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ПЕРИОДИЧЕСКИE РЕШЕНИЯ НЕКОТОРЫХ ЛИНЕЙНЫХ
СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Данг Хань Хой

Abstract. We study the time-periodic solutions of a linear operator-
differential equation and describe the structure of the set of periods, for
which our problem admits a unique solution. Applications are given for
some systems of integro-differential equations over a sphere.

1. Введение

Пусть H – сепарабельное бесконечномерное гильбертово пространство над
полем C, Ã – линейный оператор в H. Оператор Ã будем называть M -оператором
(модельным оператором, см. [1, c. 40]), если у него существует система соб-
ственных векторов {fk}, k = (k1, k2, ..., ks) ∈ Zs, образующих базис Рисса в
H. Соответствующие собственные значения обозначим λk, λk ∈ C. При этом
мы считаем, что {fk} есть ортонормированный базис в H, |λk| → ∞ при
|k| =

√
k2
1 + k2

2 + ... + k2
s → ∞ и для каждого значения |k| имеется не более

двух разных значений λk.
Мы рассмотрим задачу о периодических решениях для уравнения

(1)
(

1
i

∂

∂t
+ Ã − λ

)
u(t) = νG(u− f),

с условием периодичности по t :

(2) u|t=0 = u|t=b.

Здесь λ, ν - заданные комплексные числа.
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170 Данг Хань Хой

Заменой t = bτ наша задача сводится к задаче с фиксированным периодом,
но для нового уравнения, в котором коэффициент при производной по τ есть
1
b

:
(

1
i

∂

b∂τ
+ Ã − λ

)
u(bτ) = νG(u(bτ)− f(bτ)).

2. Общая схема исследования периодических решений

Пусть H̃ = L2([0, 1],H) и D(L) – подпространство пространства H̃, состоя-
щее из таких элементов, у которых при разложении в ряд

(3) u =
∑

k∈Zs

uk(t)fk,

коэффициенты uk(t) абсолютно непрерывны, удовлетворяют условию перио-
дичности

uk(0) = uk(1)
и выполнены условия

∑

k∈Zs

∫ 1

0

| 1
ib

u′k(t) + λkuk(t)|2dt < ∞.

Рассматривается задача о периодических решениях для уравнения

(4) (L− λ)u ≡
(

1
i

∂

b∂t
+ Ã − λ

)
u(t) = νG(u− f),

с фиксированным условием периодичности по t :

(5) u|t=0 = u|t=1.

Здесь G - непрерывный линейный оператор на пространстве H̃.

Лемма 1. Векторы ekm = ei2πmtfk, m ∈ Z, k ∈ Zs есть собственные векто-

ры оператора L =
1
i

∂

b∂t
+Ã с соответствующими собственными значениями

(6) λkm =
(

2mπ

b
+ λk

)

на пространстве H̃. Эти векторы образуют ортонормированный базис в ука-
занном пространстве. Область определения оператора L есть D(L), причем
это пространство может быть описано как

D(L) = {u =
∑

ukmekm ∈ H̃ |
∑

|λkmukm|2 < ∞}.
Спектр σ(L) оператора L есть замыкание множества {λkm}.

Мы не приводим доказательство Леммы 1 ввиду его очевидности.
Пусть B̃ −M -оператор в H, у которого {fk} есть система собственных век-

торов и {µk} есть система соответствующих собственных значений:

B̃fk = µkfk.

Здесь мы считаем, что |µk| → ∞ при |k| → ∞ и |µk| ≥ 1 при µk 6= 0. Послед-
нее условие не нарушает общности, так как оно всегда будет выполнено после
умножения оператора B̃ на подходящую константу.
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Пусть B̃∗ - оператор, сопряженный к B̃ в гильбертовом пространстве H.
Предположим, что оператор B̃∗ ◦G ограничен и M = max{||B̃∗ ◦G||, ||G||}.
Лемма 2. Пусть v = Gu =

∑
vkmekm, тогда

|vkm|2 ≤ 4M2

(|µk|+ 1)2
||u||2.

При этом, если µk 6= 0, то

(7) |vkm|2 ≤ 4|αkm|2
(|µk|+ 1)2

,

где αkm = 〈B̃∗ ◦Gu, ekm〉 =
∫ 1

0
(B̃∗ ◦Gu, ekm)dt.

Доказательство. Имеем

αkm = 〈B̃∗ ◦Gu, ekm〉 =
∫ 1

0

(B̃∗ ◦Gu, ekm)dt =
∫ 1

0

(Gu, B̃ekm)dt =

∫ 1

0

(Gu, µkekm)dt = µk

∫ 1

0

(Gu, ekm)dt = µk〈Gu, ekm〉 = µkvkm.

Отсюда следует, что при µk 6= 0 ( значит |µk| ≥ 1):

|vkm|2 ≤ 4|αkm|2
(|µk|+ 1)2

.

Из равенства Парсеваля
∑ |αkm|2 = ||B̃∗ ◦Gu||2 ≤ M2||u||2 следует, что

|vkm|2 ≤ 4M2||u||2
(|µk|+ 1)2

.

Снова по равенству Парсеваля
∑

|vkm|2 = ||Gu||2

имеем, что при µk = 0

|vkm|2 ≤ ||G||2||u||2 ≤ 4||G||2||u||2 ≤ 4M2

(|µk|+ 1)2
||u||2.

Лемма доказана.

Теперь мы также предположим, что λ 6= λkm ∀ k ∈ Zs, ∀ m ∈ Z и σ(L) 6=
{λkm}. Тогда определен обратный оператор (L − λ)−1, но этот оператор не
ограничен, если λ ∈ σ(L) = Cl{λkm}. Возможны следующие случаи:

а) λ /∈ σ(L). Тогда норма обратного оператора (L− λ)−1 оценивается сверху
через величину δ = min k, m |λkm − λ|.

b) λ ∈ σ(L). Тогда в выражении для обратного оператора (L− λ)−1 появля-
ются малые знаменатели:

(8) (L− λ)−1v =
∑ vkm

λkm − λ
ekm,

где vkm есть коэффициенты Фурье ряда

v =
∑

vkmekm.
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Для положительных чисел σ и C через Aσ(C) обозначим множество таких
положительных чисел b, для которых при всех m и k выполнено неравенство

(9) |λkm − λ| ≥ C

(|k|+ 1)1+σ
.

Как видно из определения, множества Aσ(C) увеличиваются при уменьше-
нии C и при увеличении σ. Поэтому в дальнейшем для получения утвержде-
ний о непустоте такого множества или его части возникает требование, чтобы
C было достаточно малым, а σ - достаточно большим. Через Aσ обозначим
объединение по C > 0 множеств Aσ(C).

Если неравенство (9) выполнено для некоторого b при всех m, k, то оно вы-
полнено при m = 0, откуда получаем необходимое условие непустоты множе-
ства Aσ(C):

(10) C ≤ (|k|+ 1)1+σ|λk − λ| ∀ k ∈ Zs.

Так как |λk| → ∞, при |k| → ∞, то существует k0 такое, что

(|k|+ 1)1+σ|λk − λ| ≥ (|k0|+ 1)1+σ|λk0 − λ|
для любого k ∈ Zs.

Обозначим d = (|k0|+1)1+σ|λk0 −λ| = mink∈Zs(|k|+1)1+σ|λk−λ| > 0. Верна
следующая теорема.

Теорема 1. Пусть G - ограниченный оператор на H̃ такой, что B̃∗◦G непре-
рывeн на H̃, b ∈ Aσ(C), σ > 0. Пусть

lim
|k|→∞

(|k|+ 1)2+2σ

(|µk|+ 1)2
= 0.

Тогда определен обратный оператор (L − λ)−1 и произведение (L − λ)−1 ◦ G
является компактным оператором.

Доказательство. Так как b ∈ Aσ(C), то λkm 6= λ ∀ k ∈ Zs, m ∈ Z и
определен обратный оператор (L−λ)−1, его выражение имеет вид (8). Заметим,

что lim
(|k|+ 1)2+2σ

(|µk|+ 1)2
= 0 при |k| → ∞, lim |µk| = ∞ при |k| → ∞ и |µk| ≥

1 при µk 6= 0. Поэтому для заданного положительного числа ε > 0, существует
k0 такое, что для всех |k| > |k0|

(|k|+ 1)2+2σ

(|µk|+ 1)2
<

(εC)2

(2M)2
и µk 6= 0.

Обозначим

(L− λ)−1v(x, t) = Qk01v + Qk02v, v = Gu.

Здесь
Qk01v =

∑

|k|≤|k0|

vkm

λkm − λ
ekm, Qk02v =

∑

|k|>|k0|

vkm

λkm − λ
ekm.

Заметим, что при |k| ≤ |k0|

lim
|m|→∞

1

|2mπ

b
+ λk − λ|2

= 0.
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Поэтому существует положительное целое m0 такое, что для любого m, |m| >
m0 для всех k, |k| ≤ |k0|

1
|λkm − λ|2 <

(
ε

MC(k0)

)2

, C2(k0) = max|k|≤|k0|
4

(|µk|+ 1)2
.

Рассмотрим оператор Qk01v = Qk01′v + Qk01′′v. Здесь

Qk01′v =
∑

|k|≤|k0|,|m|≤m0

vkm

λkm − λ
ekm

Qk01′′v =
∑

|k|≤|k0|,|m|>m0

vkm

λkm − λ
ekm.

Имеем

||Qk01′′v||2 = ||Qk01′′ ◦Gu||2 =
∑

|k|≤|k0|,|m|>m0

|vkm|2
|λkm − λ|2 ≤

∑

|k|≤|k0|,|m|>m0

4|αkm|2
(|µk|+ 1)2

1
|λkm − λ|2 ≤ C2(k0)

∑
|αkm|2 1

|λkm − λ|2

≤ C2(k0)M2||u||2
(

ε

MC(k0)

)2

= ε2||u||2

Итак ||Qk01′′◦G|| ≤ ε.
Рассмотрим оператор Qk02 ◦G. В силу леммы 2 и (9) мы имеем

||Qk02v||2 = ||Qk02 ◦Gu||2 =
∑

|k|>|k0|

|vkm|2
|λkm − λ|2 ≤

∑

|k|>|k0|

4α2
km

(|µk|+ 1)2
(|k|+ 1)2+2σ

C2
≤ (

1
C

)2(
εC

2M
)2

∑

|k|>|k0|
4|αkm|2 ≤ ε2||u||2.

Это значит, что ||Qk02 ◦G|| ≤ ε.
В силу того, что оператор Qk01′ ◦G имеет конечномерный образ, он компак-

тен. Далее

||(L−λ)−1◦G−Qk01′ ◦G|| = ||(Qk01′′+Qk02)◦G|| ≤ ||Qk01′′ ◦G||+||Qk02◦G|| < 2ε.

Так как ε > 0 произвольно, оператор (L− λ)−1 ◦G есть предел последователь-
ности компактных операторов и поэтому этот оператор компактен. Теорема
доказана.

Обозначим K = Kb = (L− λ)−1 ◦G. Верна

Теорема 2. Пусть b ∈ Aσ(C). Тогда задача (1),(2) имеет единственное пе-
риодическое решение с периодом b для всех ν ∈ C, за исключением не более
чем счетного дискретного множества значений.

Доказательство. Уравнение (1) сводится к уравнению вида

((L− λ)−1 ◦G− 1
ν

)u = (L− λ)−1 ◦G(f).

Обозначим (L− λ)−1 ◦G− 1
ν

= K − 1
ν
.

Так как K = (L−λ)−1 ◦G – компактный оператор, его спектр σ(K) не более
чем счетен, а единственной возможной предельной точкой этого множества
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является нуль. Поэтому множество S = {ν 6= 0 | 1
ν
∈ σ(K)} не более чем

счетно и дискретно и для всех ν 6= 0, ν /∈ S оператор (K− 1
ν

) обратим , то есть
уравнение (1) имеет единственное решение. Теорема доказана.

Мы будем считать, что σ > 1 при k = (k1, ..., ks), s > 1 и σ > 0 при s = 1.

Теорема 3. Множества Aσ(C), Aσ - борелевские. При этом, Aσ является
множеством полной меры, т.е. его дополнение на полупрямой R+ имеет ну-
левую меру.

Доказательство. Очевидно, что множества Aσ(C) замкнуты в R+. Далее,

множество Aσ =
∞⋃

r=1

Aσ(1/r) - борелевское, как счетное объединение замкнутых

множеств.
Покажем, что Aσ имеет полную меру на R+. Предположим, что b, l >

0, C ≤ d

2
и рассмотрим дополнение (0, l)\Aσ(C). Это множество состоит из

положительных чисел b, для которых существуют такие m, k, что

(11) |λkm − λ| < C

(|k|+ 1)1+σ
.

Решая это неравенство относительно b, получаем, что при фиксированных
m, k эти числа образуют интервал вида Ikm = (mαk,mβk), где m = 1, 2, 3, ...,

αk =
2π

|λk − λ|+ C

(|k|+ 1)1+σ

,

βk =
2π

|λk − λ| − C

(|k|+ 1)1+σ

.

Заметим, что для каждого значения |k| имеется не более двух разных интерва-
лов Ikm и поэтому каждое значение |k| учитывается не более двух раз. Длина
найденного интервала есть mδk, где

δk =
4πC(|k|+ 1)−1−σ

|λk − λ|2 − C2(|k|+ 1)−2−2σ
.

В силу предположения C ≤ d

2
имеем

(12) δk ≤ 16πC

3(|k|+ 1)1+σ|λk − λ|2 .

При фиксированном k и разных m существует конечное число указанных выше
интервалов Ikm, пересекающихся с заданным отрезком (0, l).

Такие интервалы получаем при тех значениях m = 1, 2..., для которых вы-
полнены неравенства mαk < l, т.е. выполнено двойное неравенство

0 < m <
l

2π
(|λk − λ|+ C(|k|+ 1)−1−σ).
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Учитывая, что C(|k|+1)−1−σ ≤ 1
2
|λk−λ|, получаем более простые ограничения

для указанных значений m :

0 < m <
l

2π

3
2
|λk − λ|,

(13) 0 < m <
l

π
|λk − λ|.

Мера объединения указанных интервалов (при фиксированном k) оцени-
вается сверху числом δkS̃k, где S̃k = S̃k(l) есть сумма натуральных чисел m,
для которых выполнены неравенства (11). По формуле суммы арифметической
прогрессии, имеем

(14) S̃k ≤ l

2π2
|λk − λ|{l|λk − λ|+ π}.

Рассмотрев объединение указанных интервалов по k и по m, получаем с учетом
(10), что

µ((0, l)\Aσ(C)) ≤
∑

|k|
δkS̃k ≤ CS(l),

где

S = S(l) =
∑

|k|

8l{l|λk − λ|+ π}
3π(|k|+ 1)1+σ|λk − λ| .

Величина
l|λk − λ|+ π

π|λk − λ|
ограничена сверху некоторой постоянной D. Тогда, с учетом того, что при фик-
сированном |k| ряд в выражении для S(l) содержит не более двух слагаемых,
выводим оценку

S(l) ≤ 16
3

lD
∑

|k|

1
(|k|+ 1)1+σ

< ∞.

Здесь существенно, что возникающий ряд сходится, поскольку общий член
ряда убывает, как (|k| + 1)1+σ. В случае s = 1, σ > 0 это очевидно. В случае
же s > 1 заметим, что множество разных значений величины |k|2 есть подмно-
жество множества натуральных чисел N = {0, 1, 2, ...}. Отсюда вытекает, что
при s > 1, σ > 1

∑

|k|

1
(|k|+ 1)1+σ

≤
∞∑

j=1

2
j1/2+σ/2

< ∞.

Итак, S(l) < ∞. Имеем

µ((0, l) \Aσ) ≤ µ((0, l) \Aσ(C)) ≤ CS(l) ∀ C > 0.

Отсюда следует, что µ((0, l) \ Aσ) = 0 ∀ l > 0. Поэтому µ((0,∞) \ Aσ) = 0 и
Aσ- множество полной меры. Теорема доказана.

Исследуем вопрос о разрешимости задачи (1), (2) при фиксированном зна-
чении параметра ν. Для этого нам будет нужно изучить структуру плоского

множества E ⊂ C × R+, состоящее из пар (ν, b) таких, что ν 6= 0 и
1
ν

/∈ σ(Kb),

где Kb = (L− λ)−1 ◦G. Справедлива

Теорема 4. Множество E - измеримое множество полной меры на C×R+.
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Для доказательства нам потребуются ряд вспомогательных утверждений.

Лемма 3. Для любого положительного ε существует натуральное число k0

такое, что ||Kb − K̃b|| < ε при любых b ∈ Aσ(
1
r
), где r = 1, 2, ...,

Kbu = (Lb − λ)−1 ◦Gu =
∑ vkm

λkm(b)− λ
ekm, K̃bu =

∑

|k|≤|k0|

vkm

λkm(b)− λ
ekm.

Доказательство: Заметим, что для любого ε > 0 существует k0 ∈ Zs такое,

что
(|k|+ 1)2+2σ

(|µk|+ 1)2
≤ (

ε

2rM
)2 при |k| > |k0|. Имеем, с учетом Леммы 2

(Kb − K̃b)u = Kk0bu =
∑

|k|>|k0|

vkm

λkm(b)− λ
ekm

||(Kb − K̃b)u||2 = ||Kk0bu||2 =
∑

|k|>|k0|
| vkm

λkm(b)− λ
|2 ≤

∑

|k|>|k0|

4r2α2
km(|k|+ 1)2+2σ

(|µk|+ 1)2
≤

r2(
ε

2rM
)24

∑

|k|>|k0|
|αkm|2 ≤ r2(

ε

2rM
)24M2||u||2 = ε2||u||2.

Итак, ||Kb − K̃b|| = ||Kk0b|| < ε, что и требовалось доказать.

Лемма 4. Операторная функция Kb непрерывна по b ∈ Aσ(
1
r
).

Доказательство: Пусть заданы b, b + ∆b ∈ Aσ(
1
r
) и ε > 0. По лемме 3

существует k0 такое, что ||Kb − K̃b|| = ||Kk0b|| < ε и ||Kb+∆b − K̃b+∆b|| =
||Kk0(b+∆b)|| < ε. Имеем

Kb+∆b −Kb = (K̃b+∆b + Kk0(b+∆b))− (K̃b + Kk0b),

откуда следует, что

||Kb+∆b −Kb|| ≤ ||K̃b+∆b − K̃b||+ ||Kk0(b+∆b)||+ ||Kk0b||.

Рассмотрим операторы K̃b+∆b, K̃b. Поскольку

(K̃b+∆b − K̃b)u =
∑

|k|≤|k0|
(

1
λkm(b + ∆b)− λ

− 1
λkm(b)− λ

)vkmekm,

справедливо равенство

(15) ||K̃bu− K̃b+∆bu||2 =
|∆b|2

|b(b + ∆b)|2
∑

|k|≤|k0|

|vkm|2
|λkm(b + ∆b)− λ|2

4m2π2

|λkm(b)− λ|2 .

При b + ∆b ∈ Aσ(
1
r
) имеем

|vkm|2
|λkm(b + ∆b)− λ|2 ≤ r2(|k|+ 1)2+2σ|vkm|2 ≤ r2(|k0|+ 1)4|vkm|2.
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В силу предельного соотношения lim
m→∞

4m2π2

|λkm(b)− λ|2 = b2 и условия |k| ≤ |k0|
величина

4m2π2

|λkm(b)− λ|2 =
4m2π2

|2mπ

b
+ µk − λ|2

ограничена постоянной C(k0), зависящей от k0. Поэтому

|∆b|2
|b(b + ∆b)|2

∑

|k|≤|k0|

|vkm|2
|λkm(b + ∆b)− λ|2

4m2π2

|λkm(b)− λ|2 ≤

|∆b|2
|b(b + ∆b)|2

∑

|k|≤|k0|
r2(|k0|+ 1)4C(k0)|vkm|2 ≤

|∆b|2
|b(b + ∆b)|2 r2C(k0)(|k0|+ 1)4

∑
|vkm|2 ≤

|∆b|2
|b(b + ∆b)|2 r2C(k0)(|k0|+ 1)4M2||u||2.

Отсюда следует, что

||K̃b+∆b − K̃b||2 ≤ |∆b|2
|b(b + ∆b)|2 M2r2(|k0|+ 1)4C(k0).

Возьмем ∆b так, что выполнено следующее условие

|∆b|2
|b(b + ∆b)|2 M2r2(|k0|+ 1)4C(k0) < ε.

Тогда ||Kb+∆b−Kb|| < 3ε. Это значит, что операторная функция Kb непрерывна

по b на Aσ(
1
r
). Лемма доказана.

Лемма 5. Спектр σ(K) компактного оператора K непрерывно зависит от
K в пространстве Comp(H) компактных операторов на H в том смысле,
что для любого положительного ε найдется δ > 0 такое, что для всех ком-
пактных (и даже ограниченных) операторов B таких, что ‖B−K‖ < δ верны
включения

(16) σ(B) ⊂ σ(K) + Vε(0), σ(K) ⊂ σ(B) + Vε(0).

Здесь Vε(0) = {λ ∈ C | |λ| < ε} - ε-окрестность нуля в C.

Доказательство: Пусть K - компактный оператор, ε > 0. Из структуры
спектра σ(K) компактного оператора K следует, что можно выбрать ε1 < ε/2
так, что ε1 6= |λ| для всех λ ∈ σ(K) и окрестности Vε1(0), Vε1(λ), где λ - пробе-
гает конечное множество S = {λ1, . . . , λk} точек спектра с |λ| > ε1, попарно не
пересекаются. Пусть V =

⋃

λ∈S∪{0}
Vε1(λ). Тогда V является окрестностью спек-

тра σ(K) и V ⊂ σ(K)+Vε(0). По известному свойству спектров (см., например,
[6], Теорема 10.20 ) найдется такое δ > 0, что σ(B) ⊂ V для всех ограниченных
операторов B, ‖B −K‖ < δ. При этом, (см., например, Упражнение 20 на стр.
293 в [6]) величину δ > 0 можно выбрать так, что σ(B)∩Vε1(λ) 6= ∅ ∀ λ ∈ S∪{0}.
Тогда для всех ограниченных операторов B таких, что ‖B − K‖ < δ, верны
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требуемые включения σ(K) ⊂ σ(B) + V2ε1(0) ⊂ σ(B) + Vε(0) и σ(B) ⊂ V ⊂
σ(K) + Vε(0). Лемма доказана.

Из леммы 5 легко вытекает следующее

Предложение 1. Функция ρ(λ,K) = dist(λ, σ(K)) непрерывна на C×Comp(H).

Доказательство: Пусть λ ∈ C, K ∈ Comp(H) и ε > 0. По Лемме 5 суще-
ствует положительное число δ такое, что для любого оператора H, лежащего
в δ- окрестности ||H −K|| < δ, выполнены включения (16), из которых непо-
средственно вытекает оценка |ρ(λ,K) − ρ(λ, H)| < ε. Тогда для всех µ ∈ C,
|µ− λ| < ε и H, ||H −K|| < δ

|ρ(µ,K)− ρ(λ, H)| ≤ |ρ(µ,K)− ρ(λ,K)|+ |ρ(λ,K)− ρ(λ, H)| < |µ− λ|+ ε < 2ε,

откуда, ввиду произвольности ε > 0, следует непрерывность функции ρ(λ,K).
Предложение доказано.

Из доказанного предложения и Леммы 5 непосредственно вытекает

Следствие 1. Функция ρ(λ, b) = dist(λ, σ(Kb)) непрерывна по (λ, b) ∈ C ×
Aσ(

1
r
).

Мы готовы приступить к доказательству Теоремы 4.
Доказательство Теоремы 4: По следствию 1 функция ρ(1/ν, b) непрерывна

по переменным (ν, b) ∈ (C \ {0})×Aσ(
1
r
) и поэтому множество

Br = {(ν, b) | ρ(1/ν, b) 6= 0, b ∈ Aσ(
1
r
)}

измеримо. Значит B = ∪rBr измеримо. Ясно, что множество B ⊂ E и E = B ∪
B0, где B0 = E\B. Очевидно, B0 лежит в множестве нулевой меры C×(R+\Aσ)
(напомним, что по Теореме 3 множество Aσ имеет полную меру Лебега на R+ )
и, так как мера Лебега полна, множество B0 измеримо. Итак, множество E
измеримо, как объединение измеримых множеств. Далее по Теореме 3, для
b ∈ Aσ сечение Eb = {ν ∈ C | (ν, b) ∈ E} имеет полную меру, поскольку его
дополнение {1/ν | ν ∈ σ(Kb)} не более чем счетно. Поэтому множество E имеет
полную плоскую меру Лебега. Теорема доказана.

Из доказанной теоремы вытекает следующее важное

Следствие 2. Для п.в. ν ∈ C задача (1), (2) имеет единственное периодиче-
ское решение для почти всех значений периода b ∈ R+.

Доказательство: Поскольку множество E измеримо и имеет полную меру
Лебега, то для п.в. ν ∈ C сечение Eν = {b ∈ R+ | (ν, b) ∈ E} = {b ∈ R+ | 1/ν /∈
σ(Kb)} имеет полную меру и, значит, задача (1), (2) имеет при таких b един-
ственное периодическое решение с периодом b. Следствие доказано.

3. Периодические решения некоторых дифференциальных
уравнений с естественным оператором на многомерной сфере.

Мы будем обозначать через X = Sn сферу в Rn+1;Sn = {x ∈ Rn+1, ||x|| =
1}, n ≥ 2 с римановой структурой, наследованной из евклидовой структуры
на Rn+1. Пусть

ξ = ⊕n
p=0ξ

p = ⊕n
p=0Λ

p(T ∗X)⊗ C
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есть комплексифицированное кокасательное расслоение многообразия X, C∞(ξ),
Hk(ξ) - пространство гладких дифференциальных форм и пространство Собо-
лева дифференциальных форм над X, соответственно (см. [4]). Через A будем
обозначать оператор i(d + δ), так называемый естественный дифференциаль-
ный оператор на многообразии X, где d - внешний дифференциальный опе-
ратор, а δ = d∗- его формально сопряженный относительно скалярного про-
изведения в C∞(ξ), индуцированного римановой структурой на X. Известно
(см. [4, с. 69-79], [5] ), что d + δ - эллиптический дифференциальный оператор
первого порядка на X.

Собственные значения оператора Лапласа в пространстве функций на сфере
известны (см. [3, с. 163]), они имеют вид

λ = −k(k + n− 1), k = 0, 1, 2...

Аналогичный результат верен и для пространства гладких дифференциальных
форм:

Теорема 5. На сфере Sn все собственные значения оператора A в простран-
стве гладких дифференциальных форм задаются формулой

λ̃k = sign(k)i
√
|k|(|k|+ n− 1), k ∈ Z.

Доказательство этой теоремы имеется в [7].
Эти формулы определяют взаимно однозначное соответствие между целыми

числами и собственным значением оператора A = i(d + δ) на Sn.
Мы не указываем здесь собственные формы, соответствующие собственным

значением оператора A на Sn, как и размерности собственных подпространств.
Для нас существенно только то, что эти размерности конечны (то есть соб-
ственные числа оператора A имеют конечную кратность).

На сфере Sn рассмотрим задачу о периодических решениях для уравнения

(17) (L− λ)u ≡
(

1
i
(

∂

∂t
+ aA)− λ

)
u(x, t) = νG(u− f),

с условием периодичности по t :

(18) u|t=0 = u|t=b,

Заменой t = bτ задача сводится к задаче о периодических решениях для
уравнения

(19) (L− λ)u ≡
(

1
i
(

∂

b∂t
+ aA)− λ

)
u(x, t) = νG(u− f),

с фиксированным условием периодичности по t :

(20) u|t=0 = u|t=1.

здесь u(x, t) - комплексная форма на сфере Sn с коэффициентами, зависящими
от t, t ∈ [0, 1]; a 6= 0, λ - заданные комплексные числа , i2 = −1. Для любого
(x, y) ∈ Sn × Sn рассмотрим линейное отображение

g(x, y) : ∧T ∗y (Sn) → ∧T ∗x (Sn)
u → g(x, y)u = ũ(x, y, u)

переводящее элемент u слоя ∧T ∗y (Sn) в элемент ũ(x, y, u) слоя ∧T ∗x (Sn). Тогда
ũ(x, y, u) есть дифференциальная форма с коэффициентами, зависящими от
y ∈ Sn и u ∈ ∧T ∗y (Sn). Значение этой формы при x ∈ Sn при фиксированных
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y, u есть элемент слоя ∧T ∗x (Sn). Считаем, что g(x, y) ∈ Cr, если для любых
координатных окрестностей U и V произвольных точек x0, y0 ∈ Sn, g(x, y)
записывается в координатной форме

(g(x, y)u) =
∑

Iq

(g(x, y)u)IqdxIq ,

(g(x, y)u)Iq =
∑

Ip

gIqIp
(x, y)uIp

.

Здесь
u =

∑

Ip

uIp
dyIp,

Ip = i1i2...ip, 0 ≤ p ≤ n; dyIp = dyi1∧dyi2∧...∧dyip , 1 ≤ i1 < i2 < ... < ip ≤ n.

{dxIp} и {dyIp}- канонические базисы в соответственных слоях ∧T ∗x (Sn) и
∧T ∗y (Sn), причем gIqIp

(x, y) ∈ Cr(U×V ). Легко видеть, что данное определение
не зависит от выбора координатных окрестностей. Мы можем интерпретиро-
вать g(x, y) как тензорное поле на Sn × Sn. Ясно, что наше определение Cr-
гладкости g(x, y) согласуется с известным понятием Cr-гладкости соответству-
ющего тензорного поля. Определим интегральный оператор в L2([0, 1],H0(ξ)),
положив

(Gu)(x, t) =
∫

Sn

g(x, y)u(y, t)dy =
∫

Sn

ũ(x, y, t)dy,

где dy - мера Лебега-Хаусдорфа на сфере Sn. Считаем, что операция
1
i
(

∂

b∂t
+

aA) задана на пространстве дифференциальных форм u(x, t) ∈ C∞([0, 1], C∞(ξ))
таких, что его элементы удовлетворяют условию

u|t=0 = u|t=1.

Обозначим через L замыкание операции
1
i
(

∂

b∂t
+aA) в H = L2([0, 1],H0(ξ)).

Итак, элемент u ∈ H принадлежит области определения D(L) оператора L ,
если существует последовательность {uj} ⊂ C∞([0, 1], C∞(ξ)), uj |t=0 = uj |t=1

такая, что limuj = u, limLuj = Lu в H.
Из общей леммы 1 непосредственно вытекает следующий результат.

Лемма 6. Собственные значения оператора L на гильбертовом простран-
стве L2([0, 1],H0(ξ)) имеют вид

λkm =
2mπ

b
+ sign(k) a

√
|k|(|k|+ n− 1) =

2mπ

b
+ λk.

Здесь λk = sign(k) a
√
|k|(|k|+ n− 1) k, m ∈ Z. Соответствующие собствен-

ные формы ekjm, j ∈ Jk = {1, 2...jk} образуют ортонормированный базис в H.
Область определения оператора L есть D(L) =

{u =
∑

ukjmekjm ∈ H |
∑

|λkmukjm|2 < ∞,
∑

|λkukjm|2 < ∞}.

Лемма 7. Пусть g(x, y) ∈ C0 на Sn × Sn. Тогда

||G||2 ≤ M2
0 =

∫

Sn

∫

Sn

||g(x, y)||2 dx dy.
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Здесь ||g(x, y)||- норма линейного отображения g(x, y).
Доказательство. Имеем

||Gu(x, t)||2 = ||
∫

Sn

g(x, y)u(y, t) dy||2 ≤
(∫

Sn

||g(x, y)u(y, t)|| dy

)2

≤
(∫

Sn

||g(x, y)||.||u(y, t)|| dy

)2

≤
∫

Sn

||g(x, y)||2dy

∫

Sn

||u(y, t)||2dy,

||Gu||2 =
∫ 1

0

∫

Sn

||Gu(x, t)||2dxdt ≤
∫ 1

0

∫

Sn

(∫

Sn

||g(x, y)||2dy

∫

Sn

||u(y, t)||2dy

)
dx dt ≤

∫

Sn

∫

Sn

||g(x, y)||2dxdy

∫

Sn

∫ 1

0

||u(y, t)||2dydt

||Gu||2 ≤ M2
0 ||u||2.

Отсюда следует, что
||G|| ≤ M0.

Лемма доказана.

Заметим что оператор Лапласа ∆ = −(d + δ)2 является формально самосо-
пряженным относительно скалярного произведения

(u, v) =
∫

Sn

(u(x), v(x))dx

на пространстве C∞(ξ).
Пусть y ∈ Sn, v ∈ ∧T ∗y (Sn). Тогда g(x, y)v есть Cr-гладкая форма по x на

Sn и для нее определен оператор Лапласа ∆x(g(x, y)v). При фиксированных x
и y соответствие

v → ∆x(g(x, y)v)
является линейным отображением слоя ∧T ∗y (Sn) в слой ∧T ∗x (Sn) то есть имеет
такой же вид, как и g(x, y). Это поле линейных отображений будем обозначать
∆xg(x, y), так что

(∆xg(x, y))v = ∆x(g(x, y)v) ∀ y ∈ Sn, v ∈ ∧T ∗y (Sn).

Мы будем предполагать, что r ≥ 2. Тогда ∆xg(x, y) является непрерывным
(класса C0 ) тензорным полем на Sn × Sn. Произведение ∆x ◦ G = ∆xG есть
интегральный оператор с ядром ∆xg(x, y).

Действительно, имеем∫

Sn

((∆x ◦Gu)(x), v(x)) dx =
∫

Sn

((Gu)(x), ∆xv(x)) dx =

∫

Sn

(∫

Sn

(g(x, y)u(y)dy, ∆xv(x)
)

dx =
∫

Sn

(∫

Sn

(g(x, y)u(y), ∆xv(x))dy

)
dx =

∫

Sn

(∫

Sn

(g(x, y)u(y), ∆xv(x))dx

)
dy =
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∫

Sn

(∫

Sn

(∆x(g(x, y)u(y)), v(x))dx

)
dy =

∫

Sn

(∫

Sn

(∆xg(x, y)u(y), v(x))dx

)
dy =

∫

Sn

(∫

Sn

(∆xg(x, y)u(y), v(x))dy

)
dx =

∫

Sn

(∫

Sn

∆xg(x, y)u(y)dy, v(x)
)

dx.

Итак, ∫

Sn

((∆x ◦Gu)(x), v(x)) dx =
∫

Sn

(∫

Sn

(∆xg(x, y))u(y)dy, v(x)
)

dx

∀ v(x) ∈ Cr(∧T ∗(Sn)).
Отсюда

(∆x ◦G)u(x) =
∫

Sn

(∆xg(x, y))u(y)dy.

Итак, ∆x ◦G есть интегральный оператор с ядром ∆xg(x, y). Из леммы 7 сле-
дует, что

||∆x ◦G|| ≤
∫

Sn

∫

Sn

||∆xg(x, y)|| dx dy.

Положим M = max{||∆xG||, ||G||}.
Лемма 8. Пусть v = Gu =

∑
vkjmekjm, тогда

|vkjm|2 ≤ 4M2

(|k|(|k|+ n− 1) + 1)2
||u||2.

При этом, если k 6= 0

(21) |vkjm|2 ≤ 4|αkjm|2
(|k|(|k|+ n− 1) + 1)2

,

где αkjm = 〈∆xGu, ekjm〉 =
∫ 1

0
(∆xGu, ekjm)dt.

Доказательство. Для доказательства достаточно применить лемму 2 с опе-
ратором B̃ = ∆x, для которого |µk| = |k|(|k|+ n− 1), k ∈ Z.

Мы предположим, что a, λ вещественные числа. Тогда по лемме 6 cпектр
σ(L) оператора L лежит на вещественной оси.

Наиболее типичным является случай, когда ab/(2π) - иррациональное чис-
ло. В этом случае, множество чисел λkm всюду плотно на вещественной оси и
σ(L) = R ( см. [2, с. 151] ). Теперь мы также предположим, что λ 6= λkm ∀ k, m ∈
Z, тогда определен обратный оператор (L − λ)−1, но этот оператор не огра-
ничен. В выражении для обратного оператора (L − λ)−1 появляются малые
знаменатели.

(22) (L− λ)−1v(x, t) =
∑ vkjm

λkm − λ
ekjm,

где vkjm есть коэффициенты Фурье ряда

v(x, t) =
∑

k, m∈Z, j∈Jk

vkjmekjm.
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В соответствии с первой частью работы для положительных чисел σ и C через
Aσ(C) обозначим множество таких положительных чисел b, для которых при
всех целых m и k выполнено неравенство

(23) |λkm − λ| = |2mπ

b
+ sign(k)a

√
|k|(|k|+ n− 1)− λ| ≥ C

(|k|+ 1)1+σ
.

Через Aσ обозначим объединение по C > 0 множеств Aσ(C).

Теорема 6. Множества Aσ(C), Aσ - борелевские. При этом, Aσ является
множеством полной меры, т.е. его дополнение на полупрямой R+ имеет ну-
левую меру.

Доказательство. Утверждение теоремы непосредственно следует из теоре-

мы 3. Здесь λkm =
2mπ

b
+ sign(k)a

√
|k|(|k|+ n− 1), k ∈ Z, s = 1.

Верна следующая теорема.

Теорема 7. Пусть поле линейных отображений g(x, y) задано на Sn × Sn и
таково, что ∆xg(x, y) непрерывeн на Sn × Sn, 0 < σ, b ∈ Aσ(C).

Тогда определен обратный оператор (L− λ)−1 и произведение (L− λ)−1 ◦G
есть компактный оператор.

Для доказательства применим теорему 1 с B̃ = ∆.

Следующая теорема непосредственно следует из Теоремы 2.

Теорема 8. Пусть b ∈ Aσ(C). Тогда задача (17),(18) имеет единственное
периодическое решение с периодом b для всех ν ∈ C, за исключением не более
чем счетного дискретного множества значений.

Исследуем вопрос о разрешимости задачи (17), (18) при фиксированном зна-
чении параметра ν. Для этого нам нужно изучить структуру плоского множе-

ства E ⊂ C × R+, состоящее из пар (ν, b) таких, что ν 6= 0 и
1
ν

/∈ σ(Kb), где

Kb = (L− λ)−1 ◦G.
Из теоремы 4 и следствия 2 вытекают следующие результаты.

Теорема 9. Множество E - измеримое множество полной меры на C×R+,
откуда следует, что для п.в. ν ∈ C задача (17), (18) имеет единственное
периодическое решение для почти всех значений периода b ∈ R+.

Пользуясь случаем, автор выражает свою искреннюю благодарность про-
фессору Панову Е.Ю. за внимание к работе.
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