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AND CDy-SECTIONS OF BANACH BUNDLES

A. E. GUTMAN, A.V. KOPTEV

ABsTrRACT. We first briefly expose some crucial phases in studying

the space CDo(Q) = C(Q) + co(Q) whose elements are the sums of
continuous and “discrete” functions defined on a compact Hausdorff
space ) without isolated points. In this part, special emphasis is on
describing the compact space @ representing the Banach lattice CDo(Q)
as C @ . The rest of the article is dedicated to the analogous frame
related to the space CDo(Q,X) of “continuous-discrete” sections of a
Banach bundle X and the space of CDg-homomorphisms of Banach
bundles.
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1. INTRODUCTION

1.1. A real Banach space X = (X, +, -, ||-||) endowed with a (partial) order <

is called a Banach lattice whenever

(1) the order < makes X a lattice, i.e., for all z,y € X, the supremum z V y
and infimum z A y exist in X (hence, the modulus |z| := 2 V (—z) exists

for every x € X);

(2) the order < agrees with the linear operations, i.e., for all z,y,z € X and
0 < X € R, the inequality = < y implies x + 2z < y + z and Az < A\y;
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(3) the norm ||-|| is monotonous with respect to the order <, i.e., forall z,y € X,
|z| < |y| implies ||z|| < [ly|| (hence, ||lz|| = |||z||| for all z € X).
A Banach lattice X is called an abstract M-space with unity, or an AM; -space for
short, if

(4) [z vyl = max{[l], lyll} for all 0 <2,y € X;
(5) there is an element 1 € X such that |z| < 1 is equivalent to ||z| < 1 for
all z € X.

The classical Banach function spaces endowed with the uniform norm and pointwise
order serve as examples of AM;-spaces:
(@) (R™,[lloc), n € N;
(b) the space £°° of bounded sequences;
(c) the space L>() of (cosets) of essentially bounded measurable functions
defined on a measure space §;
(d) the space C(Q) of continuous functions defined on a compact Hausdorff

space Q.
1.2. The theory of Banach lattices includes the following well-known fact:

Kreins—Kakutani Theorem. Every AM;-space is linearly isometric and order
isomorphic to the space C(Q) for a suitable compact Hausdorff space Q@ (moreover,
such a space @ is unique up to homeomorphism).

We can say that, in general, the space @ corresponding to a given AM;-space
according to the Kremms—Kakutani Theorem occurs “unobservable” (“implicit”,
“nonconstructive”) if for no other reason than the fact that the available universal
approaches to its “construction” essentially rely on the axiom of choice (or Zorn’s
Lemma) and employ such notions as ultrafilters, maximal ideals, etc.

Heading toward the desired compact space, some other rather bulky
constructions often occur which weaken the intuitive connection with the initial
AM, -space. For instance, one of the classical ways of constructing a space Q
representing a given AM;-space X as C(Q) consists in the following: first, an order
completion X of X is considered; next, X is represented as the space C(Q) of
continuous functions defined on an extremally disconnected compact Hausdorff
space Q (which occurs, for instance, as the set of all ultrafilters of the base of X
endowed with a special topology); finally, the desired space @ is obtained by “gluing”
together the points of @ which are not separated by the functions corresponding to
the initial space X.

Another common approach to constructing a representation compact space
for an AM;-space consists in considering the second dual and employing the
corresponding representation facts of the theory of commutative Banach algebras,
which use such “implicit” objects as, for instance, characters of an algebra.

Perhaps, the shortest universal way to a representation compact space @ is
paved in [4], where the points of @) occur as the maximal order ideals of the initial
AM, -space. (However, this construction can also hardly be called “observable” by
obvious reasons.)

At the same time, it is clear that the study of the properties of a concrete
AMji -space can be considerably simplified if we manage to find an explicit and plain
description of the corresponding representation compact space. As an example,
consider the Banach lattice X which is the closure (with respect to the uniform
norm) of the space of all functions f: P — R that are defined on an infinite
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set P and are constant on P except finitely many points. (Despite of its simplicity,
the space of such functions f plays an important role in some topics of the theory
of regular operators in vector lattices; see, for instance, [1].) Every element of X
can be described as a function z: P — R for which there exist a number A and
a sequence of points p, € P such that x = X outside {p,, : n € N} and z(p,) — A
as m — oo. Since X is an AM;-space, it is isomorphic to C(Q) for some compact
Hausdorff space Q. The structure of the space X becomes now absolutely clear
on observing that we can take as ) the Alexandroff one-point compactification
P U {oo} of the discrete topological space P. (In the compactification P U {o0},
the points p € P are isolated, while the neighborhoods of oo are the complements
of the finite subsets of P.) An isomorphism of the AM;-space X onto C(P U {oo})
is obtained by extending each function z € X to oo with the value z(c0) = A
mentioned in the above description of x.

1.3. Let now () be an arbitrary nonempty compact Hausdorff space without
isolated points and let ¢o(Q) be the totality of all functions f: @ — R such that
the set {q € Q : |f(q)| > £} is finite for every number ¢ > 0. In [2] Y. A. Abramovich
and A. W. Wickstead introduced the space

CDo(Q) == C(Q) + co(Q)
of functions f: @ — R each of which is representable as the sum f = f. + fq4
of a continuous f. € C(Q) and “discrete” fq € c¢o(Q) parts. First of all, it
is worth noting that, since @@ has no isolated points, we have the direct sum
decomposition CDy(Q) = C(Q) ® ¢o(Q) and the mappings f — f. and f — f4
are the corresponding linear projections.

Y. A. Abramovich and A. W. Wickstead showed in [2] that, with respect to the
uniform norm and pointwise order, the space CDy(Q) is a Banach lattice possessing
certain rather exotic order-topological properties. They also observed that, despite
of its “oddity,” this Banach lattice is an AM;-space and (according to the Krens—
Kakutani Theorem) is isomorphic to the space C (@) for a suitable compact
Hausdorff compact space Qv - Having left aside the question of an explicit description
of the corresponding compact spaces @, the authors of [2] nevertheless noted that,
due to the unusual properties, such spaces are of interest for the general topology
as well.

1.4. The spaces CDy(Q) (and other analogous spaces of “continuous-discrete”
functions) became the subject of further investigations (see, for instance, [3,5,6])
which led to the first explicit description of the representation compact space @
for CDy(Q). Namely, in [8], Z. Ercan established that Q can be taken to be the set

Qx{0,1} endowed with the following convergence:
(qa,Ta) — (g,7) if and only if
fc(CIoz) + rafd(Qa) - fc(Q> + de(Q) for every f € CDO(Q)

Theorem [8]. The above convergence corresponds to a compact Hausdorff
topology on @x{0,1}. The spaces CDy(Q) and C(Qx{0,1}) are linearly isometric
and order isomorphic under the mapping that takes each element f € CDy(Q) into
the function f : Qx{0,1} — R defined by the equality f(q, r) = fo(q) + rfa(q).

The latter result has played a key role in the problem of describing the compact
space @ which represents CDy(Q) as C (Q)
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The above approach to describing the representation compact space could be
subjected to criticism by noting that the definition of its topology explicitly uses
the space CDy(Q) itself, which does not allow us to reduce the study of CDy(Q)
to that of C(@) and takes the analysis of the properties of Qv and C(@) back
to considering the initial space CDy(Q). Nevertheless, [8] contains an alternative
description of the net convergence in @ which does not employ the space CDy(Q)
per se and only uses the convergence in ). Perhaps, the only remaining possible
subject for criticism is introduction of a topology by means of convergence, which
hinders its understanding from the traditional “neighborhood” point of view.

1.5. However that may be, the above-mentioned “demerit” was completely
eliminated by V. G. Troitsky in [16]. For convenience, introduce the mappings

(e, (1)a: Q@ — @x{0,1}
e = (,0), gqa:=(g,1).
In addition, for every subset P C ) put
P.:={p.:p€ P} =Px{0}, P;:={pqg:p€ P}=Px{1}.

In his “notes” [16] V.G. Troitsky described the Ercan’s topology on @x{0,1} =
Q.UQq as follows: the points gy are isolated, while the base neighborhoods of each
point g. are the sets of the form V. U Vy\{qq}, where V is a neighborhood of ¢
in the initial topology of Q.

The topological space @ = Q.UQyq thus defined is usually called the Alezandroff
duplicate of the compact space @ and denoted by A(Q). The space Qv indeed
possesses a number of exotic properties. As is known (see [7, 3.1.G]), it is

by putting

Hausdorff and compact (moreover, every subset of @ containing Q. is compact),
its “continuous part” Q. is homeomorphic to (), and the “discrete part” Qg is open
and dense in Q. The duplicate of a circle (the so-called “Alexandroff double circle”)
serves as a classical example of a hereditarily normal topological space which is not
perfectly normal; it is also first-countable, but not separable and thus not second-
countable (see [7, 3.1.26]).

Employing the new definition of the compact space @ = Qc U Qq, we can now
easily obtain a characterization of the net convergence in @ (analogous to that
presented in [8]): Since the points g4 € Q4 are isolated, a net in @ converges to gg
if and only if it stabilizes at qq; as for the points ¢. € Q., convergence of a net
(qaTa) to g is equivalent to the following: starting at some index, the points
(¢, 7o) differ from g4 and g, — ¢ in the initial topology of Q.

1.6. Besides a simple and explicit description of the topology of @ in terms of
neighborhoods, V.G. Troitsky suggested the following elegant characterization of
the elements of CDy(Q):

Theorem [16]. A function f:Q — R belongs to CDy(Q) if and only if f
has a limit at every point of (). Furthermore, the continuous part f. € C(Q) of
a function f € CDy(Q) is calculated by the formula

felg) = lim f(p) forall q€Q.

This result became a very convenient tool which made it possible to considerably
simplify the study of the properties of CDy(Q) and, in particular, to obtain
elementary proofs of available facts on the space.
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1.7. The next stage in studying the properties of CDg-spaces is characterized by
passing from real valued functions f: @ — R to vector valued functions f: Q — X,
where X is a Banach lattice. Isomorphy of the Banach lattices CDy(Q, X) and
C (@7 X ) in the case of a compact metric space ) without isolated points is
mentioned already in [8]. In a more general case the connection between the spaces
of vector valued CDg-functions and continuous functions is treated in the paper [6]
by S. Alpay and Z. Ercan.

1.8. Further developments showed that the main facts on representation of
CDy-spaces as spaces of continuous functions remain valid after passing not only
to vector valued functions, but also to sections of Banach bundles.

The space of CDy-sections of a continuous Banach bundle X over ) was
first considered by T.H6im and D.A.Robbins in [13], where, in particular, a
linear isometry is constructed of this space onto the Banach space C' (@,;() of

all continuous sections of a certain Banach bundle X over the duplicate @ of Q.
(The structure of the bundle X is discussed below.) Some interconnections are also
established in [13] between C(Q)-linear operators from C(Q,X) into C(Q) and
C(@) -linear operators from C’(@, X’) into C(@)

The present article is in essence a revised and extended compilation of [11,12].
After outlining the basic information on continuous Banach bundles we present
the main definitions and facts concerning CDj-sections of a Banach bundle and
suggest some further development of the theory, with special emphasis on the space
of CDy-homomorphisms of Banach bundles.

2. CONTINUOUS BANACH BUNDLES

2.1. Let @ be an arbitrary topological space. A Banach bundle (or, more
precisely, a continuous Banach bundle) over @ is a formalization of an intuitive
idea of a “continuous” function X which is defined on ) and maps each point ¢ € Q
into a Banach space X (q) (called the stalk of X at ¢). One of the formal approaches
to defining the “continuity” of X (see [10, 2.1], [15, 2.4.3]) consists in indicating
a so-called continuous structure in X that is a vector subspace Cxy of the space of
sections

S(Q,X) = {u: Q— UQX(q) : u(q) € X(q) for all g € Q}
qe
(endowed with the pointwise operations, see [10, 1.7.3], [15, 2.4.3]) such that, first,
the pointwise norm

llell: @ = R, lleli(a) = lle(@)llx(q) (¢ € Q)

of each section ¢ € Cx is continuous and, second, Cy is stalkwise dense in X,
i.e., the set {c(q) : ¢ € Cx} is dense in X(q) for all ¢ € Q. Given a continuous
structure Cy, we can define the totality C(Q, X') of continuous sections of X to be
the set of all sections u € S(Q, X) such that ||u — ¢|| € C(Q) for ¢ € Cx.
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2.2. The notion of a continuous section of a Banach bundle can be treated as
a generalization of the notion of a continuous vector valued function. Indeed, if X is
a Banach space, then C'(Q, X) = C(Q, X), where X is the constant Banach bundle
whose stalks are X(¢) = X and the continuous structure is constituted by, for
instance, constant functions ¢: @ — X (see [10, 2.2.1]).

2.3. Note that there is an alternative, and in a sense equivalent, approach to
introducing a continuous structure, within which continuity of sections occurs to
be a purely topological notion. (An exposition of both approaches, as well as
a justification of their equivalence, can be found in [9].) Denote by Q@ ® X the union
of the pairwise disjoint copies {q}xX(q) of the stalks X'(g) of a Banach bundle X
over Q:

QX ={(¢,2): € Q, x € X(q)}.

Given an arbitrary section u € S(@Q, X), define the function QRu: Q — QX by
putting (Q®u)(q) = (q, u(q)) for all ¢ € Q. Then the set of all “tubes”

{(g.2) € QX : €U, |z —c(q)| <e},

which are defined by the sections ¢ € Cy, open subsets U C @, and numbers
e > 0, is a base of some open topology on Q®X (see [9, 5.3]). Furthermore, the
induced topology of the copy {¢} xX(¢) C Q®X of each stalk X'(q) coincides with
the initial topology of the stalk as a Banach space, and a section u € S(Q, X') occurs
continuous if and only if the function Q®u: Q — Q®X is continuous (in the usual
sense) with respect to the tubes topology (see [10, 2.1.7]).

2.4. Different continuous structures C; and C; in A may induce the same
topology on @ ®X. In this case, the continuous structures C; and Cy are called
equivalent and the Banach bundles (X,C;) and (X,C) are identified. The
identification is justified, in particular, by the following fact:

Theorem [10, 2.1.8]. Let C; and Cy be continuous structures in X and let
C(Q, X |Cy) and C(Q, X | C2) be the corresponding sets of continuous sections. Then
the following assertions are tantamount:

(1) Cy and Cy are equivalent;

(2) C(Q,X[C1) =C(Q, X |Ca);

(3) C(Q,X[C1) C C(Q, X [Ca);

(4) ¢ CC(Q X [Ca);

(5) the intersection C(Q, X |C1) N C(Q, X | Cs) is stalkwise dense in X.

2.5. It is worth taking account of the following basic properties of the set
C(Q, X) of continuous sections of a Banach bundle X over a compact Hausdorff
space @:

(a) Ifu € C(Q, X) then |u|| € C(Q).

(b) Theset C(Q, X) is a closed vector subspace of the Banach space £°(Q, X') of
all bounded sections of X endowed with the uniform norm |ju|| = H|||uH\H =
p—l

(¢) Ifu e C(Q,X) and f € C(Q) then fu € C(Q,X). In particular, C(Q, X)
is a Banach C(Q)-module.

(d) The set C(Q, X) fills the stalks of X. Moreover, for all ¢ € Q and x € X(q),
there exists a section u € C(Q, X) such that u(q) = z and ||u|| < ||z]|.
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Assertions (a)-(c) are proven, for instance, in [10, 2.3]. Assertion (d) is
conventionally called the Dupré Theorem (see [9, 2.10]). Note that the statement of
this theorem holds for Banach bundles over arbitrary topological spaces Q (see [14,
1.1]).

2.6. The tubes topology introduced in 2.3 makes it possible to interpret various
topological notions and facts related to sections v € S(Q,X) in terms of the
corresponding functions @ ®u. For instance (see [10, 2.3.7]), a section u € S(Q, X)
has limit * € X(q) at a point ¢ € @ if and only if the limit of the function
Q®u: Q — QX at ¢ equals (g, x):

lim u(p) =z < lim(p,u(p)) = (¢,2) in QRX.
p—4q p—q

According to [10, 2.3.8] and the Dupré Theorem, the last relation is equivalent to
existence of a section v € C(Q, X) such that v(¢) = z and lim ||u(p) — v(p)|| = 0.
p—q

3. THE SPACE OF CDg-SECTIONS

Throughout the sequel, @ is a nonempty compact Hausdorff space without
isolated points. All vector spaces considered in the article are assumed to be defined
over the field R of reals.

3.1. Recall that C(Q) is the set of all real valued continuous functions defined
on @Q; co(Q) is the totality of all functions f: @ — R such that the set {q €
Q : |f(g)] > e} is finite for every number ¢ > 0. Both C(Q) and ¢(Q) are
Banach lattices and Banach algebras with respect to the pointwise operations,
pointwise order, and uniform norm. Each of the two spaces is a Banach sublattice
and subalgebra of the lattice-ordered Banach algebra ¢°(Q) of all bounded real
valued functions defined on Q. As is easily seen, ¢o(Q) is the closure in £*°(Q)
of the space of functions with finite support and is constituted exactly by those
functions f: @ — R for which there exists a sequence of pairwise distinct points
gn € @ (n € N) such that f(g,) — 0 as n — oo and f = 0 outside {g, : n € N}.
In particular, for all f € £°(Q) and g € ¢o(Q), the inequality |f| < |g| implies
f € ¢o(Q); therefore, ¢o(Q) is an order ideal of £*°(Q).

3.2. The symbol CDy(Q) denotes the space of all functions f: @ — R
representable as the sums f = g + h of elements g € C(Q) and h € ¢y(Q):

CDo(Q) = C(Q) + (@)

The following statement gathers some facts on the space CDy(Q) which are
established in [2,5,8,16]:

(1) Endowed with the pointwise operations, pointwise order, and uniform norm,
the space CDy(Q) is an AM; -space.

(2) The direct sum decomposition CDy(Q) = C(Q) @& co(Q) holds. Therefore,
every function f € CDy(Q) is uniquely representable as f = f.+ fq, with
fe € C(Q) and fq € co(Q).

(3) For each f € CDy(Q) we have ||f|| < || f]|-
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(4) A function f: @ — R belongs to CDy(Q) if and only if the limit lim f(p)
p—q
exists for every ¢ € Q. Furthermore, lim f(p) = f.(q) for all ¢ € Q.
p—q
In particular, f € ¢o(Q) if and only if lim f(p) =0 for all g € Q.
p—q

3.3. Asis easily seen, CDy(Q) is a Banach algebra (with respect to the pointwise
multiplication) which contains C(Q) as a subalgebra and ¢ (Q) as an algebraic ideal.
Furthermore, for all f,g € CDy(Q) we have (f¢)c = fege and (fg)a = fega+ faga +
fdgc-

3.4. In what follows, X is an arbitrary Banach bundle over @. Denote by
¢o(@Q, X) the set of all sections of X whose pointwise norm belongs to ¢(Q):

(@, &) = {ueS(Q,X): |lull € co(Q)}-
Note that ¢o(@,X) is a Banach subspace of the Banach space ¢>°(Q,X) of all
bounded sections of X’ (with the uniform norm) and coincides with the closure in

£°(Q, X) of the space of sections with finite support.
The following assertion is a direct consequence of 3.2 (4):

A section u € S(Q, X) belongs to c¢o(Q, X) if and only if

lim u(p) =0 for all ¢ € Q.
p—aq

3.5. Define CDy(Q, X) to be the space of all sections u € S(Q, X) representable
as the sums u = v + w of elements v € C(Q, X) and w € ¢x(Q, X):

CDy(Q, X) = C(Q.X) +co(Q, X).
The following assertion is a restatement of [13, Lemma 1]:
We have the direct sum decomposition

CDO(Q, X) = C(Q. X) & (@, X).

4 Indeed, if v € C(Q,X) N co(Q, X) then [Jul| € C(Q) N ¢o(Q), whence due
to 3.2 (2) we have ||u]| = 0 and thus u =0. »

The decomposition CDy(Q,X) = C(Q,X) & co(Q,X) makes it possible
to introduce the linear projections (+). and (:)q from CDy(Q,X) onto the
corresponding subspaces C(Q,X) and ¢o(Q,X). Therefore, each section u €
CDy(Q, X) is uniquely representable as u = u. + ug, with u, € C(Q,X) and
uq € co(Q, X).

3.6. A sectionu € S(Q, X) belongs to CDy(Q, X)) if and only if the limit lim u(p)
exists for each q € Q. Furthermore, b

lim u(p) = u.(q) for all ¢ € Q.
p—aq
<4 Ifu € CDy(Q, X) then due to 3.4 we have
lim [Ju(p) — uc(p)| = lim [lug(p)|| =0
p—aq p—q
for each ¢ € @, whence lim u(p) = u.(q) according to 2.6.
p—aq

Passing to the proof of sufficiency, assume that the limit v(q) := lim u(p) exists
for all ¢ € Q. Given w € C(Q, X) and ¢ € @, we have P

lo(q) —w(g)| = | lim u(p) — w(q)| = lim [u(p) = w(p)];
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therefore, ||v —w| = [Ju — w||. € C(Q) by 3.2 (4). Since w € C(Q, X) is arbitrary,
we conclude that v € C(Q, X). On the other hand,

lim [|u(p) — v(p)|| = || lim u(p) — lim v(p)|| = [[v(g) — v(q)|| = 0

pP—q pP—q pP—q

for all ¢ € Q; consequently, u — v € ¢(Q, X) according to 3.4. >

3.7. If u € CDy(Q, X) then |u|| € CDy(Q). Furthermore,

e = Nuell, — [Nelly] < Nuall-

< From 3.2(4) and 3.6 it follows that |ul| € CDo(Q) and |ull. = [luc|-
In addition,

[y = Ml = Nl | = [l = Nluell] < flu—wuell = Nuall. >

(Observe that the inequality ||||u||| 4| # lluall is obviously possible. For instance,
if g e @ veCQX)vg #0, and u = v —2x(qv, then [luflqg = 0, while

lluall = 2llv(9)llx1q}-)

Therefore, the space CDy(Q, X') endowed with the pointwise norm ||-|| is a lattice-
normed space over the Banach lattice CDy(Q), as well as a space with mixed norm:
lu|l = H|||u||| |, u € CDy(Q, X) (see [15, 7.1.1]).

3.8. For each u € CDy(Q, X) we have

el < flull, fJuall < 2[fuf-
< From 3.2(3) and 3.7 it follows that
el = el = Helle | < 1 ieal] = el

It remains to observe that ||ug|| = ||u — we|| < |Jull + ||well < 2||ull. >

3.9. The normed space CDy(Q, X) is a Banach space.

< Is (uy) is a Cauchy sequence in CDg(Q, X') then, according to 3.8, (uy). and
(un)q are also Cauchy sequences which, due to completeness of the normed spaces
C(Q,X) and ¢o(Q, X), have the corresponding uniform limits v € C(Q, X) and
w € ¢o(Q, X). Therefore, the sequence (u,) uniformly converges to the sum v 4+ w
that belongs to CDy(Q, X). >

3.10. The following assertion is straightforward:

The space CDy(Q, X) is a Banach CDy(Q)-module with respect to the pointwise
multiplication. Furthermore, for all f € CDy(Q) and u € CDy(Q, X) we have

(fu)e = fete, (fu)a = feua + fauq + faue.
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3.11. In what follows, we will use the notation of 1.5. Namely, we define the
mappings (+)e, (+)a: @ — Q@x{0,1} by the formulas

g = (¢,0), qa:=(q,1)

and, for every subset P C @, put
P.:={p.:p€ P} =Px{0}, Pj:={pg:pe€ P}=Px{1l}.

As in [16], introduce a topology on Qx{0,1} = Q.U Qg as follows: endow
the subset Q4 C @ with the discrete topology (i.e., declare all the points gq isolated)
and, for each ¢ € @, declare a subset U C Qx{0,1} to be a neighborhood of g.
whenever there exists a neighborhood V' C @ of ¢ such that V., UV \{qs} C U.
The topological space thus obtained is a compact Hausdorff space which is called
the Alezandroff duplicate of (Q and denoted by Qv (see 1.5 and the references therein).

3.12. The following result is obtained in [8] (see also [16]):

The Banach lattices CDy(Q) and C(@) are linearly isometric and order
isomorphic.

A linearly isometric order isomorphism between CD((Q) and C (@) is performed

by the mapping f — fwhich takes each f € CDy(Q) into the function f: Q—R
defined by the rule

flae) = fela), flga) = f(q) forall g€ Q.

Therefore, f(-,0) = f. and f(-,1) = f. _
As is easily seen, according to 3.3, the mapping f — f preserves multiplication
and is thus an isomorphism between the algebras CDy(Q) and C (Q)

3.13. The criterion presented below is immediate from 3.12:

The following properties of a function g : @ — R are equivalent:
(1) g€ C(Q);
(2) 9(-,0) € C(Q), g(-,1) —g(-,0) € co(Q);
(3) g('al) € CDO(Q) g('a ): ( )

Observe also that the images of C(Q) and ¢o(Q) under the isometry f — fare
described as follows:

{f:fecwn»—{gec@) 9(-0) =g(~ 1) }
= {g Q—R: g(°,0):g(-,1)€C’(Q)},
{F:feaw@} = {geC(@) : g~0)=0}
={g:Q—R : g(-,00=0, g(-,1) € (Q) }
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3.14. Following [13], consider the (temporarily discrete) Banach bundle X over
Q = Q.U Qg with stalks

¥(ge) = ¥(ga) = X(a). 4 €Q.
Given a section u € CDy(Q, X), define the section u € S(CNQ, 2?) by the rule
u(ge) = ue(q), ulqq) =wulg) forall g€ Q.

Therefore, u(+,0) = u. and u(-,1) = u. Note that, due to 3.7, we have ||u|| = |||uH\
for all u € CDy(Q, X).

Show that the set Ce := {u : u € CDy(Q, X)} is a continuous structure in X.
Indeed, since the mapping u + u is obviously linear, Ce is a vector subspace

of S(é,f) In addition, for each section u € CDy(Q, X) we have ||u| = m €
C’(@) Finally, Ce contains the set {u : u € C(Q,X)} which is a stalkwise dense
in X ; therefore, Cg is itself stalkwise dense in X.
_In what fogows, we keep the notation X for the continuous Banach bundle

(X,C(@) over (.

3.15. The following result is established in [13, Proposition 6]. (For completeness
of exposition, we will present the result together with our version of its proof.)

The mapping u +— 1 is a linear isometry of CDy(Q, X) onto C’(Q X ) Moreover,
fu= fu for all f € CDy(Q) and u € CDy(Q, X).

a4 If f € CDy(Q) and u € CDy(Q, X) then, due to 3.10, we have

fu(-,0) = (fu)e = foue = (F2)(-,0),  fu(-,1) = fu= (fa)(-,1)

and thereby % = fﬂ. Consequently, Cg is a C (@) -submodule of C (@, X ) Taking

account of the fact that Cg is stalkwise dense in X' and using the corollary [9, 4.3]
to the Stone-Weierstrass Theorem for bundles, we conclude that the submodule C g

is uniformly dense in C(@, )?) Next, 3.8 imply that, for all u € CDy(Q, X),
l[al] = max{{|a(-, 0)[|, lu(-, )|} = max{|Jucll, [[ull} = [lul.

Therefore, the mapping u +—  is a linear isometry of the Banach space CDy(Q, X)
onto a dense subspace Ce C C’(Q7 X); whence Cg = C(Q, X). >

3.16. The criterion presented below is immediate from 3.15:

The following properties of a section v € S (@, X ) are equivalent:
(1) ve 0(Q,X);
(2) v(-,0) € C(Q, &), v(-,1) —v(-,0) € co(Q, X);
(3) v(+,1) € CDo(Q, X), v(+,0) =wv(,1)e.
Observe also that the images of C(Q, X') and ¢o(Q, X) under the isometry v — @
are described as follows:

{u:vweC(@X)} :{UEC(Q,%) s (-,0)=v(-,1)}

= {ves(@X) : v(0)=v(~1) €C@Q X)},
{u:uecw@ X))} = {UEO(QN,/I) v(-,0) =0}

= {UES(Q,X) v(+,0) =0, o( )ECO(Q,X)}
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4. EXAMPLES

In this section we present a series of examples which clarify the relation between
X and X in the case of constant bundles, as well as demonstrate that this
relation meets the passage to a subbundle, a continuous change of variable, and
the restriction to a topological subspace.

4.1. Consider an arbitrary Banach space X and assume that & is the constant
Banach bundle over @ with stalk X. From the definition of X it is clear that all
its stalks coincide with X. Denote by const(Q, X) and const(Q, X) the sets of all

constant sections of X and X. As is easily seen,
const(@,X) ={¢:c € const(Q,X)} C C(@,)?)

Consequently, const(Q, X) is a continuous structure in X equivalent to Cg; hence,
X is a constant Banach bundle over () with stalk X.

Due to 2.2, the above observation allows us to translate (almost without changes)
all the facts of Section 3 to the case of the spaces of vector valued functions

CDy(Q, X) = C(Q, X) + ¢o(Q, X) and C(Q, X).

4.2. Let Xy be a subbundle of a Banach bundle X over (). The latter means
that Xp is a Banach bundle over @ such that Xp(q) is a Banach subspace of X(q)
for each ¢ € @ and, in addition, C(Q, Xy) = C(Q, X)NS(Q, Xy) (see [10, 2.2.2], [15,
2.4.11]). Taking account of the obvious equality c¢o(Q, Xy) = ¢o(Q, X) N S(Q, Xy),
we conclude that

ODO(Q7XO) - ODO(QaX) N S(Q7XO)

Below we will show that the sets CDy(Q, Xp) and CDy(Q, X)NS(Q, Xy) may differ
or coincide; moreover, both cases are possible for a nontrivial subbundle Xj (i.e.,
for a subbundle which is neither zero, nor equal to the whole X’). However, we will
first prove a simple auxiliary assertion.

4.3. Let X be a subbundle of X . The following properties of an arbitrary section
u € CDo(Q,X) N S(Q, Xy) are equivalent:

(1) u € CDy(Q, Xp);
(2) ue € S(Q, X);
(3) Ud € S(Q,XO),

where the decomposition u = u.+uq is taken in CDy(Q, X) = C(Q, X)®co(Q, X).

4 (1)=(2): Let u € CDy(Q, Ap). Consider the decomposition u = ud + ug
in CDy(Q, Xp). Then ul € C(Q, X)) C C(Q,X) and uf € ¢o(Q, X)) C ¢co(Q, X);
whence, due to the uniqueness of a decomposition v = wu. + ug in CDy(Q, X),
we have u? = u, and thus u. € S(Q, Xp).

The implication (2)=-(3) is obvious, since ug = u — u.

(3)=(1): Let ug € S(Q,Xp). Then u. = u —ug € S(Q,Xp) and thus u. €
C(Q, X)OS(Q, Xo) = O(Q, Xo) In addition, ug € C()(CZ7 X)OS(Q, Xo) = Co(Q, Xo)
Consequently, u = u. + uq € C(Q, Xp) + co(Q, Xo) = CDo(Q, Xp). >
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4.4. Every nonzero Banach bundle X over () contains nontrivial (i.e., neither
zero, nor equal to the whole X' ) subbundles X; and X, such that

CDy(Q, X1) = CDo(Q, X) N S(Q, X1), (1)
CDy(Q, Xs) # CDo(Q, X) N S(Q, As). (2)

< Let & be an arbitrary nonzero Banach bundle over Q.
First of all, note that for each closed subset V' C @ there exists a subbundle Xy
of X which has the following stalks:

_J{0}, qeV,
XV(‘”‘{X@, NG

Indeed, according to [10, 2.2.2], it suffices to show that
{u(g): we C(Q,X), u=00nV}=2X(q) forall geQ\V.

Let ¢ € Q\V and z € X(q). By the Dupré Theorem, there is a section v € C(Q, X)
such that v(q) = . In addition, since @ is completely regular, there exists a function
f € C(Q) such that f =0 on V and f(¢) = 1. Then fv € C(Q,X), fu=0o0nV,

and (fo)(q) = z.

As is easily seen, there are distinct points ¢g1,q2 € @ at which the bundle X
has nonzero stalks. Since ) is Hausdorff, there exists an open subset U C @ such
that ¢ € U and g2 € Q \ clU. In this case, the subbundle X; := X,y of X is
nontrivial. Due to 4.3, for proving (1) it suffices to consider an arbitrary section
u € CDy(Q, X) N S(Q, Xy) and show that u. € S(Q, X;). Indeed, according to 3.6,
for all ¢ € clU we have

uc(q) = })lg}l u(p) = ;lgtll uly(p) = 0;

hence, u. € S(Q, X1).

Now take an arbitrary point ¢ € @ at which X'(¢q) # {0} and put X5 := Xy,3.
By the Dupré Theorem, there exists a section v € C(Q, X) such that v(q) # 0.
Put v = v — x{g3v. Then u € CDy(Q, X) N S(Q,As), but u. = v & S(Q, Xa);
whence, due to 4.3, it follows that u ¢ CDy (@, X2) and thereby (2) holds. >

4.5. The following assertion shows that, despite the possible absence of the
equality CDy(Q, Xp) = CDy(Q, X) N S(Q, Xp), the analogous equality always holds
for the “continuous versions” of the spaces under consideration:

If Xy is a subbundle of X then ;(5 is a subbundle of X. In particular,
C(Q %) = C(Q,X) N S(Q, X).

< From the definition of the bundle :YVO it is_clear that each of its stalks is
a Banach subspace of the corresponding stalk of X. Moreover, by 3.16 we have

C(Q.X) = {veS(Q X) : v(-0) € C(Q,X), v(-1) = v(-,0) € co(Q, Xo) }
= {veS(Q X) : v(-0) € C(Q,X)NS(Q,X),
v(+,1) —v(+,0) € co(Q, X) N S(Q, Xp) }
{veS(Q,X) : v(-,0) € C(Q,X), v(-,1) —v(-,0) € co(Q, X) }
= {v € S(@,;CB) T VE C’(@,)?)}
c(Q,X)NS(Q,X). o
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Returning to the example in 4.4 of a section u € CDy(Q, X) N S(Q, X2) which
does not belong to CDO(Q X>), note that the corresponding continuous section

ue€ C(Q X) goes out of Xy at some point; namely, u(ge) = uc(q) ¢ ;Y;(qc).

4.6. Let P and @ be nonempty compact Hausdorff spaces without isolated
points. Say that a function ¢: P — @ is locally unique if, for each point py € P,
there is a neighborhood U C P of pg such that ¢(p) # ¢(po) for all p € U\{po}.

As is easily seen, a function ¢: P — @ is continuous and locally unique if and
only if, for every point p € P and every neighborhood V' C @ of ¢(p), there is
a neighborhood U C P of p such that o(U\{p}) C V\{p(p)}.

4.7. Recall that, given a Banach bundle X = (X,Cx) over @) and a continuous
function p: P — @, the symbol X oy denotes the Banach bundle over P with stalks
(X o @)(p) = X(¢(p)) and continuous structure {co ¢ : c € Cx} (see [10, 2.2.6]).
As is easily seen, uop € C(P,X o) for all u € C(Q, X).

Let P and Q be nonempty compact Hausdorff spaces without isolated points.

The following properties of a continuous function p: P — @ are equivalent:

1) ¢ is locally unique;

2) the preimage p~'(q) of every point q € Q is finite;

3) if f € ¢o(Q) then fop € co(P);

4) If f € CDo(Q) then f o € CDo(P), (fop)e = feop, (fop)a= faop;

5) is X is a Banach bundle over ) and u € c¢o(Q, X') then uo € ¢o(P, X op);

6) if X is a Banach bundle over @ and wueCDy(Q,X) then
uo @€ CDy(P,Xop), (uop)e=1ucop, (Wop)g=ugop.

a4 (6)=(5): If u € ¢o(Q, X) then uy = u, whence by (6) we have

uop=ugop=(uop)s€co(P,Xog).

(5)=(4): If f € CDo(Q) then fop = f.op+ fg0p; furthermore, f.op € C(P)
due to continuity of ¢, and fj 0 ¢ € ¢o(P) by (5). It remains to use 3.2 (2).

(4)=(3): This is established in the same way as (6)=>(5).

(3)=(2): Consider an arbitrary point ¢ € Q. Since x4 € co(Q), we have
XW—I(q) = X{q} ©¢ € co(P) by (3). Consequently, by the definition of co(P), the set
¢ q) ={p € P:xp-1(g(p) > 3} is finite.

(2) (1): This is straightforward from the fact that P is Hausdorff.

(1)=(6): If u € CDy(Q, X) then uo ¢ = u. o v + ug o ; furthermore, u. o p €
C(P, X o). According to 3.5, it remains to show the inclusion ugop € co(P, X o).
From 3.4 and (1) we have

lim uq(p(p)) = lim wua(q) =0
pP—po a—¢(po)

for all pg € P; hence, ugo ¢ € co(P, X o ¢) due to 3.4. >

4.8. Let P and @ be nonempty compact Hausdorff spaces without isolated
points. Given a function ¢: P — @, define the function ¢: P Q by putting

2(pe) = ¢(p)e, ?(pa) = ¢(p)a forall pe P.

The function ¢ : P é is continuous if and only if p: P — @ is continuous and
locally unique.
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< Since all the points of the subset P; C P are isolated, ¢ is continuous
on Py regardless of the properties of ¢. It remains to observe that, for every point
p € P, every neighborhood U C P of p, and every neighborhood V' C Q of ¢(p),
the inclusion ¢(U\{p}) C V\{¢(p)} is equivalent to the inclusion

P(UcUUs\{pa}) C Ve UVa\{e(p)a}. >

4.9. Let P and Q) be nonempty compact Hausdorff spaces without isolated points
and let ¢: P — @ be a continuous locally unique function. Then

(1) uo<p—uogp for all w € CDy(Q, X);
(2) Xop=Xop.

<4 (1): Due to 4.7(6), for every section v € CDy(Q, X) we have

wop(+0)=(uop).=ucop=1u(-0)op=(uop)(-0),
wop(,1)=uop=1u(-,1) o= (uo@)(-1).

(2): Obviously, m and X o & coincide as discrete Banach bundles (i.e., they
have the same stalks). According to 2.4, to prove the coincidence of 5(‘;7,0 and
X o @ as continuous Banach bundles, it suffices to show that the intersection
0(15, ?pr) NC(P, X o) is stalkwise dense in X o @. By 3.15, 4.7 (6), and 4.9 (1)

we have
C(P,Xop) = {71 veCDy(PXop)} > {78 : ueCDy(Q X)}
= {Uo@ : ueCDyQ,X)} = {wog : weC(Q,X)} c C(P,X0p).

It remains to observe that {wo@:w e C(@, f)} is stalkwise dense in X o 3. b

4.10. Recall that, given a Banach bundle X = (X,Cx) over @ and a topological
subspace P C @, the symbol X|p denotes the Banach bundle over P with stalks
(X|p)(p) = X(p) and continuous structure {c|p : ¢ € Cx} (see [10, 2.2.5]). Note the
obvious equality C(P, X|p) = C(P, X), where C(P, X) is the set of all continuous
sections of X defined on P (see [10, 2.1.2]).

Let P be a nonempty compact Hausdorff space without isolated points which is
a topological subspace of Q. Then Pisa topological subspace of Q and the following
hold:
(1) if u € CDo(Q, X) then u|lp € CDo(P, X|p), (ulp)c = uc|p, (u[p)a = ualp;
(2) ulp =1lp for all u € CDy(Q, X);
3) X|p = /'if'v|p; in particular, C’(?,/Hp) = C’(ﬁ,/’?)

< Let ¢ be the identity embedding of P into Q. Then, as is easily seen, ¢ is
continuous and locally unique, ¢ is the identity embedding of P into Q X|p = Xop,
X‘p = XoQ, ulp =uog, ulp = wo @ for all u € CDy(Q, X). It remains to
employ 4.7 (6), 4.8, and 4.9. >
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4.11. The definition of QNQ readily implies that the mapping (+).: q — ¢. is
a homeomorphism of @ onto the closed subset Q. C Q. This observation allows
us to consider @ as a topological subspace of @ by taking (-). as the identification.

Under the above agreement, the following hold:

(1) ?ZNO (e = ﬂLQ = for allu € C(Q, X);
(2) Xo()e =X, =x.
4 (1):Hfuel(Q,X) thenuo (-). =u(-,0) = uc = u.

(2): Obviously, X and X o (+). coincide as discrete Banach bundles (i.e., they
have the same stalks). In addition, by (1) and 3.15 we have

C(Q,X) ={Tuo(-)e : ueC(Q,X)} C{vo(-)e : vEC(Q,X)} CC(QXo(-).).

According to 2.4, the inclusion C(Q, X) C C’(Q7 Xo ()C) implies that X and Xo (e
coincide as continuous Banach bundles. >

5. THE SPACE OF CDy-HOMOMORPHISMS

In what follows, X and ) are arbitrary Banach bundles over a nonempty compact
Hausdorff space Q without isolated points.

5.1. For simplicity, we will introduce some abbreviating notation.

Denote by S[X, Y] the vector space of all sections of the discrete Banach bundle
over Q with stalks B(X(g),Y(q)). Therefore, S[X, )] consists of all functions H
which are defined on @ and map each point ¢ € ) into a bounded linear operator
H(g): X(q) = Y(a).

Let ¢°°[X, )] be the Banach space of all bounded sections in S[X’, Y] (endowed

with the uniform norm):
(°[x,Y] = {He S,V : [H|e=Q)}.

Given H € S[X,Y] and u € S(Q, X), use the symbol Hu for denoting the section
of Y defined by the formula (Hu)(q) = H(q)u(q), ¢ € Q. (In [10], the symbol H @u
is used instead of Hu.)

Denote by C[X,Y] the Banach subspace of ¢>*°[X,))] constituted by all
homomorphisms from X into Y (see [10, 2.4.2, 2.4.11]). (In [10], the notation
Homg(X,Y) is used instead of C[X,Y)].)

5.2. According to [10, 2.4.7] we have
clx,y) = {H € S[X,Y] : HueC(Q,Y) for all u € C(Q, X) }

(In the present article, the last equality can be considered as a definition of C[X, )],
cp. [15, 2.4.9].)
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5.3. The following equality holds:
2[x)) = {H € S[X,Y] : Huel>(Q,Y) for allu € C(Q,X) }

<4 We only have to prove “D. Let a section H € S[X,)] be such that
Hu € £°(Q,Y) for all u € C(Q,X). Given a point ¢ € @, define the linear
operator T,: C(Q,X) — Y(q) by the formula Tyu = H(q)u(q). Employing the
Dupré Theorem, we obtain

ITall = sup {[[H(q)u(a)] : ueCQ X), IIUII }
= sup { [H(q)z| : v € X(q), |zl <1} =

In addition, sup,cq |Tyull = sup,eq [[(Hu)(q)|| < oo for all u € C(Q, X). Since
C(Q, X) is a Banach space, the Uniform Boundedness Principle makes it possible
to conclude that sup,cq [[H(q)|| = sup,eq | Tll < 00. >

5.4. Consider the set
colX, Y] = {H € S[IX,Y] : Hu € co(Q,Y) for all u € C’(Q,X)}

and call its elements cg -homomorphisms from X into Y.

Employing 5.3 and taking account of the fact that c¢o(Q,)) is complete, it is
easy to show that c¢q[X,))] is a closed vector subspace of £>°[X,))]. In particular,
co[X, Y] is a Banach space with respect to the uniform norm.

5.5. A section H € S[X,)Y)] is a ¢o-homomorphism if and only if H is bounded
and there exists a subset U C C(Q,X) such that U is stalkwise dense in X and
Hu € ¢o(Q,Y) for allu € U.

< We only have to prove sufficiency. Let H and U satisfy the condition stated.
Omiitting the trivial case H = 0, assume that C' := sup,c [|[H(q)|| > 0. Consider
an arbitrary section v € C(Q, X) and show that Hv € ¢o(Q,)). By 3.4 it suffices
to fix ¢ € @ and € > 0 and find a neighborhood U of ¢ such that ||H(p)v(p)| < e
for all p € U\{q}. Since U is stalkwise dense in X, there exists a section u € U for
which |lu(q) —v(q)|| < 5&. Due to 3.4, we have ;iir}] H(p)u(p) = 0; hence, there is

a neighborhood U of ¢ such that [Ju(p) — v(p)|| < 5& and ||[H(p)u(p)|| < § for all
p € U\{q}. Then for all p € U\{q} we have

1= (o)l < [Hp)ulp)|| + [[H D) [u(p) — o)l < 3 +020 e >

5.6. The following assertion shows that the boundedness of H in 5.5 is an
essential condition.

For every nonempty compact Hausdorff space () without isolated points, there
exist constant Banach bundles X and Y over Q, a section H € S[X, )], and a subset
U C C(Q,X) such that U is stalkwise dense in X and Hu € ¢y(Q,Y) for allu € U,
but H is unbounded.

< If @ is a nonempty compact Hausdorff space without isolated points, then,
obviously, @ is infinite and thus contains a sequence of pairwise distinct points
Gn € Q (n € N). Let ¢ be the Banach space of vanishing sequences, let sg, be the
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dense subspace of ¢y constituted by the finitely-supported sequences, and let ¢f be
the dual of ¢g. Define the mapping H : Q — ¢, as follows:

H(gn)x=n-z(n) for neN, x € ¢,

H(q)=0 forall g€ @\ {g,:n €N}
Put X = Qx{co}, Y = Qx{R} and denote by U the totality of all constant

functions u: Q — Sg,. Then X, Y, H, and U possess the required properties.
>

5.7. Every section H € S[X,Y] whose pointwise norm [|H|| belongs to ¢o(Q)
is an example of a cp-homomorphism. However, in general, the set co[X,))] is
not exhausted by the sections of the above form. Indeed, from the constructions
of [13, Example 9] it follows that, given a separable compact Hausdorff space Q,
there exists a cg-homomorphism whose pointwise norm equals unity an a dense
subset of (). We can provide a stronger version of the above fact by stating that,
regardless of the properties of (), the pointwise norm of a c¢y-homomorphism can
be an arbitrary bounded positive function f: Q — R.

For every nonempty compact Hausdorff space () without isolated points, there
exist constant Banach bundles X and ) over () such that, given an arbitrary
function 0 < f € £°(Q), there is a cop-homomorphism H € ¢o[X, Y] with pointwise
norm ||H|| = f.

<4 Put X = Qx{c(Q)}, Y = @x{R}, and define the mapping H: Q — ¢o(Q)’
by putting H(q)z = f(q)z(q) for all ¢ € Q and x € ¢o(Q). Then, as is easily seen,
H e S[X, V), |H| = f,and Hu € ¢4(Q, ) for all constant functions u: Q — ¢(Q);
whence, due to 5.5, we have H € ¢o[X,Y]. >
5.8. Consider the set
CDo[X,Y] = {H € S[X,)] : Hue CDy(Q,Y) for allu € C(Q,X) }

and call its elements CDgy-homomorphisms from X into ).

From 5.3 and the completeness of CDy(Q,)) (see 3.9) it is obvious that
CDy[X,))] is a closed vector subspace of ¢>°[X,))] and is thus a Banach space
with respect to the uniform norm.

5.9. The following equality holds:
CDo[X,Y] = {H e S[X,)] : Hue CDy(Q,Y) for all u € CDo(Q, X) }.

< Weonly have to show “C.” If HeCDy[X, Y] and ue CDy(Q, X) then || Hug|| <
1H |[llwall € co(Q) and, consequently,

Hu= Hu.+ Huq € CDy(Q,Y) + co(Q,Y) C CDy(Q,Y). >

5.10. If H € {=[X, Y], u € C(Q,X), and Hu € CDy(Q,Y) then
I(Hwell < 1= flull,  (Hu)all < 2[HI| [Jul-
< By 3.6, for all ¢ € @ we have

I(Hu)e(@)l = lim [|H(p)u(p)]l < sup @) lim fJup)ll = [ H [[[lu(g)]]-

In addition, ||(Hu)al| = [|[Hu = (Hu)e[l < [[Hull + | (Huw)cll < 2[H| Jul. >
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5.11. A section H € S[X,))] is a CDg-homomorphism if and only if H is bounded
and there exists a subset U C C(Q,X) such that U is stalkwise dense in X and
Hu € CDy(Q,Y) for all u € U.

< We only have to prove sufficiency. Let H and U satisfy the conditions stated.
Without loss of generality, we may assume that U is a vector subspace of C(Q, X).

Given a point ¢ € @, denote by U(q) the dense subspace {u(q) : u € U} C X(q)
and define the mapping Go(q): U(q) — Y(q) by putting

Go(q)u(q) = (Hu).(q) for all uw e U.

The above definition is correct, since, due to 5.10, for all sections uy,us € U, the
equality u;(q) = ua(g) implies

I(Hu1)e(q) = (Huz)e()]| < [1H [[[lu1(g) — u2(g)]| = 0.

The mapping G(g) is obviously linear. In addition, according to 5.10, for all u € U
we have

1Go(@u()]l = [(Hu)e()l < [ HI [lu(g)];

whence, [|Go(q)|| < [|H|| and thereby Go(q) € B(U(q),Y(q)). Since U(q) is dense
in X(q), and Y(q) is complete, Go(g) has an extension G(q) € B(X(q),Y(q));
moreover, ||G(q)|| = |Go(¢)|| < ||H||- Therefore, G € ¢>°[X,)] and Gu = (Hu), €
C(Q,Y) for all u € U. By [10, 2.4.9] we have G € C[X, ).

Since H — G € £>°[X,)] and (H — G)u = Hu — (Hu). € ¢o(Q,Y) for all u € U;
therefore by 5.5 the section H—G is a ¢g-homomorphism. Hence, for all v € C(Q, X)

Hv=Guv+ (H-GeCQ,))+c(Q,Y) = CDo(Q,)),
ie, He CDy[X,)]. b

Note that, due to 5.6, the boundedness of H in the above assertion cannot be
omitted.

5.12. It is clear that the sum of a homomorphism and a cg-homomorphism
is a CDg-homomorphism. The following assertion shows that such sums exhaust
the whole set of CDy-homomorphisms.

The following direct sum decomposition holds:
CDo[X,Y] = ClX, V] D co[X, V]

In particular, every CDg-homomorphism H € CDy[X, Y] is uniquely representable
as H=H.+ Hy, with H. € C[X,))] and Hy € ¢y X, ))].

< The only nontrivial part of the above statement is the inclusion CDy[X, Y] C
C[X, Y]+ co[X, Y] whose justification can be easily extracted from the proof of 5.11
by taking C(Q,X) asU. >
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5.13. For all H € CDy[X, )] and u € CDy(Q, X), the following hold:
(Hu). = Heuey, (Hu)g = Heug + Hyug + Hyue.
In particular, if u € C(Q,X) then
(Hu). = Heu,  (Hu)g = Hqu.
< Taking account of 3.5 and 5.12, it suffices to use the equalities
Hu = (Hc + Ha)(uc + ua) = Heue + (Heua + Haua + Haue)

and note that H.u. € C(Q,Y) and Heug + Hqug + Hyue € ¢0(Q,Y). >

5.14. In a similar way, we can deduce the following assertion from 3.2 (2), 3.10,
and 5.12:

The space CDy[X,)] is a CDy(Q)-module with respect to the pointwise
multiplication. Furthermore, for all f € CDy(Q) and H € CDy[X,)] we have

(fH)e=fcHe, (fH)a= feHa+ faHa+ faH..
In particular, if f € C(Q) then
(fH)c:fHCa (fH)d:fHd-
The obvious inequality || fH|| < [fIIH| (f € CDo(Q), H € CDy[X,))]) allows
us to conclude that CDy[X, )] is a Banach CDy(Q)-module.
5.15. For every CDg-homomorphism H € CDy[X,)] we have
[Hell < IHI,  [|Hall < 2[H]].
a4 Let H € CDy[X,))]. Consider arbitrary elements g € @ and x € X(q). By the

Dupré Theorem, there exists a section u € C(Q, X') such that u(q) = z. According
to 5.10 and 5.13 we have

[He(@)z| = [[He(@)u(@)]| = |(Heu)(q)

whence ||H,|| < ||H]||. Consequently,

| = [[(Hu)e(@)l| < | H[ ()] = [[H] ]]]];

[1Hall = [[H — He| < [[H|| + [[Hell < 2[|H|. >

5.16. Let X and ) be Banach bundles over @ which are defined according to
the definition 3.14. Given a CDg-homomorphism H € CDy[X, V], define the section
H € S[X,Y] by the rule

H(Qc) = Hc(‘])a H(Qd) = H(Q) for all qc Q

Therefore, H(-,0) = H, and H(-,1) = H.
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5.17. The mapping H — H is a linear isometry of the Banach space CDy[X, )]
onto C’[X,y], Moreover, for all f € CDy(Q), u € CDy(Q,X), and H € CDy[X, )],
we have Hu = Hu and fH = fPNI

<4 Let f € CDy(Q), u € CDy(Q, X), and H € CDy[X,)Y]. By 5.13 we have

Hu (-,0) = (Hu)e = Houe = H(-,0)a(-,0) = (H)(-,0),
Hu(-,1)=Hu=H(-,u(-,1) = (Hﬂ)(-, 1)
and thus Hu :N}N[ﬂ, Similarly, by using 5.14, we obtain fﬁ = fﬁ[
Show that H € C[X,y]. Indeed, if v € C(Q,X) then v = w for some section

u € CDo(Q,X) (see 3.15); hence, Hv = Hu = Hu € C’(@JN)) It remains to
employ 5.2.

The mapping H — H is obviously linear. In addition, due to 5.15, for all H €
CDy[X, Y] we have

| H| = max {|[H(- 0)[|, [ H(-, D[} = max{| Hcl, | HII} = 1H].

It remains to show that the image of the mapping H +— H coincides with C [)? , 37}

Consider an arbitrary homomorphism G € C’[?? ,37] and put H := G(-,1). As is

easily seen, H € S[X,))]. According to 3.16, for all u € CDy(Q, X') we have
Hu=G(-,1)u(-,1) = (Gu)(-,1) € CDy(Q, Y);

whence H € CDy LX’ V] (see 59) To prove the equality H = G, consider arbitrary
elements (¢,7) € Q and z € X(g,r) and show that

H(g,r)z =G(g,r) .
Due to 3.15 and the Dupré Theorem, there is a section u € CDy(Q, X') such that
u(g,r) = x. Taking account of 3.16 and 5.13, we have
H(-,0)a(-,0) = Heue = (Hu). = ((Ga)(+, 1)), = (G@)(-,0) = G(-,0)u(-, 0).

In addition, H(-,1) u(-,1) = Hu(-,1) = G(-,1) u(+,1). Consequently,

H(q,r)x = H(q,r)u(g,r) = G(g,7)ulg,7) = G(¢g,r)z. >

5.18. The criterion presented below is immediate from 5.17. (In the case of
Y =Q x {R}, it is actually a restatement of [13, Proposition 8].)

The following properties of a section G € S [z’? , 37] are equivalent:
(1) G e C[X,V];
(2) G(-,0) e ClX,)Y], G(-,1) = G(+,0) € e[ X, V];
(3) G(-,1) € CDoX,)Y], G(-,0) =G(+,1)c.
Note also that the images of the spaces C[X, Y] and ¢o[X, V] under the isometry
H — H are described as follows:

{H: HecCx, Y} = {GeClX,)] : G(-,00=G(-1)}

= {GesS[xY] : G(-,00=G(-,1) e C[x, )] },
{H: HecqX, Y]} = {GeC[X,)] : G(-,0)=0}

= {GeSXx,Y] : G-,00=0, G(-,1) € X, )] }.
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5.19. In conclusion, we will describe the spaces of homomorphisms,
co-homomorphisms, and CDgy-homomorphisms in terms of their action in Banach
C(Q)-modules.

Let U and V be arbitrary vector subspaces of the Banach spaces £°(Q, X') and
2(Q,Y). Say that T: U — V is an orthomorphism (cp. [10, 6.2.11], [15, 4.1.3 (5)])
if T is a bounded linear operator and, for all u € U and ¢ € @, the equality u(g) =0
implies (T'u)(q) = 0. Denote by Orth(i, V) the set of all orthomorphisms from U
into V. As is easily seen, Orth(i, V) is a closed vector subspace of the space of all
bounded linear operators from U into V endowed with the operator norm.

The following properties of a function T : C(Q,X) — £>°(Q,Y) are equivalent:
(1) T is an orthomorphism;
(2) T is a homomorphism of Banach C(Q)-modules, i.e., T is a bounded linear
operator and T'(fu) = fTu for all f € C(Q), ue€ C(Q,X);
(3) there exists a section H € £*°[X,Y)] such that (Tu)(q) = H(q)u(q) for all
u e C(Q,X) and q € Q; furthermore, ||T|| = || H||.

< The implication (3)=-(2) is obvious.

(2)=(1): Let v € C(Q,X) and ¢ € Q be such that u(q) = 0. According
to [9, 2.11], there exist sequences of functions f,, € C'(Q) and sections u,, € C(Q, X)
such that f,(¢) = 0 for all n € N and || f,u, —u|| — 0 as n — oo. Then by (2)
we have

(Tu)(q) = lim (T(faun))(q) = lim (foTun)(q) = lim fu(q)(Tun)(q) = 0.

(1)=(3): Given a point ¢ € @, define the mapping H(q): X(¢) — Y(q) b
putting H(q)u(q) = (Tu)(q) for all u € C(Q, X). The correctness of this definition
is immediate from (1) and the Dupré Theorem. The mapping H(q) is obviously
linear. In addition, by the Dupré Theorem we have

zlelpHH(Q)H = sup {[[H(q)u(q)|| : ¢€Q, ue C(Q,X), |lu| <1}
= sup { ilelgll(TU)(q)ll ueC(Q,X), [|ul <1} = |7 »

5.20. Using 5.19, from the above-established results we can deduce a number of
direct corollaries on the spaces of orthomorphisms. We will state some of them.

Let X and Y be Banach bundles over a nonempty compact Hausdorff space Q
without isolated points.
(1) Given a section H €{>[X,Y], define the function Ty: C(Q,X) —
>(Q,Y) by putting (Tyu)(q) = H(q)u(q) for all u € C(Q,X) and q € Q.
The mapping H — Ty is a C(Q)-linear isometrical isomorphism between
the following pairs of Banach C(Q)-modules:
22[X, V] Orth(C(Q,X),2(Q,))),
clx, ) < Orth (Q X Q,y),
olX, Y]  — Orth(C(Q, X) o(@, ),
CDo|X,)Y] < Orth( (Q, %), CDO Q,y))
(2) The following direct sum decomposition holds:

Orth(C(Q, X), CDo(Q, Y))
= Orth(C(Q,X),C(Q,y)) ©® Orth(C(QMX)vCO(va))'
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Therefore, every orthomorphism T: C(Q,X) — CDo(Q,Y) is uniquely
representable as the sum T = T. + T4 of some orthomorphisms
T.: C(Q,X) = C(Q,Y) and Ty : C(Q,X) — co(Q,Y). Moreover, T, = T,
and T; = Ty,, where H is the CDg-homomorphism from X into Y
determined by the equality T = Ty.

(3) For every orthomorphism T : C(Q,X) — CDy(Q,Y) we have ||T.| < ||T|,
[Tall < 2[\T]-

(4) For every orthomorphism T:C(Q,X) — CDy(Q,Y) and every section
u € C(Q,X) we have T.u = (Tu). and Tyu = (Tu)g.

In particular, the Banach spaces CDy[X, )], C[)?, )N)], Orth(C(Q, X),CDy(Q, y)),
and Orth(C(@, 2?), C(@, 5)) are linearly isometric.
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