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Abstract. Two-sided estimates for probabilities of large deviations for
sums of independent random variables with finite variances are obtained.
All asymptotics of the probabilities are described in terms of deviation
function Λ(x, y) of a sum of truncated random variables. All error terms
are explicitly estimated by a modified Lyapunov ratio L(H(x), y).
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1. Введение и основные результаты

Пусть нам дана последовательность X1, ..., Xn, состоящая из независимых
случайных величин, причем

∀j EXj = 0, 0 < B2 =
∑

DXj < ∞, S =
∑

Xj . (1)

Подчеркнем, что в (1) и далее символ
∑

без индексов означает, что сумми-
рование ведется по переменной j, пробегающей значения от 1 до n. Введем в
рассмотрение еще срезанные случайные величины

Xj(y) = min{Xj , y}, S(y) =
∑

Xj(y) (2)

и определим функцию уклонений сумм срезанных величин

Λ(x, y) = sup
h

[xh− lnEehS(y)]. (3)
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При h ≥ 0 положим

L(h, y) =
∑

Lj(h, y), где Lj(h, y) = E
[|Xj(y)|3ehXj(y)+

]
. (4)

Наша цель — получить достаточно точные оценки для P(S ≥ x), которы-
ми было бы удобно пользоваться при больших значениях x. При выполнении
условия Крамера такого рода результаты получены целым рядом авторов (см.,
ссылки, например в [1] и [2]).

Если же условие Крамера не выполнено, то представляется естественным
ввести срезки и получить сначала оценки для P(S(y) ≥ x), а уже потом из них
извлечь оценки для P(S ≥ x). Однако введение срезок приводит к необходимо-
сти проверять большое число дополнительных условий, что всегда хлопотно, а
зачастую и трудно. В данной же работе предлагаются такие оценки для веро-
ятностей P(S(y) ≥ x), в которых все условия и все оценки для погрешностей
явно и просто выражаются в терминах ровно одной числовой характеристики
— L(h, y), а асимптотика этих вероятностей зависит только от функции Λ(x, y).
Отметим, что величина L(h,∞) появилась в работе автора [3], как естествен-
ная мажоранта отношения Ляпунова для случайных величин, появляющихся
при использовании классического преобразования Крамера.

Сформулируем теперь основной результат работы. Нам потребуются следу-
ющие характеристики нормального распределения

ϕ(x) = e−x2/2/
√

2π, Φ̄(x) =
∫ ∞

x

ϕ(t)dt.

Теорема. Предположим, что числа x и y удовлетворяют следующему
условию

y ≥ B, x ≥ 0, 4(B + 8x)L(H, y) ≤ B4, (5)
где H = H(x) = (2x + B)/B2. Тогда

P(S(y) ≥ x) = Φ̄
(√

2Λ(x, y)
)

+ δ0(x, y)ϕ
(√

2Λ(x, y)
)
, (6)

P(S(y) ≥ x) = eγ(x,y)
[
Φ̄(x/B) + δ(x, y)ϕ(x/B)

]
, (7)

где
|δ0(x, y)| ≤ 41L(H, y)/B3, |δ(x, y)| ≤ 46L(H, y)/B3, (8)

γ(x, y) = (x/B)2/2− Λ(x, y), |γ(x, y)| ≤ 2(x + B)3L(H, y)/B6. (9)

Отметим еще, что формулу (7) можно записать в следующем эквивалентном
виде ([2])

P(S(y) ≥ x) = e−Λ(x,y)
[
ψ(x)) + δ(x, y)

]
/
√

2π, (10)
где

ψ(x) := Φ̄(x)/ϕ(x) =
∫ ∞

0

e−t2/2−xtdt. (11)

Отметим, что в теореме существенно используется тот факт, что срезки не
произвольны, а имеют вполне определенный вид (2). По этой же причине в
нашем случае справедливо следующее соотношение

∀x ∀y P(S(y) ≥ x) ≤ P(S ≥ x) ≤ P(S(y) ≥ x) +
∑

P(Xj > y). (12)

В частности, теорема автоматически дает достаточно удобную оценку снизу
для P(S ≥ x).
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Приведем теперь пример, показывающий как при помощи этой теоремы
можно получать точную асимптотику для вероятностей больших уклонений
в случае произвольной схемы серий с достаточно легко проверяемыми усло-
виями. Предположим, что при каждом натуральном n нам даны независимые
случайные величины Xn,1, . . . , Xn,n, причем

∀j EXn,j = 0, 0 < B2
n = DSn < ∞, Sn = Xn,1 + ... + Xn,n.

Положим

Vn(y) :=
n∑

j=1

P(Xn,j > y), hn(x) = (2x + 1)/Bn,

Ln(x, y) = B−3
n

n∑

j=1

E
[
min{|Xn,j |3, yX2

n,j}ehn(x) min{X+
n,j , y}].

Условимся, что ниже все пределы берутся при n → ∞ и что числа yn могут
зависеть как от n, так и от xn.

Следствие 1. Пусть числовая последовательность xn →∞ такова, что для
некоторых чисел yn ≥ Bn справедливы следующие условия

x3
n Ln(xn, yn) → 0 и xnex2

n/2Vn(yn) → 0. (13)

Тогда
P

(
Sn ≥ xnBn

) ∼ x−1
n e−x2

n/2/
√

2π. (14)

Первое условие в (13) можно существенно ослабить, если чуть усложнить
формулировку. Введем в рассмотрение функции уклонений для сумм срезан-
ных случайных величин:

Λn(x, y) = sup
h

{
hxBn −

n∑

j=1

lnEeh min{Xn,j , y}}.

Следствие 2. Пусть числовые последовательности xn → ∞ и yn ≥ Bn удо-
влетворяют следующим условиям

xn Ln(xn, yn) → 0 и xneΛn(xn,yn)Vn(yn) → 0. (15)

Тогда Λn(xn, yn) ∼ x2
n/2 и

P
(
Sn ≥ xnBn

) ∼ x−1
n e−Λn(xn,yn)/

√
2π. (16)

В одной из следующих работ автор планирует показать, что все интеграль-
ные теоремы, полученные в [4, главы VI–XIV] для всех классов моментных
предположений могут быть получены как частные случаи следствия 2. Бо-
лее того, могут быть одновременно получены и односторонние аналоги таких
утверждений, что невозможно сделать методами работы [4], так как в ней су-
щественно используются отрезки ряда Крамера растущей длины. В нашем же
случае все коэффициенты ряда Крамера могут обращаться в бесконечность,
в то время как асимптотика для вероятностей больших уклонений остается
правильной.

Отметим, что в следствиях 1 и 2, в отличие от аналогичных результатов в
ряде других работ (см., например, [5] и ссылки там), не накладывается предпо-
ложений на поведение хвостов распределений случайных величин на всей оси,
то есть при y > yn. Тем самым мы, с одной стороны, существенно расширяем
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класс распределений, для которых верны наши результаты. С другой же сто-
роны, мы с необходимостью одновременно сужаем зону возможных значений
xn до внутренности крамеровской зоны в терминологии работы [5].

Пользуясь случаем, автор хотел бы поблагодарить Рецензента за полезные
замечания.

Остальная часть работы посвящена доказательствам приведенных выше ре-
зультатов.

2. Доказательства

Пусть последовательность ξ1, ..., ξn состоит из независимых случайных ве-
личин и

∀j Eξj = 0, 0 < b2 =
∑

Dξj < ∞, Z =
∑

ξj .

Положим
L(h) =

∑
E

[|ξj |3ehξ+
j
]

при h ≥ 0. (17)

Если теперь число z удовлетворяет условию

z ≥ 0 и 16zL(2z/b2) ≤ b4, (18)

то, как вытекает из следствия 5 в [3], определена и конечна функция уклонений

Λ(z) = sup
h

[zh− lnEehZ ]. (19)

Следующее утверждение также является частным случаем следствия 5, до-
казанного в работе автора [3].

Лемма 1. Если верно условие (18), то

P(Z ≥ z) = Φ̄
(√

2Λ(z)
)

+ δ0(z)ϕ
(√

2Λ(z)
)
, (20)

P(Z ≥ z) = eγ(z)
[
Φ̄(z/b)) + δ(z)ϕ(z/b)

]
, (21)

где
|δ0(z)| ≤ 29L(2z/b2)/b3, |δ(z)| ≤ 32L(2z/b2)/z3, (22)

γ(z) = (z/b)2/2− Λ(z), |γ(z)| ≤ z3L(2z/b2)/b6. (23)

Доказательство теоремы будет основано на применении леммы 1 при

ξj = Xj(y)−EXj(y), Z = S(y)−ES(y), z = x−ES(y). (24)

Положим
h = 1 + 2x, L = L(h, y), βj := E{X2

j : Xj > y}. (25)

Случай, когда y = ∞ уже разобран в [3]. Поэтому далее предполагаем, что
y < ∞. А поскольку вместо случайных величин {Xj} всегда можно изучать
величины {Xj/B}, то далее в этом параграфе мы всюду считаем, что B = 1.
При сделанных предположениях, с учетом обозначений (25), условие (5) можно
переписать в следующем виде

∞ > y ≥ B = 1, x ≥ 0, (1 + 8x)L ≤ 1/4. (26)

Лемма 2. Справедливо соотношение

β :=
∑

βj ≤ L/ehy ≤ e−1L/(1 + 2x) ≤ 1/(4e). (27)
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Доказательство. Из определения (4) следует, что Lj(h, y) ≥ ehyyβj . Но из
этого факта немедленно находим (27), если только заметим еще, что y ≥ 1,
ehyy ≥ e1+2x и e2x ≥ 1 + 2x. ¤

Далее нам потребуется несколько элементарных неравенств.

Лемма 3. Имеют место следующие утверждения

∀y > 0 ∀X X − y ≤ X2/(4y), (28)

∀ε > 0 ∀X ≥ 0 ∀α ≥ 0 (X + α)3 ≤ (1 + ε)2(X3 + α3/ε2), (29)
∀u > 0 ∀v > 0 |ψ(u)− ψ(v)| ≤ |u− v|. (30)

Доказательство. Введем в рассмотрение функции

f1(X) := X − y −X2/(4y), f2(X) := (X + α)3 − (1 + ε)2(X3 + α3/ε2).

Нетрудно проверить, что fk(0) ≤ 0 и fk(∞) = −∞ при k = 1, 2. А из явного
вида производных нетрудно найти точку максимума этих функций и получить,
что

max
0≤X<∞

f1(X) = f1(2y) = 0, max
0≤X<∞

f2(X) = f2(α/ε) = 0.

Тем самым мы доказали неравенства (28) и (29). Заметим, теперь, что из (11)
имеем:

∀x ≥ 0 |ψ′(x)| :=
∫ ∞

0

xe−t2/2−xtdt ≤
∫ ∞

0

xe−t2/2dt = 1.

Но из полученной оценки для производной |ψ′(x)| очевидно следует неравен-
ство (30). ¤

Положим
aj := −EXj(y), a :=

∑
aj = −ES(y).

Лемма 4. Пусть верны условия (1) и (26). Тогда

0 ≤ a ≤ β/4, 0 ≤ 1− b2 ≤ 2β, 1 ≥ b2 ≥ 9/10. (31)

Кроме того, в этом случае

∀j 0 ≤ aj ≤ haj ≤ c := (16e)−1, ehy
∑

a3
j ≤ c2L/4. (32)

Доказательство. Поскольку EXj = 0, то из определения (2) нетрудно извлечь,
что

aj := EXj −EXj(y) = E[Xj − y]+ ≥ 0.

Из этого представления и из неравенства (28) при X = Xj имеем:

0 ≤ aj = E[Xj − y] ≤ E{X2
j /(4y) : Xj > y} = βj/(4y).

Просуммировав полученные неравенства по j, мы найдем первое неравенство
в (31), если только заметим, что y ≥ 1.

Поскольку 0 ≤ aj ≤ a ≤ β/4, то применяя последовательно (25), (27) и (26),
имеем

0 ≤ aj ≤ haj ≤ (1 + 2x)β/4 ≤ e−1L/4 ≤ e−1/42 = c.

Тем самым доказано первое соотношение в (32). А из него и (31) мы получаем,
что ∑

a3
j ≤ c2

∑
aj = c2a ≤ c2β/4 ≤ (c2/4)L/ehy.

При выводе последнего неравенства мы опять использовали оценку (27) для
величины β. Таким образом, мы доказали оба соотношения в (32).
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Используя опять определение (2), нетрудно понять, что

EX2
j −EX2

j (y) = E{Xj − y2 : Xj > y} ≤ βj .

Следовательно, с учетом первого неравенства в (32), имеем

0 ≤ EX2
j −DXj(y) ≤ βj + a2

j ≤ βj + caj .

Суммируя эти неравенства, получаем

0 ≤ 1− b2 ≤ β + ca ≤ (1 + c/4)β ≤ (1 + c/4)/(4e) < 1/10. (33)

При выводе (33) были использованы уже доказанные оценки для величин a и
β из (31) и (27). Поскольку 1 + c/4 < 2, то из (33) следуют второе и третье
соотношения в (31). ¤

Лемма 5. Пусть выполнены условия (1) и (26). Тогда

z ≤ z/b ≤ z/b2 ≤ x + L/2 ≤ x + 1/8 < h/2. (34)

В частности,

z2/b2 − x2 ≤ (x + 1/8)L, |ψ(z/b)− ψ(x)| ≤ L/2. (35)

Доказательство. Используя (31) и (27), имеем

z

b2
− x =

x + a− xb2

b2
≤ β/4 + x(1− b2)

0.9
≤ β + 2xβ

0.9
≤ L

0.9e
. (36)

Поскольку 0.9e > 2 и L ≤ 1/4 ввиду (27), то из (36) вытекает (34).
Чтобы из (34) извлечь (35), надо воспользоваться соотношениями

z2/b2 − x2 = (z/b + x)(z/b− x) и |ψ(z/b)− ψ(x)| ≤ |z/b− x|.
Последнее верно в силу (30). ¤

Лемма 6. Если справедливы условия (1) и (26), то

L(2z/b2) ≤ CL при C = ec
(
1 + (c/2)2/3

)3
< 6/5. (37)

Доказательство. Поскольку |ξj | ≤ |Xj(y)|+ aj в силу определений (17) и (4),
то из неравенства (29) при X = |Xj(y)| и α = aj имеем

∀ε > 0 |ξj |3 ≤ (1 + ε)2
(|Xj(y)|3 + a3

j/ε2
)
. (38)

Кроме того, ввиду (17), (4) и (32)

hξ+
j ≤ hXj(y)+ + haj ≤ hXj(y)+ + c ≤ hy + c.

Из последнего соотношения и (38) немедленно следует, что

|ξj |3ehξ+
j ≤ (1 + ε)2ec

(|Xj(y)|3ehXj(y)+ + ehya3
j/ε2

)
.

Суммируя эти неравенства по j и учитывая (4) и (32), находим, что

L(h) ≤ (1 + ε)2ec
(
L + (c2/4)L/ε2

)
. (39)

Так как 2z/b2 ≤ h ввиду (34), то из (39) при ε := (c/2)2/3 получаем требуемое
неравенство L(2z/b2) ≤ L(h) ≤ CL с константой C, указанной в (37). ¤

Лемма 7. Если верны условия (1) и (26), то выполнено и предположение (18).
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Доказательство. Так как 8z ≤ 8(x + 1/8) = 1 + 8x в силу (34), то применяя
последовательно неравенства (37), (26) и (31), имеем

16zL(2z/b2) ≤ 2(1 + 8x)CL ≤ 2C/4 ≤ (0.9)2 ≤ b4.

Здесь мы еще использовали оценку C/2 < 3/5 < (0.9)2. ¤

Лемма 8. Пусть выполнены все условия теоремы при B = 1. В этом случае
справедливы все равенства в формулах (6), (7), (9) и, кроме того, имеют
место следующие соотношения:

Λ(x, y) = Λ(z), γ(x, y) = γ(z) + x2/2− (z/b)2/2, (40)

δ0(x, y) = δ0(z), δ(x, y) = δ(z) + ψ(z/b)− ψ(x), (41)

где функция ψ(x) введена в (11).

Доказательство. Подчеркнем еще раз, что переменные в теореме и лемме 1
связаны равенствами (24). По этой причине из определений (3) и (19) выте-
кает, что имеют место равенства (40). Напомним, что при B = 1 условие (5)
совпадает с (26) и, в силу леммы 7, выполнено условие (18) леммы 1. Значит,
верны и все утверждения этой леммы. Но утверждение (20) леммы 1 совпадает
с утверждением (6) теоремы при δ0(x, y) введенном в (41).

Далее, ввиду определения (11) формулу (21) можно переписать следующим
образом

P(Z ≥ z) = e−Λ(z)
[
ψ(z/b) + δ(z)

]
/
√

2π.

Подставляя в это равенство функцию δ(x, y) из (41) и величины Z и z из (24),
мы получим, что верна формула (10). Но, как уже отмечалось, получившееся
соотношение (10) совпадает с требуемой формулой (7). ¤

Лемма 9. Если справедливы условия (1) и (26), то верны все неравенства в
формулах (8) и (9).

Доказательство. Из (22), (35), (37) и (41) вытекает, что

|δ(x, y)| ≤ |δ(z)|+ |ψ(z/b)− ψ(x)| ≤ 32CL/b3 + L/2.

Отсюда следует второе неравенство в (8), поскольку b3 ≥ (0.9)3/2 в силу (31).
Аналогично, из (22), (37) и (41) получается первое неравенство в (8), так как
29C/(0.9)3/2 < 41.

Далее, поскольку z/b2 ≤ x + 1/8 в силу (34), то из (23), (35), (37) и (40)
следует, что

|γ(x, y)| ≤ |γ(z)|+ |x2/2− (z/b)2/2| ≤ (x + 1/8)3CL + (x + 1/8)L/2.

Отсюда вытекает второе соотношение в (9), так как C < 2. ¤
Таким образом, в леммах 8 и 9 доказаны все утверждения теоремы при

B = 1.

Лемма 10. Если pn ∼ qn и δn/qn → 0, то pn + δn ∼ qn.

Для доказательства этого утверждения надо последовательно применить
следующие элементарные факты:

δn/pn ∼ δn/qn → 0 и δn + pn = pn(1 + δn/pn) ∼ pn ∼ qn.
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При доказательстве следствий мы будем использовать теорему и соотно-
шения (10) и (12) при Xj = Xn,j , x = xnBn и y = yn. В этом случае при
выполнении условий (15) из утверждений (10) и (8) теоремы вытекает, что

pn := P
(
Sn(yn) ≥ xnBn

) ∼ qn := x−1
n e−Λn(xn,yn)/

√
2π, (42)

поскольку ψ(xn) ∼ x−1
n . А из неравенства (12) следует, что

pn ≤ P
(
Sn ≥ xnBn

) ≤ pn + δn при δn := Vn(yn). (43)

Таким образом, из (42), (43) и леммы 10 немедленно получается утвержде-
ние (16) следствия 2, так как δn/qn → 0 в силу условия (15).

Утверждение (14) следствия 1 является частным случаем (16), поскольку из
условия (13) и из соотношений (9) следует, что e−Λn(xn,yn)+x2

n/2 → 0.
Таким образом, все утверждения работы доказаны.
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