то оно разрешимо.

4. Слабая модальность

Рассмотрим фреймы вида 〈X, R, R1〉, где X =
⋃

i∈N C(i) [6]. Здесь N —
множество натуральных чисел, каждое C(i) — непустое множество элементов
("все возможные состояния в момент времени i ".) Отношения R, R1 — бинар-
ные отношения на множестве X такие, что для любых x, y ∈ X верно:

xRy ⇐⇒ x ∈ C(i), y ∈ C(j) и i ≤ j;
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xR1y ⇐⇒ x ∈ C(i) и y ∈ C(i + 1).

Таким образом каждое множество C(i) является R-кластером, то есть для
x ∈ C(i): C(i) = {y | xRy и yRx}. Заметим, что фреймы 〈⋃i∈N C(i), R, R1〉
являются линейными по времени (S ⊆ R)Ind-фреймами.

В [6] В.В. Рыбаковым рассматривается полимодальный язык с временны-
ми модальными операторами ¤, ¤∗, связанными с отношение R, и слабыми
модальностями ¤w, ¤∗w :

x |= ¤A ⇐⇒ ∀y(xRy =⇒ y |= A),

x |= ¤∗A ⇐⇒ ∀y(yRx =⇒ y |= A),

x |= ¤wA ⇐⇒ ∀i[x ∈ C(i) =⇒ (∀j ≥ i∃y ∈ C(j)(y |= A))],

x |= ¤∗wA ⇐⇒ ∀i[x ∈ C(i) =⇒ (∀j ≤ i∃y ∈ C(j)(y |= A))].

Добавим в язык модальные операторы ¤1, ¤∗1, связанные с отношением R1.
Тогда можно доказать, что слабые модальности выражаются через другие:
Предложение 4.1. Следующие формулы общезначимы в рассматриваемых
фреймах:

¤wA ←→ ♦1♦∗1A&¤♦1A;

¤∗wA ←→ ♦1♦∗1A&¤∗(♦∗1A ∨¤∗1⊥&♦∗A).

Доказательство. Пусть x ∈ C(i) и x |= ¤wA, тогда (∀j ≥ i∃y ∈ C(j)(y |= A)).
Докажем, что x |= ¤♦1A. Пусть z ∈ X и xRz. Тогда по определению отношения
R имеем, что z ∈ C(j) для некоторого j ≥ i. Так как i ≤ j, то y ∈ C(j+1) такой,
что y |= A. То есть существует y ∈ X такой, что zR1y и y |= A. Следовательно
z |= ♦1A. Таким образом x |= ¤♦1A.

Докажем, что x |= ♦1♦∗1A∨A. Так как найдется y ∈ C(i) такой, что y |= A, то
существует z ∈ C(i + 1) такой, что z |= ♦∗1A. Поскольку x ∈ C(i) и z ∈ C(i + 1),
то xR1z. Таким образом x |= ♦1♦∗1A.

Докажем теперь, что ♦1♦∗1A&¤♦1A −→ ¤wA. Пусть x ∈ C(i) и x |=
♦1♦∗1A&¤♦1A. Докажем, что (∀j ≥ i)∃y ∈ C(j)(y |= A).

По предположению имеем x |= ♦1♦∗1A. Тогда существуют z ∈ C(i + 1) и y
такие, что yR1z и y |= A. Следовательно, найдется y такой, что y ∈ C(i) и
y |= A.

Так как x |= ¤♦1A, то для любого z: если xRz, то z |= ♦1A. То есть суще-
ствует y такой, что zR1y и y |= A. По определению отношений R, R1 имеем,
что если xRz, то z ∈ C(j) для некоторого j ≥ i, и y ∈ C(j+1). Поскольку такой
y найдется для любого z такого, что xRz, то (∀j > i + 1)∃y ∈ C(j)(y |= A).

Таким образом, суммируя вышедоказанное, получаем (∀j ≥ i)∃y ∈ C(j)(y |=
A), то есть x |= ¤wA.

Докажем, что ¤∗wA −→ ♦1♦∗1A&¤∗(♦∗1A ∨¤∗1⊥&♦∗A).
Пусть x ∈ C(i) и x |= ¤∗wA, тогда (∀j ≤ i)∃y ∈ C(j)(y |= A). Так как

существует y ∈ C(i) такой, что y |= A, то x |= ♦1♦∗1A. Докажем, что x |=
¤∗(♦∗1A ∨¤∗1⊥&A). Пусть zRx, тогда z ∈ C(k) для некоторого k ≤ i.

Рассмотрим случай, когда k > 0. Так как найдется y ∈ C(k − 1) такой, что
y |= A, то z |= ♦∗1A.
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Пусть k = 0, то есть z ∈ C(0). Следовательно z |= ¤∗1⊥ (иначе, если z 6|= ¤∗1⊥,
то z |= ♦∗1>, следовательно существует z′R1z). Так как найдется y ∈ C(0) такой,
что y |= A, то z |= ♦∗A. В итоге получаем, что z |= ¤∗1⊥&♦∗A.

Докажем теперь обратную импликацию. Пусть x ∈ C(i) и x |=
♦1♦∗1A&&¤∗(♦∗1A ∨¤∗1⊥&♦∗A). Докажем, что x |= ¤∗wA.

Возможны два случая: i = 0 или i > 0.
Пусть i = 0. Так как x |= ♦1♦∗1A, то существуют y, z такие, что xR1z, yR1z

и y |= A. Следовательно, найдется y ∈ C(0) такой, что y |= A.
Пусть i > 0. Возьмем произвольный j такой, что 0 ≤ j ≤ i. Существование

y ∈ C(i) такого, что y |= A следует из x |= ♦1♦∗1A. Пусть z ∈ C(j). Так как
для любого z ∈ C(j) верно, что zRx, то z |= ♦∗1A ∨ ¤∗1⊥&♦∗A, поскольку
x |= ¤∗(♦∗1A∨¤∗1⊥&♦∗A). Если z |= ♦∗1A, то существует y ∈ C(j−1) такой, что
y |= A. Пусть z |= ¤∗1⊥&♦∗A. Тогда z ∈ C(0) (иначе существует z′ такой, что
z′R1z, следовательно z |= ♦∗1>, что противоречит z |= ¤∗1⊥). Так как z |= ♦∗A,
то существует yRz такой, что y |= A. Поскольку z ∈ C(0), то y ∈ C(0). Таким
образом показали, что (∀j(0 ≤ j ≤ i =⇒ ∃y ∈ C(j)(y |= A.))

¤
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