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Abstract. This is a survey of the Weierstrass Approximation The-
orems and their various proofs.

1 Introduction

This survey is about the Weierstrass Approximation Theorems. We consider
these results within a historical context and also discuss in detail many of the
subsequent proofs. This is a shorter version of the paper Pinkus [2000] with
some alterations.

The Weierstrass Approximation Theorems are two theorems that Weier-
strass (1815-1897) published in 1885 in Weierstrass [1885] when he was 70
years old. They prove the density of algebraic polynomials in the space of
continuous real-valued functions on a finite interval in the uniform norm, and
the density of trigonometric polynomials in the space of 2m-periodic continuous
real-valued functions on IR in the uniform norm. These theorems did not arise
from nowhere. They were born within a historical context and it is of some
interest to try to understand their origins and their impact.

It has been said that two main themes stand out in Weierstrass’ work. The
first is called the arithmetization of analysis. This was a program to separate the
calculus from geometry and to provide it with a proper solid analytic foundation.
Providing a logical basis for the real numbers, for functions and for calculus was
a necessary stage in the development of analysis. Weierstrass was one of the
leaders of this movement in his lectures and in his papers. He not only brought
a new standard of rigour to his own mathematics, but attempted to do the same
to much of mathematical analysis.

The second theme which is everpresent in Weierstrass’ work is that of power
series (and function series). Weierstrass is said to have stated that his own work
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in analysis was “nothing but power series”, see Bell [1936, p. 462]. In fact we
will see how Weierstrass perceived his approximation theorems as theorems on
convergent series. These approximation theorems were also a counterbalance
to Weierstrass’ famous example of a continuous nowhere differentiable function.
It is a generally accepted fact that the existence of continuous nowhere differ-
entiable functions was known and lectured upon by Weierstrass in 1861. The
approximation theorems are in a sense its converse. Every continuous function
on IR is a limit not only of infinitely differentiable or even analytic functions,
but in fact of polynomials. Furthermore, this limit is uniform if we restrict
the approximation to any finite interval. Thus the set of continuous functions
contains very, very non-smooth functions, but they can each be approximated
arbitrarily well by the ultimate in smooth functions. It is this dichotomy which
very much lies at the heart of approximation theory.

2 The Fundamental Theorems of Approximation Theory

In this section we review the contents of Weierstrass’ [1885] and its variants.
We first fix some notation. C'(IR) will denote the class of continuous real-valued
functions on all of IR, Cla,b], —co < a < b < 00, the class of continuous real-
valued functions on the closed interval [a, ], and C[a, b] the class of functions in
Cla, b] satisfying f(a) = f(b). (Cla, b] may, and sometimes should, be considered
as the restriction to [a, b] of functions in C'(IR) which are (b — a)-periodic.)

The paper stating and proving what we, in approximation theory, call “the”
Weierstrass theorems, i.e., those that prove the density of algebraic polynomials
in the space Cla, b] (for every —oo < a < b < 00) and trigonometric polynomials
in C[0,2n), is Weierstrass [1885]. It was published when Weierstrass was 70
years old!! This is one paper, but it appeared in two parts. It seems that the
significance of the paper was immediately appreciated, as the paper appeared
in translation (in French) one year later in Weierstrass [1886]. Again it was
published in two parts under the same title (but in different issues, which is
somewhat confusing). The paper was “reprinted” in Weierstrass’ collected works
(Mathematische Werke). It is contained in Volume 3 that appeared in 1903,
although parts of Volume 3 including, it seems, this paper, were edited by
Weierstrass himself a few years previously. Here the two parts do appear as one
paper. In addition, some changes were made. A half page was added at the
beginning, ten pages of material were appended to the end of the paper, and
some other minor changes were made. We will return to these additions later.

Weierstrass had an abiding interest in complex function theory and in rep-
resenting functions by power series. The results he obtained in this paper should
definitely be viewed from that perspective. In fact the title of this paper empha-
sizes this viewpoint. The paper is titled On the possibility of giving an analytic
representation to an arbitrary function of a real variable. In this section we
review what Weierstrass did in this paper.

Weierstrass starts his original paper with the statement that if f is contin-
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uous and bounded on all of IR then, as is known,

u—

7 du = f(x).

1 oo
lim —— =
R Y /m flu)e

He then immediately notes that this may be generalized to any kernel ¢ that is
continuous, nonnegative, integrable and even on IR. For such v he sets

F@iﬁZg%l/ZfWW(u;x)dw

wAmwumL

where

and proves that

lim F(x, k) = f(x

lim F(z, k) = f(2)
for each x. He not only proves pointwise convergence, but also uniform con-
vergence on any finite interval. The proof is standard. We will not repeat it
here. Weierstrass also notes that there are entire v, as above, for which F(-, k)
is entire for every k > 0. He explicitly states that ¢(x) = e~ is an example
thereof. The consequence of the above is the following.

Theorem A. Let f be continuous and bounded on IR. Then there exists a
sequence of entire functions F(x, k) (as functions of x for each positive k) such
that for each x

klir{# F(z,k) = f(x).

Weierstrass seems very much taken with this result that every bounded con-
tinuous function on IR is a pointwise limit of entire functions. In fact he prefaces
Theorem A with the statement that this theorem “strikes me as remarkable and
fruitful”. For unknown reasons this sentence, and only this sentence, was deleted
from the paper when it was reprinted in Weierstrass’ Mathematische Werke.

As mentioned, on any finite interval, one may obtain uniform convergence.
Furthermore, since F(-,k) is entire, the truncated power series of F(-, k) uni-
formly converges to F(-,k) on any finite interval. Each of the above statements
is easily proved and gives:

Theorem B. Let f be continuous and bounded on IR. Given a finite interval
[a,b] and an £ > 0, there exists an algebraic polynomial p for which

|f(z) —p(z)] <e
for all x € [a, b].

Throughout the first part of Weierstrass [1885] and for much of the second
part, Weierstrass is concerned with functions defined on all of IR. However later
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in the second part he does note that given any f € Cla,b], —co < a < b < o0,
we can define f to equal f(a) on (—o0,a), and to equal f(b) on (b, 00). We can
then apply the above Theorem B to obtain what is technically never explicitly
stated, but nonetheless very implicitly stated, and what is today considered as
the main result of this paper.

Fundamental Theorem of Approximation Theory. Let f € Cla,b] where
—00 < a < b < oo. Given € > 0, there exists an algebraic polynomial p for
which

|f(z) —p(z)] <e
for all x € [a, b].

Returning to Weierstrass [1885], and bounded f € C'(IR), Weierstrass con-
siders two sequences of positive values {¢, } and {&, }, for which lim,,_, ¢, = oo,
and > 7 | €, < 0. From Theorem B it follows that for f as above there exists
a polynomial p,, such that

[f(@) = pu(z)] <en

on [—cp, ¢y
Set go = p1 and ¢p, = P41 — Pm, m=1,2,.... Then

Y am(@) = popa(@)
m=0
and, thus, in a pointwise sense
f@) =" am(2). (2.1)
m=0

Furthermore, let [a,b] be a finite interval. Then for all m sufficiently large
/(@) = pm(2)] < em

for all x € [a, b], implying also
| (@)| < em + Emtr

for all € [a,b]. Thus for some M

Yo lam@) <2 ) em

m=M m=M

for all z € [a,b] and the series

Z gm ()
m=0

therefore converges absolutely and uniformly to f on [a,b]. This Weierstrass
states as Theorem C. That is,
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Theorem C. Let f be continuous and bounded on IR. Then f may be repre-
sented, in many ways, by an infinite series of polynomials. This series converges
absolutely for every value of x, and uniformly in every finite interval.

Weierstrass and subsequent authors would often phrase or rephrase these
approximation or density results (in this case Theorem B) in terms of infinite
series. It was only many years later that this equivalent form went out of fashion.
In fact such a phrasing was at the time significant. One should also recall that it
was only a few years earlier that du Bois-Reymond had constructed a continuous
function whose Fourier series diverged at a point, see du Bois-Reymond [1876].
Weierstrass’ theorem was considered by many, including Weierstrass himself, to
be a “representation theorem”. The theorem was seen as a means of reconciling
the “analytic” and “synthetic” viewpoints that had divided late 19th century
mathematics, see Gray [1984] and also Siegmund-Schultze [1988]. Much of the
remaining parts of Weierstrass [1885] is concerned with the construction (in
some sense) of a good polynomial approximant or a good representation for f
(as in (2.1)). Weierstrass was well aware that he could not possibly construct
a good power series representation for f, but he did find, in some sense, a
reasonable expansion of f in terms of Legendre polynomials.

In the latter part of Weierstrass [1885], Weierstrass proves the density of
trigonometric polynomials in C[0,27]. His proof is interesting and proceeds as
follows using complex function theory.

Let 9 be an entire function that is nonnegative, integrable and even on IR
and has the following property. Given an f € C[0, 27], the functions

Feb =5 [ fwy (“;) du,

w= /0”¢<x>dx,

are entire for each k > 0 (as a function of z € C') and satisfy

where

Jim Pz, k) = f(a)

uniformly on [0, 27r]. Weierstrass notes that such functions ¢ exist, e.g., ¥(u) =

2
e ",

Since f is 2w-periodic so is F, i.e.,
F(z+2m,k)=F(z,k)
for all z € C and k& > 0. For each fixed k > 0, set

log 2z

G(z,k) = F( k).
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In general, since log z is a multiple-valued function, G would also be a multiple-
valued function. However from the 27-periodicity of F, it follows that G is
single-valued and thus is an analytic function on C'\{0}. Consequently, G has
a Laurent series expansion of the form

oo

G(z, k) = Z Cn k2"

n=—oo

which converges absolutely and uniformly to G on every domain bounded away
from 0 and oo. We will consider this expansion on the unit circle |z| = 1. Setting
z = €', it follows that

F(x, k) = i cmkemx

n=—oo

where the series converges absolutely and uniformly to F(x, k) for all real x.
(In fact, it may be shown that if ¥(u) = e=*", then Cnk = cne~ K /4 where
the {c,} are the Fourier coefficients of f.) In other words, Weierstrass has
given a proof of the fact that for F(z,k) 2m-periodic and entire, its Fourier
series converges absolutely and uniformly to F(z, k) on IR. We now truncate
this series to get an arbitrarily good approximant to F(z, k) which itself, by a
suitable choice of k, was an arbitrary good approximant to f. The truncated
series is a trigonometric polynomial. This completes Weierstrass’ proof, the

result of which we now formally state.

Second Fundamental Theorem of Approximation Theory. Let f €

C[0,27]. Given e > 0, there exists a trigonometric polynomial t for which

|f(z) —t(z)| <e

for all z € [0, 27].

As we stated at the beginning of this section, when Weierstrass [1885]
was reprinted in Weierstrass’ Mathematische Werke there were two notable
additions. These are of interest and worth mentioning. We recall that while
this reprint appeared in 1903 there is reason to assume that Weierstrass himself
edited this paper.

The first addition was a short (half page) “introduction”. We quote it
(verbatim in meaning if not in fact).

The main result of this paper, restricted to the one variable case, can be sum-
marized as follows:

Let f € C(IR). Then there exists a sequence f1, fa,... of entire functions
for which

flz) = _Z filz)
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for each x € IR. In addition the convergence of the above sum is uniform on
every finite interval.

We can assume that this is the emphasis which Weierstrass wished to give
his paper. It is a repeat of Theorem C (although the boundedness condition
on f seems to have been overlooked) and curiously without mention of the fact
that the f; may be assumed to be polynomials.

The second addition is 10 pages appended to the end of the paper. In
these 10 pages Weierstrass shows how to extend the results of this paper (or,
to be more precise, the results concerning algebraic polynomials) to approx-
imating continuous functions of several variables. He does this by setting
F(z1,...,zn, k) equal to

2”k”w”/ /ful,..., )w(m;xl) ,.w(%)dul...dun

and then essentially mimicking the proofs of Theorems A and B. However Picard
[1891a] published already in 1891 an alternative proof of Weierstrass’ theorems
and showed how to extend the results to functions of several variables. As such,
Weierstrass’ priority to this result is somewhat in question.

3 Additional Proofs of the Fundamental Theorems

In this section we present various alternative proofs of Weierstrass’ theorems
on the density of algebraic and trigonometric polynomials on finite intervals
in IR. We believe that the echo of these proofs have an abiding value. Some
of the papers we cite contain additional results or emphasize other points of
view. We ignore such digressions. The proofs we present divide roughly into
three groups. The first group contains proofs that, in one form or another, are
based on singular integrals. The proofs of Weierstrass, Picard, Fejér, Landau,
and de la Vallée Poussin belong here. The second group of proofs is based
on the idea of approximating a particular function. In this group we find the
proofs of Runge/Phragmén, Lebesgue, Mittag-Leffler, and Lerch. Finally, there
is the third group that contain the proofs which do not quite belong to either
of the above groups. Here we find proofs due to Lerch, Volterra and Bernstein.
These are what we term the “early proofs”. They all appeared prior to 1913.
Note the pantheon of names that were drawn to this theorem. The main focus
of these proofs are the Weierstrass theorems themselves rather than any far-
reaching generalizations thereof. There are later proofs coming from different
and broader formulations. However we discuss only one of these later proofs.
It is that due to Kuhn which we consider to be wonderfully elegant and simple.
For historical consistency we have chosen to present these proofs in more or less
chronological order. This lengthens the paper, but we hope the advantages of
this approach offset the deficiencies.

We start by formally stating certain facts which will be obvious to most
readers, but perhaps not to everyone. The first two statements follow from a
change of variables, and are stated without proof.
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Proposition 1. Algebraic polynomials are dense in Cla,b] iff they are dense
in C[0,1].

Analogously we have the less used:
Proposition 2. The trigonometric polynomials

span{1, sin z, cos z, sin 2z, cos 2z, . . .}

are dense in C[0, 2] iff

2w i A 227m: 227m:
cos S cos
b—a’ b—a g b—a’

span{1, sin

are dense in Cla, b].

We now show that the density of algebraic polynomials in Cla,b], and
trigonometric polynomials in C [0,27], are in fact equivalent statements. That
is, we prove that each of the fundamental theorems follows from the other, see
also Natanson [1964, p. 16-19].

Proposition 3. If trigonometric polynomials are dense in C [0, 27], then alge-
braic polynomials are dense in Cla, b].

Proof: We present two proofs of this result. The first proof may be found in
Picard [1891a].

Assume, without loss of generality, that 0 < a < b < 27. Extend f €
Cla,b] to some f € C[0,27]. Since trigonometric polynomials are dense in
C [0, 27], there exists a trigonometric polynomial ¢ that is arbitrarily close to }’v
on [0,27], and thus to f on [a,b]. Every trigonometric polynomial is a finite
linear combination of sinnz and cosnz. As such each is an entire function.
Thus ¢ is an entire function having an absolutely and uniformly convergent
power series expansion. By suitably truncating this power series we obtain an
algebraic polynomial that is arbitrarily close to ¢, and thus ultimately to f.

A slight variant on the above bypasses the need to extend f to f. Assume
f € C[0,27], and define

o(@) = f@) + 10D,

Then g € C [0,27]. We now apply the reasoning of the previous paragraph
to obtain an algebraic polynomial p arbitrarily close to g on [0, 27], whence it

follows that
f(0) — f(2m)

pla) -

is arbitrarily close to f on [0, 27].
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A different and more commonly quoted proof is the following which does
not depend upon the truncation of a power series. According to de la Vallée
Poussin [1918], [1919], the idea in this proof is due to Bernstein.

Given f € C[—1,1], set

9(0) = f(cosb), —r<0<m.

Then g € C~'[f7r, 7] and g is even. As such given £ > 0 there exists a trigono-
metric polynomial ¢ for which

|9(0) —t(0) <e

for all § € [—m, w]. We divide ¢ into its even and odd parts, i.e.,

o)~ 1O —i—2t(—9)
t0(9) _ t(e) 72t(70)

and note that t. and ¢, are also trigonometric polynomials. (Equivalently, ¢, is
composed of the cosine terms of ¢, while ¢, is composed of the sine terms of ¢.)
Since g is even we have

max{|(g —1)(0)], (g — )(=0)[}

= max{[(g — te)(0) — to(0)], [(g — ) (0) + to(0)[} = [(g — te)(0)],

and, thus,
l9(0) —te(9)] < e

for all § € [—m, «]. In other words, since g is even we may assume that ¢ is even.
Let

t(0) = Z @y cOSTNE.
m=0
Each cosm#f is a polynomial of exact degree m in cosf. In fact
cosmf = Ty, (cos 6)

where the T, are the Chebyshev polynomials (see e.g., Rivlin [1974]). Setting

p(x) = Z ame(x),
m=0

we have

|f(z) —p(a)] <e
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for all z € [0,1]. O

Proposition 4. If algebraic polynomials are dense in C|a, b], then trigonomet-
ric polynomials are dense in C|0, 27].

Proof: The first proof of this fact was the one given by Weierstrass in Section 2.
To our surprise (and chagrin) we have essentially found only one other proof of
this result, and it is not simple. The proof we give here is de la Vallée Poussin’s
[1918], [1919] variation on a proof in Lebesgue [1898].

Let f€C [0,27] and consider f as being defined on all of IR. Set

0)+ f(—0
g(0) = L0
and 0
h(0) = 1) —2f(— ) sin 6.
Both g and h are continuous even functions of period 2.
Define

o(z) = g(arccos x), (x) = h(arccosz).

These are well-defined functions in C[—1,1]. Thus, given £ > 0 there exist
algebraic polynomials p and ¢ for which

5 €
6@ —p@)l < ) —ata)] < S
for all z € [-1,1]. As g and h are even, it follows that
€ €
19(8) = plcosO)| < 7, |h(6) —alcosB)] < 7
for all . From the definition of g and h, we obtain
| £(6)sin® @ — [p(cos ) sin® 6 + g(cos #) sinf] | < g

for all 6.
We apply this same analysis to the function f(6 + 7/2) to obtain algebraic
polynomials 7 and s for which

‘f(@ + g) sin? @ — [r(cos0) sin? @ + s(cos #) sin 0] ‘ < %
for all 6. Substituting for 6 4+ 7/2 gives

| f(0) cos® § — [r(sin ) cos® 6 — s(sin ) cos 0] | < %
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Thus the trigonometric polynomial
p(cos ) sin? O + q(cos 0) sin @ + r(sin 0) cos? § — s(sin ) cos 0

is an e-approximant to f. O

After these preliminaries we can now look at the inherent methods and ideas
used in various alternative proofs of either of the two Weierstrass fundamental
theorems of approximation theory. We present these proofs in more or less the
order in which they appeared in print.

Picard. Emile Picard (1856-1941) (Hermite’s son-in-law) had an abiding inter-
est in the Weierstrass’ theorems and in Picard [1891a] gave the first in a series of
different proofs of the Weierstrass theorems. This proof also appears in Picard’s
famous textbook [1891b]. Later editions of this textbook expanded upon this,
often including other methods of proof, but not always with complete references.
Picard’s proof, like that of Weierstrass, is based on a smoothing procedure using
singular integrals. Picard, however, chose to use the Poisson integral. His proof
proceeds as follows.

Assume f € C[0,27]. As f is continuous and 27m-periodic on IR, it is
uniformly continuous thereon. As such, given £ > 0 there exists a § > 0 such
that for |z — 0] < § we have |f(z) — f(0)] < e. Let

Pt = o [ g
DY o o 1—2rcos(x—0)+r? e

denote the Poisson integral of f.
We claim that, with the above notation,

[FAICEE

[P60) = O <+ s

for all 8. This may be explicitly proven as follows.

P(r,0) = f(0) = % /0 W 1—2r cis(_xrf 0) +r? V(@) = fO)dz

1 1—7r2
o lz—p|<s 1 — 2rcos(x — 0) + 12

[f(x) = f(0)]dz

1 1—r?
27 Js<|o—p)<n 1 — 27 cos(z — 0) + 12

1 1—r2
270 Jip—gj<s 1 — 2rcos(z — 0) + 12

[f(x) = f(0) dx
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- € /27r 1—72 d
= r=c¢
2 Jo 1—2rcos(x —6) +r?

In addition

1 i)~ fO)]
= x) — x
27 Js<|u—p)<r 1 — 27 cos(z — 0) + 12
_p2 2
§2\|f\\i/ 1-r _de< LA =)
210 Js<|z—gj<n 1 — 2rcos(x — 0) +r r(1 — cosd)

This last inequality is a consequence of
1 —2rcos(z — 6) + 7% > 2r — 2rcosd = 2r(1 — cos )

which holds for all x, 6 satisfying § < |z — 0] < 7.
As a function of r,
[FAC)

r(1 — cosd)

decreases to zero as r increases to 1. Choose some r1 < 1 for which

Il -r3) _

r1(1 — cosd)
Thus
|£(0) — P(r1,0)] < 2e
for all 6.
Let

o0
ap/2 + Z [ar, cosnx + b, sinnx|
n=1
denote the Fourier series of f. Recall that the Fourier series of P(r, ) is given
by

o0
ap/2 + Z r" [ay cosnx + b, sinnx] .
n=1
Since the a,, and b,, are uniformly bounded, the above Fourier series converges

absolutely, and uniformly converges to P(r, ) for each r < 1. Thus there exists
an m for which

P(rl,G)f <e€

ap/2 + Z r1 (an cosnz + by, sin nz)]

n=1

for all 6. Set, .
9(0) =ao/2 + Z r1(an cosnz + by, sinnzx).

n=1
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We have “constructed” a trigonometric polynomial satisfying

1£(0) = 9(0)] < 3¢

for all . In other words we have proven that in the uniform norm, trigonometric
polynomials are dense in the space of continuous 27-periodic functions.

As noted in the proof of Proposition 3, Picard then proves the Weierstrass
theorem for algebraic polynomials based on the above result. Picard ends his
paper by noting that the same procedure can be used to obtain parallel results
for continuous functions of many variables. He was the first to publish an
extension of the Weierstrass theorems to several variables.

As Picard [1891a] states, this proof is based on an inequality obtained by
H. A. Schwarz in his well-known paper Schwarz [1871]. In fact, as Cakon [1987]
points out, almost the entire Picard proof can be found in Schwarz [1871]. What
is perhaps surprising is that Weierstrass did not notice this connection.

Lerch I. M. Lerch (1860-1922) was a Czech mathematician of some renown
(see Skrasek [1960] and MacTutor [2004]) who attended some of Weierstrass’
lectures. Lerch wrote two papers, Lerch [1892] and Lerch [1903], that included
proofs of the Weierstrass theorem for algebraic polynomials. Unfortunately the
paper Lerch [1892] is in Czech, difficult to procure, and T have found no reference
to it anywhere in the literature except in Lerch [1903] and in a footnote in Borel
[1905] (but Borel did not see the paper). Subsequent authors mentioned in this
work were seemingly totally ignorant of this paper. Many of these authors
quote Volterra [1897], although Lerch [1892] contains a similar proof with the
same ideas. It is for the reader to decide whether, in these circumstances, Lerch
deserves prominence or only precedence.

We here explain the proof as is essentially contained in Lerch [1892]. We
defer the discussion of Lerch [1903] to a more appropriate place. Let f € CJa, b)].
Since f is uniformly continuous on [a,b], it can be uniformly approximated
thereon by a polygonal (piecewise linear) line. Lerch notes that every polygonal
line ¢ may be uniformly approximated by a Fourier cosine series of the form

o0
ag Tr—a
— + g Q. COS nm,
2 b—a
n=1

where

b
ap, = bza/a g(x)cosz_andx.
It was, at the time, well-known to any mathematician worth his salt that the
Fourier cosine series of a continuous function with a finite number of max-
ima and minima uniformly converges to the function. This result goes back
to Dirichlet [1829], see e.g. Sz.-Nagy [1965, p. 399]. Alternatively it is today
a standard result contained in every Fourier series text that if the derivative
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of a continuous function is piecewise continuous with one-sided derivatives at
each point, then its Fourier cosine series converges uniformly. Both these results
follow from the analogous results for periodic functions and the usual Fourier
series. Both these results hold for our polygonal line. As this Fourier cosine
series converges uniformly to our polygonal line we may truncate it to obtain
a trigonometric polynomial (but not a trigonometric polynomial as in Propo-
sition 2) which approximates our polygonal line arbitrarily well. Finally, as
the trigonometric polynomial is an entire function we can suitably truncate its
power series expansion to obtain our desired algebraic polynomial approximant.

Volterra. The next published proof of Weierstrass’ theorems is due to Volterra
[1897]. V. Volterra (1860-1940) proved only the density of trigonometric poly-
nomials in C[0,27]. As he was aware of Picard [1891a], this should not detract
from his proof.

Volterra was unaware of Lerch [1892], but his proof is much the same. Let
fe C [0,27]. Since f is continuous on a closed interval, it is also uniformly
continuous thereon. As such, it is possible to find a polygonal line that ap-
proximates f arbitrarily well. One can also assume that the polygonal line is
2m-periodic. It thus suffices to prove that one can arbitrarily well approximate
any continuous, 2mw-periodic, polygonal line by trigonometric polynomials. As
stated in the proof of Lerch, the Fourier series of the polygonal line uniformly
converges to the function. We now suitably truncate the Fourier series to obtain
the desired approximation.

C. Runge (1856-1927), E. Phragmén (1863-1937), H. Lebesgue (1875—
1941) and G. Mittag-LefHler (1846-1927) all contributed proofs of the Weier-
strass approximation theorems, and their proofs are related both in character
and idea. What did each do?

Mittag-Leffler, in 1900, was the last of the above four to publish on this
subject. However he seems to have been the first to point out, in print, Runge
and Phragmén’s contributions. As such we start this story with Mittag-Leffler.
The paper Mittag-Leffler [1900] is an “extract from a letter to E. Picard”. This
was, at the time, a not uncommon format for an article. Journals were still
in their infancy, but were replacing correspondence as the primary mode of
dissemination of mathematical research. Thus this combination of these two
forms. The article came in response to what Picard had written in his “Lec-
tures on Mathematics” given at the Decennial Celebration at Clark University,
Picard [1899]. In this grand review Picard mentions the importance, in the
development of the understanding of functions, of Weierstrass’ example of a
continuous nowhere differentiable function, and of Weierstrass’ theorem on the
representation of every continuous function on a finite interval as an absolutely
and uniformly convergent series of polynomials. Picard then goes on to mention
his own proof and that of Volterra [1897]. Mittag-Leffler [1900] points out that
Weierstrass’ theorem also follows from work of Runge [1885, 1885/86] although,
as he notes, it is not explicitly contained anywhere in either of these two pa-
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pers. He then explains his own proof, to which we shall return later. How
did Mittag-Lefller know about Weierstrass’ theorem following from the work of
Runge? Firstly, Mittag-Leffler was the editor of Acta Mathematica and, as he
writes, he was the one who published Runge’s paper. (Mittag-Leffler founded
Acta Mathematica in 1882 and was its editor for 45 years.) Moreover in the
paper of Mittag-Leffler [1900] there is a very interesting long footnote which
seems to have been somewhat overlooked. It starts as follows: I found on this
subject among my papers an article of Phragmén, from the year 1886, which
goes thus. What follows is two pages where Phragmén (who was 23 years old
at the time) explains how Weierstrass’ theorem can follow from Runge’s work,
Phragmén’s simplification thereof, and also how to get from this the Weierstrass
theorem on the density of trigonometric polynomials in C|[0, 27| (with some not
insignificant additional work). Before we explain this in detail, let us start with
the general idea behind these various proofs.

Let f € C[0,1]. Since f is continuous on a closed interval, it is also uni-
formly continuous thereon. As Lerch and Volterra pointed out, it is thus possible
to find a polygonal line g (which today we might also call a spline of degree 1
with simple knots) that approximates f uniformly to within any given ¢ > 0,
i.e., for which

|f(z) —g(x)] <e,

for all « € [0,1]. This polygonal line is the first idea in these proofs. The second
idea is to show that there is an arbitrarily good polynomial approximant to
the relatively “simpler” g. This will then suffice to prove that we can find a
polynomial that approximates our original f arbitrarily well. The third and
more fundamental idea is to reduce the problem of finding a good polynomial
approximant to g (which depends upon f) to that of finding a good polynomial
approximant to one and only one function, independent of f. Each of Runge,
Mittag-Leffler and Lebesgue do this in a different way.

Runge/Phragmén. We first fix some notation. Let 0 = 29 < 1 < -+ <
Zm = 1 be the abscissae (knots) of the polygonal line g. There are various ways
of writing g. One elementary way is:

m—1

9(@) = g1(2) + Y g1 (2) — gi(@)] hlz — ;) (3.1)

i=1
where g; is the linear polynomial agreeing with g on [z;_1, ;] and

1, z>0
h(z){o <0

g; may be explicitly given as
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where y; = g(z;), j=0,1,...,m.
What Runge did in his 1885/86 paper is the following. He considered the
function

1
Pnlo) = T3
which has the property that
1, lz] <1
lim ¢,(x) =4 1/2, |z|=1.
e 0, |z] > 1

Set () =1 — ¢ (1 4+ x). Then restricted to [—1, 1] we have

1, O<ax<l1

lim wn(x):{l/Q7 =0
e 0, ~1<z<0

Since each 1, is increasing on [—1, 1], and 41 (z) > ¥, (x) for « € (0, 1], while
Yny1(x) < Yp(x) for z € (—1,0), it follows that given any § > 0, small, the
functions 1, are bounded on [—1, 1] and uniformly converge to the function h
on [—1,—=46] ][4, 1] for any given §.

Since the linear polynomial g;11 — g; vanishes at x;, a short calculation
verifies that for each x; € (0,1)

[9i1(2) = gi(@)] Yn(z — i)

uniformly converges to

[9i+1(2) — gi(2)] W — )

on [0,1]. Replacing the h in (3.1) by 1, we obtain a series of functions which
uniformly approximate g.
These functions

m—1

Uo(z) = g1(2) + Y [gi1(x) — gi(@)] ¥n(z — 24)

i=1

are not polynomials or entire functions. But they are rational functions. Thus
any continuous function on a finite real interval can be uniformly approximated
by rational functions. This is the main result of Runge [1885/86]. It was
published the same year as Weierstrass’ paper.

Runge also discussed what could be said in the case of continuous functions
on all of IR. In that context he noted that from one of his results in Runge
[1885] one could always replace ¥, by another rational function, real on IR,
with exactly two conjugate poles.
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Phragmén in the above-mentioned footnote in Mittag-Leffler [1900] (but
according to Mittag-Leffler written in 1886), remarks that apparently Runge
overlooked in Runge [1885/86] (or did not think important) the fact that he
could replace rational functions by polynomials. Runge quite explicitly had the
tools to do this from Runge [1885].

What is the relevant result from Runge [1885]7 It is the following, which we
state in an elementary form. Assume D is a compact set and C'\ D is connected.
Let R be a rational function with poles outside D. Then given any point w €
C\D there are rational functions, with only the one pole w, that approximate
R arbitrarily well on D. This is not a difficult result to prove. Here, essentially,
is Runge’s proof. The rational function R can be decomposed as R = Z?Zl R;
where each R; is a rational function with only one pole w;. We now show how
to move each w; to w in a series of finite steps. For each j we choose ag, ..., Gm,
where ap = w; and a,, = w, and the a; are chosen so that

|0,,L',176L1'|<|Z*ai|, ’l:il,...,m

for all z € D. This can be done. At each stage we will construct a rational func-
tion G; (Go = R;) with only the simple pole a;, and such that G; is arbitrarily
close to G;_1. This follows from the fact that for given & € IN the function
1
(Z — ai_1)k

can be arbitrarily well approximated on D by

[(2 —tz‘—l) [1 N <azzl_a:“>n” k

by taking n sufficiently large. Note that the latter is a rational function with a
pole only at a;. Runge further noted that by a linear fractional transformation
(and a bit of care) the pole could be shifted to oo, whence the rational func-
tion becomes a polynomial. As Phragmén points out, if the function f to be
approximated on [0, 1] is real, we can replace the polynomial approximant G
obtained above by Re G on [0, 1] which is also a polynomial and which better
approximates f thereon. Thus Weierstrass’ theorem is proved.

Phragmén also notes that it is really not necessary to use the results of
Runge [1885]. If we go back to Runge [1885/86] and consider his construction
therein, we see that each of the rational approximants are real on [0, 1], and
have denominator 1+ (1+ z)?" for some n. Any such R may be decomposed as

R=g+ri+re

where ¢ is a polynomial, r; is a rational function, all of whose poles lie in the
upper half-plane, and r3(z) = r1(Z) is a rational function, all of whose poles
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are conjugate to the poles of 1 and lie in the lower half-plane. It is possible to
choose a point z7 in the lower half plane such that there exists a circle centered
at z1 containing [0, 1], but not containing any poles of r;. As such the Taylor
series of r; about z; converges uniformly to 71 in [0, 1]. Truncate it to obtain
a polynomial p; that approximates r; arbitrarily well on [0, 1]. It follows that
p2(z) = p1(Z) has the corresponding property with respect to r2. As such

P=g+pi+p2

is a real polynomial that can be chosen to approximate f arbitrarily well.

Another simple option, not mentioned by Phragmén, is simply to use the
result of Runge [1885], to move the poles of any rational approximant away
from [0, 1] so that a circle can be put about [0, 1] which does not contain any
poles, and then use the truncated power series as above. Phragmén’s proof of
the density of trigonometric polynomials in C]0,27] is more complicated and
we will not present it here.

In any case, as we have seen, the algebraic Weierstrass theorem is a fairly
simple consequence of Runge’s [1885] and [1885/86] results. It is unfortunate
and somewhat astonishing that Runge did not think of it.

Lebesgue. Let us now give Lebesgue’s proof of Weierstrass’ theorem as found in
Lebesgue [1898]. This is one of the more elegant and cited proofs of Weierstrass’
theorem. It is interesting to note that this was Lebesgue’s first published paper.
He was, at the time of publication, a 23 year old student at the Ecole Normale
Supérieure. He obtained his doctorate in 1902.

A more “modern” form of writing the g of (3.1) is as a spline. That is,

m—1

glx) =ax+b+ Z cilr — )}

i=1

where

1 _J=x, =0
T+=%0, 2<0

and ax +b = g1(x). (This easily follows from the form (3.1). As g;y1(z) — gi(x)
is a linear polynomial that vanishes at x;, it is necessarily of the form ¢;(z — ;)
for some constant ¢;.) Since

2z} = |z| + 2z
the above form of g may also be rewritten as

m—1
g(x) = Az + B+ > Cilv — il (3.2)

=1
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for some real constants A, B, and C;.

Lebesgue [1898] considers the form (3.2) of g, and argues as follows. To ap-
proximate g arbitrarily well by a polynomial it suffices to be able to approximate
|z| arbitrarily well by a polynomial in [—1,1] (or in fact in any neighbourhood
of the origin). If for given n > 0 there exists a polynomial p satisfying

|z] = p(x)] <n
for all x € [—1, 1], then
|l = i = p(z — @) <n
for all z € [0,1] C [z; — 1,z; + 1] (since 0 < z; < 1). By a judicious choice of 7,

depending on the predetermined constants C; in (3.2), it then follows that

<eé

g(w) —

m—1
Axr+ B+ Z Cip(x—:ci)l

i=1

for all z € [0,1].
Thus our problem has been reduced to that of approximating just the one
function |z|. How can this be done? As Lebesgue explains, one can write

lz| = Va2 =y/1-(1-22)=V1—2z

where z = 1 —22, and then expand the above radical by the binomial formula to
obtain a power series in z = 1 — 22 which converges uniformly to |z| in [—1,1].
One finally just truncates the power series.

To be more explicit, we have

g ()

where

[\V][eV]

<1/2)%(%—1)--~<%—n+1)<—1)"‘1%% sl

n! n!

Thus -
(1-2)Y2=1- Zanz"
n=1

with a; = 1/2, and

(2n — 3)!

_ =2.3,...
22n=2pl(p — 1)’ " T

Ay —
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This power series converges absolutely and uniformly to (1 — 2z)*/? in |z| < 1.
It is easily checked that the radius of convergence of this power series is 1. An
application of Stirling’s formula shows that

e 1
so that the series also has the correct convergence properties for |z|] = 1. A

different proof of this same fact may be found in Todd [1961, p. 11]. This
finishes Lebesgue’s proof.

An alternative argument (see Ostrowski [1951, p. 168] or Feinerman, New-
man [1974, p. 5]) gets around the more delicate analysis at |z| = 1 by noting
that (1 — 2z)'/? may be uniformly approximated on [0, 1] by (1 — pz)"/? as p 1 1.
(In fact it is easily checked that for 0 < p < 1

(1= 22— (1= p2)? < (1 - p)*?

1/2

for all z € [0, 1].) Now the power series for (1 — pz)'/?, namely

(1= p2) 2= 1= anp"a",

n=1

is absolutely and uniformly convergent in |z| < p~! and thus in |z] < 1.
Bourbaki [1949, p. 55] (see also Dieudonné [1969, p. 137]) presents an in-
genious argument to obtain a sequence of polynomials which uniformly approx-
imate |z|. For t € [0, 1] define a sequence of polynomials recursively as follows.
Let po(t) =0 and
P (6) = pal) + 36— 2(0))

n =0,1,2,.... It is readily verified that for each fixed ¢t € [0,1], p,(¢) is an
increasing sequence bounded above by /. The former is a consequence of the
latter which is proven as follows. Assume 0 < p,(t) < v/t. Then

VE = puca() =VE — pat) — (¢ P2(0)

=(VE— pu)(1 ~ 5(VE+ pal0))
>0
since v/t + pn(t) < 2v/t <2 for t € [0,1]. Thus for each ¢ € [0,1]

lim_pn(t) = p(t)

n—oo

exists. Since p(t) is nonnegative and satisfies

plt) =p(t) — 5t~ p*(1)
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we have p(t) = v/t. The {p,} are real-valued continuous functions (polynomials)
which increase, and converge pointwise to a continuous function p. This implies
that the convergence is uniform (Dini’s theorem). Let q,(z) = p,(2?) for z €
[—1,1]. Then the polynomials {g,} converge uniformly to v22 = |z| on [—1,1].
A similar and equivalent proof may be found in Sz.-Nagy [1965, p. 77]. (Sz.-
Nagy attributes his procedure to C. Visser.)

Mittag-Leffler. The proof by Mittag-Leffler as given in Mittag-Leffler [1900]
is the following. He also considers the g as given in (3.1), and sets

X, (z) =1 — 21— 0+2)"

It is easily checked that

1, 0<zx<1

lim X, (z) = {O, =0

e -1, -1<z<0

Furthermore, since each X,, is increasing on [—1,1], and X,,11(x) > X, (z) for
x € (0,1], while Xpq1(x) < Xp(x) for x € (—1,0), it follows that given § > 0,
small, the function X,, uniformly converges to 1 on [d, 1] and to —1 on [—1, —4].

Thus the functions
X, +1

2

are bounded on [—1,1] and uniformly approximate the function h of (3.1) on
[—1, —d] U[4, 1] for any given . Furthermore the X,, and thus the h,, are entire
(analytic) functions.

As previously, since g;+1 — g; is a linear polynomial vanishing at x;, a short
calculation verifies that for each x; € (0,1)

b

[gi+1(2) — gi(2)] hn (2 — 2:)

uniformly converges to
[9i+1(2) — gi(x)] h(z — 24)

n [0,1]. Replacing the h in (3.1) by h,, we obtain a series of functions {H,}
that uniformly approximate g. Finally, since h,, is an entire function, each of
the functions H, is an entire function. As such they may be approximated arbi-
trarily well by a truncation of their power series. This again proves Weierstrass’
theorem.

Fejér. L. Fejér (1880-1959) was a student of H. A. Schwarz. What we will
report on here is taken from Fejér [1900] (he had just turned 20 when the
paper appeared). This fundamental paper formed the basis for Fejér’s doctoral
thesis obtained in 1902 from the University of Budapest. The paper contains
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what is today described as the “classic” theorem on Cesaro (C, 1) summability

of Fourier series. As we are interested in Weierstrass’ theorem, we will restrict

ourselves, a priori, to f € C[0, 2], and prove that the Cesaro sum of the Fourier

series of any such f converges uniformly to f. Note that this is the first proof

of Weierstrass’ theorem (in the trigonometric polynomial case) that actually

provides, by a linear process, a sequence of easily calculated approximants.
Let og(z) =1/2, and

1
om(z) = 5 + cosx + cos2x + -+ + cosmz

form=1,2,.... Set

A calculation shows that

Ghn (x)

) 2
1 1—cosnz 1 sm(ﬂ)
T 9n 1—cosz 2n '

Furthermore it is easily seen that

1 2w
— Gp(x)dz = 1.
T Jo
G, is a nonnegative kernel that integrates to 1 (and, as we shall show approaches
the Dirac-Delta function at 0 as n tends to infinity, i.e., convolution against G,
approaches the identity operator).
Assume f € C[0,2n]. Let

% —l—};akcoskzx—i—bksinkm

denote the Fourier series of f. Let so(z) = aog/2, and

ag

5 +Zakcoska:+bksink:x

k=1

$m ()

denote the partial sums of the Fourier series of f. The functions s,, do not
necessarily converge uniformly, or pointwise, to f as m — oo. This is a well-
known result of du Bois-Reymond [1876]. However let us now set

so(x) +- - +spafz) 1 °r
n o ™ 0

Sp(x) = fW)Gnly — z)dy.

Explicitly the S,, are given by

n—1
ao

Sp(x) = 5 + Z (1 - g) [ax cos kx + by, sin kx] .
k=1

Surprisingly, the S,, always converge uniformly to f.
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Theorem 5. For each f € C [0, 27], the trigonometric polynomials S,, converge
uniformly to f asn — oo.
Proof: From the above

1 27 1 27

Sn(z):; | f(y)Gn(y—x)dy:% 0 ) 1 —cos(y — )

1—cosn(y — x) 4
I .

Since f € C [0,27], f may be considered to be uniformly continuous on all of
IR. Thus given € > 0 there exists a 6 > 0 such that if |z — y| < J, then

€
7@~ F)l < =
In what follows we assume § < 7/2.

Since G,, integrates to 1 we have

Sula) — fla) = - / 1) — F@)Cnly — 2)dy

™

1 1
= — /ly_z|<§[f(y) 7f(x)]Gn(y7‘T) dy+ - /5Sy_wgﬂ.[f(y) ff(x)]Gn(y—x) dy

™ ™

We estimate each of the above two integrals.
On |y — | < § we have |f(z) — f(y)| < §. Thus

1

2] swiea -] < 52

€
< ——/ Gn(y—2x)dy
27 Jiy—zl<s

™

el [T
—— Gply—x)dy = -.
o /0 n(y —x)dy B
We have here used the crucial fact that G,, is nonnegative and integrates to 1
over any interval of length 27.

From the explicit form of G,, and the inequality |f(y) — f(z)| < 2||f|| we
have

1

‘/5<| W) = @Gty ) dy < 20111l 1—cosn(y — z)

< dy.
2nm Js<|y—zj<n 1—cos(y —x)

™

Now |1 — cosn(y — z)| <2, while on 0 < |y — x| < 7 we have 1 — cos(y — z) >
1 —cosd. Thus

1

‘/5<||< () — F@NGaly -z dy| < D _2_or A1/

< —_
~ 2nm 1 —cosd n(1 — cosd)

™
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For n sufficiently large
Wi e
n(l —cosd) 2
Thus for such n

[Sn(z) = fz)] <e. O

Applying the method of the (second) proof of Proposition 3 to the above we
see that to each f € C[—1, 1] we may obtain a sequence of algebraic polynomials

pul@) = % +:§ (1 - %) ar T (z)

where

2 [t T
ap = —/ 7‘“@ k(@) dz,
T™J_1 VvV1-— x2
k =0,1,.... These explicitly defined p,, (each of degree at most n—1) uniformly
approximate f.

Lerch II. The paper Lerch [1903] contains yet another proof of the density of
algebraic polynomials in C[0,1]. In his previous proof, in Lerch [1892], Lerch
had used general properties of Fourier series to prove the Weierstrass theorem
for algebraic polynomials. His proof here is different in that while the same
general scheme is used, he only needs to consider the Fourier series of two
specific functions, and their properties. In this sense it is more elementary than
his previous proof.

We recall from Lerch [1892] that it suffices to be able to arbitrarily ap-
proximate the polygonal line g as given in (3.1). Lerch rewrites (3.1) in the
form

m
gl@) = ti(x)
i=1
where
0, T < Ti-1
bi(z) = { yi-1+ (ﬁﬁ) (Yi —yi-1), Tic1 <z <m;
07 iz S x

(when defining ¢,, we should, for precision, define it to equal y,, at x,, = 1).
As we mentioned, Lerch bases his proof on quite explicit Fourier series. It
is well known and easily checked that

1 >, sin 2nwx
——x = _— 0 1 3.3
5~ % n§:1 — <xz<l, (3.3)
while
1 . cos 2nwx
2 _ E

n=1
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There is a problem with the convergence of the Fourier series in (3.3). This
series converges uniformly to 1/2 — z on any [a,b], 0 < a < b < 1, but does not
converge uniformly in any neighbourhood of x = 0 or z = 1. (In fact its value
at x = 0 and z = 1 is 0.) However the series in (3.4) does converge absolutely
and uniformly to the given function on all of [0,1]. It is also readily checked,
using the 1-periodicity of the Fourier series, that the function

1 > g1 sin2nm(x — z_1) — y; sin 2nmw(x — x;
(@i —2im1)(Yi + yia Z = ( : ;w)r : ( )

n=1

1 (yi —yi-1) i cos2nm(x — wi—1) — cos2nm(x — x;)

2 (x; —xi—1) — n2m2

is the Fourier series of ¢; and that there is uniform convergence of this series to
¢; on any compact subset of [0, 1] not containing z;_1 and ;.

Thus
1 & 2\ Yo sin 27wz — Yy, sin 2n7w(z — 1)
2;($z szl)(szFyzfl)WL; o

m oo
Z — Yi-1) Z cos2nm(x — x;—1) — cos 2nw(x — ;)
— X)) & n2m2

[\3|H

=1

is the Fourier series of g. Note that this series converges uniformly to g also at
Z1,...,Tm—1. There remains the problem of convergence at zo = 0 and z,,, = 1.
(However if g € 5[0, 1], i.e., g is 1-periodic, then yo = y.,, and the problematic
term has disappeared. In this case, we have constructed the Fourier series of g
which converges absolutely and uniformly to g on [0, 1]. Truncate this Fourier
series to obtain a trigonometric polynomial which approximates g arbitrarily
well. This proves the density of trigonometric polynomials.) If yo # 9., then
we may, as does Lerch, again apply (3.3) to obtain

1 1
5 Z(ﬂﬁz —xi—1)(Yi + Yi-1) + (Yo — ym)(§ — )
1 — —¥ii1) s= cos2n7(x — x;_1) — cos 2nm(x — x;)

(Alternatively, just shift g by a polynomial so that the new g satisfies g(0) =
g(1).) This series converges absolutely and uniformly to g on all of [0, 1]. Trun-
cating this infinite series we obtain an entire function (trigonometric polyno-
mial) that approximates g arbitrarily well. We now appropriately truncate the
power series of this entire function to obtain the desired algebraic polynomial.
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Unfortunately there is no indication, in Lerch [1903], that he was aware
of any of the other published proofs of the Weierstrass theorem. A careful
reading of this proof shows that it is essentially a quasi-constructive version of
Lebesgue’s proof.

Landau. The proof of E. Landau (1877-1938) in Landau [1908] follows the
tradition of the proofs of Weierstrass, Picard and Fejér in that the essential
underlying mechanism in his proof is a singular integral. However it is more
direct than the former two in its judicious choice of the kernel. Let f € C|a, b
where, without loss of generality, it will be assumed that 0 < a < b < 1. Extend
f to be a continuous function on all of [0, 1].
Define )
kn = / (1 —u?)"du

-1

and set
pala) = - / £ [1— (@ — %" dy.

Note that p,, is a polynomial of degree at most 2n in z. What Landau proves
is that the sequence of polynomials {p,} converge uniformly to f on [a,b].
Landau’s sequence of polynomial approximants differ from those of the previous
proofs (except for Fejér’s proof) in that they are explicitly given, and in that
they are obtained via a linear method.

We first present Landau’s original proof. In this proof we will use the
following estimates. For every 0 < § < 1,

/6<| <1(1—u2)"du§/ (1—8%)"du < 2(1 —5%)".

§<ul<1

Similarly

1 1 n
kn = / (1 —u?)" du > / (1 —u?)"du > / (1 - —> du
-1 lul<1/v/n lu|<1/v/n n

Thus B
i/ (1u2)"dugﬁ(152)”<11> :
6<]ul<1

n n

Note that for every fixed 6 € (0,1) we have

lim /n(1—46%)" (1 - %)_n = 0.

n—oo
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Now choose € > 0. Since f is uniformly continuous on [0, 1] there exists a
d > 0 such that if z,y € [0, 1] satisfies | — y| < J, then

[f(z) = fy)| < /3.

Assume 0 < 6 < min{a,1 — b}. Choose N so that for all n > N
2\n 1 "
2 fIvaa - (1--) <</
For every x € [a, b],

pala) = Fl)| = |- / F@) 1 - (& — )% dy - f(2)

<L If(y)—f(w)l[1—(56—9)2]"dy+|f(af)|‘1—ki/0 [1—(36—9)2]”@’-

o kn 0 n
We bound the integral

= [ 1 = @ = @ 2" ay

by considering separately integration over {y : |z — y| < §} and over {y : § <
|z =y} for y € [0,1].

Now )
T fy) = f@)|[1- (@ —y)?]" dy
n Jlz—y|<s
< %ki oyt [1-(z—y)?]" dy < %
n T—y
Furthermore
! Vi .
o Joctecs 1f(y) = f@)] [1= (& —y)?] dygf/&u'g[l_u] du
<afvaa -2y (1-1) <
Finally
1 ! "
- [ - 0
1 1—x
S% /1 [1—u2]"du—/_ [1—u2]"du.
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Since z € [a,b] and 6 < min{a, 1 — b}, we have

/_11[1 W du— /_1;[1 — " du

< IFIvA(1 - 82" (1 -

[ ||/ 5
—_— 1 —w?"du
kn 6§|u\§1[ ]

)n < /3.

LAY

<
kn -

SRS

This proves the result. O

For completeness and as a matter of interest, it easily follows from integra-
tion by parts that

1 22n+1(n!)2
= [ [1—u’"du="——.
ky [1[ u]™ du Gt 1)

Applying Stirling’s formula it may be shown that

lim nk, = /7.

n—oo

The following is a variation on and simplification of Landau’s proof. It
is due to Jackson [1934]. As above, assume f € Cla,b] with 0 < a < b < 1.
Extend f to be a continuous function on all of IR which also vanishes identically
off [0,1]. This latter fact, together with a change of variable argument, gives

pale) =i [ f@ 1= =0
:é[lf(z+u)(1fu2)"du

and thus we get the simpler

Let € and ¢ be as above. For |u] > §, we have

[f(@+u) = fl@)] <2|f] <

)

2 fllu?
52

while for |u| < § we have

[f(x+u) = f(z)

AN
C,O'I L)
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Thus ) )
)~ (@) < 5 + 2L

for all z,u € [0, 1]. Substituting it follows that

1! 12| f|lu?
Ipn() — f(2)] < H/flg(l_“%"dﬁa/ﬂ U2 ) g

e | 2Ifll ! 2 2
=-4 270 1 —u?)" du.
3+52kn _lu( u?)" du

Set L
Jn = / u?(1 —u?)" du.
-1
Integration by parts yields
i = —u(l —u?)"tt ‘1 N /1 (1 —u?)ntt du — knt1 '
2(n+1) -1 _1 2(n+1) 2(n+1)

Since (1 —u?) <1 on [—~1,1] we also have k, 1 < k,,. Thus

ok
= omr1)

Substituting we obtain

£ Il
Ipn(z) — f(2)] < 3t Pt 1)

We now choose n sufficiently large so that

pn(z) — f2)] <€

for all 2 € [0,1] and thus on [a, b].
For much more concerning the “Landau” polynomials, see Butzer, Stark
[1986], and the many references therein.

A few months after the appearance of Landau [1908], Lebesgue “responded”
with Lebesgue [1908] which appeared in the same journal and is an “extract from
a letter addressed to E. Landau”. Despite Lebesgue’s flowery opening Je me
félicite de m’etre rencontré avec vous sur un point particulier ..., Lebesgue then
goes on to inform Landau that he actually had the same proof for more than
two years, but his manuscript was not yet ready (he is probably referring to his
treatise Lebesgue [1909]). But since Landau did publish, then Lebesgue feels
called upon to tell Landau (and the world) about some of his reflections on this
matter. Aside from the entertainment value of this exchange between two stars,
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Lebesgue does make two valid points. The first has less to do with Landau’s
particular proof than with the proofs of Weierstrass, Picard, Fejér, and Lan-
dau. Lebesgue notes that these proofs can and should be considered within the
general context of integral convolutions with sequences of non-negative kernels,
where the convolution approaches the identity. This was subsequently elabo-
rated upon in Lebesgue [1909]. Furthermore in the latter half of this short paper
Lebesgue goes on to ask questions about the order of approximation. This is a
clear indication that the subject is evolving.

De la Vallée Poussin. The treatise de la Vallée Poussin [1908] also contains
a proof of Weierstrass’ theorem using this exact same integral. In fact Ch. J. de
la Vallée Poussin (1866-1962) devotes over 30 pages of his paper to a study of
its various approximation properties (and not only the question of density). A
footnote on p. 197 therein states that de la Vallée Poussin was made aware of
Landau’s paper only while editing his own paper. (Landau’s paper appeared in
January of 1908.) So it seems that three outstanding mathematicians almost
simultaneously discovered this method of proving Weierstrass’ theorem. As
Landau states, this integral had in fact already been introduced by Stieltjes in
a letter to Hermite dated September 12, 1893 (see Baillaud, Bourget [1905]).

In addition, de la Vallée Poussin introduced, in the second half of de la
Vallée Poussin [1908], what he regarded as the periodic analogues of the Landau
polynomials. These are

o [0l (152)]

o= o (O a0= 5220

I, is a trigonometric polynomial of degree at most n. The proof of the fact
that the I,, uniformly converge to f for f € C[—m,n] is very similar to the
proof of the analogous result for the Landau polynomials. We will not repeat
the proof here. For more concerning this proof, this paper, and de la Vallée
Poussin’s other contributions to approximation theory, we recommend Butzer,
Nessel [1993].

Bernstein. What we will arbitrarily call the last of the early proofs of the
Weierstrass theorems is due to S. N. Bernstein (1880-1968) and appeared in
Bernstein [1912/13]. (The thesis advisor of Bernstein’s first doctorate was Pi-
card.) This paper is reproduced in Stark [1981]. A translation into Russian
appears in his somewhat more accessible collected works. This proof is very dif-
ferent from the previous proofs, and has had a profound impact in various areas.
It is here that Bernstein introduces what we today call Bernstein polynomials.
The Bernstein polynomial of f € C[0,1] is defined by

B (z) = mz:f (%) (ZL) Z™(1 — )",

where
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Bernstein demonstrates, using probabilistic ideas, that the B, converge uni-
formly to f on [0,1]. The proof of this fact, as generally given today, is slightly
different from Bernstein’s original proof and has the added advantage of provid-
ing “error estimates”. We will here present Bernstein’s original proof, although
it is somewhat overinvolved.

Since f € C[0,1], given £ > 0 there exists a 6 > 0 such that

|z —y| <o

implies
@) =)l <5
for all z,y € [0, 1]. Set
f(x) =max{f(y):y € [z — 6,2+ N[0,1]}
and
f(x) =min{f(y) :y € [x — 0,2+ 0] N[0, 1]}.
Thus for each z € [0,1]
0< f2) = flz) <

and

For fixed § > 0 as above, set
n m n—m
() = Z <m)x (1—2x) .
{m:|z—(m/n)|>5}
From the decomposition

B = 30 () (1) -y

m=0

- () (P)ma e

m
{m:|z—(m/n)|<8}

3

S @ ()

{m:lz—(m/n)|>5}

it easily follows that

J@L = na(@)] = [l (2) < Bu(z) < F@)[1 = na(@)] + [1f 190 (2).
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Bernstein then states that according to Bernoulli’s theorem there exists an N
such that for all n > N and all = € [0,1] we have

g
N (z) < m

Thus as a consequence of

f(@) + [ (@) = f@)] = @) f]] + f(2)] < Bn(z)

and
By (z) < f(z) + [f(z) — f()] + nn (@) 1| = f(2)],
we obtain
5 € 5 €
f(x) - 3~ mQHfH < Byp(z) < f(x) + 5T MQHJ"H,

which gives
[ Bn(z) — f(2)| < e
for all z € [0,1].
For completeness we now verify Bernstein’s statement regarding n,(z).

(For a probabilistic explanation of this quantity and estimate, see e. g. Lev-
asseur [1984].) To this end confirm that

$° (M)t o

|
—

m=0
and
n 2 1—
m—0 n m n
Then
( — n m 1 n—m
nn(T) = m ™ (1 —x)
{m:|z—(m/n)|>8}

x2—2x~x+x2+x

(1—=2)
02 n }
(1 —x)
né2
1

= 4ndé?’
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for all z € [0,1]. Thus for each fixed § > 0 we can in fact choose N such that
for all n > N and all z € [0, 1]

g
nn(z) < m

This ends Bernstein’s proof.

Bernstein’s proof is beautiful and elegant! It constructs in a simple, linear
(but unexpected) manner a sequence of approximating polynomials depending
explicitly on the values of f at rational points. No further information regarding
f is used. This was not the first attempt to find a proof of the Weierstrass the-
orem using a suitable partition of unity. In Borel [1905, p. 79-82], which seems
to have been the first textbook devoted mainly to approximation theory, we find
the following formula for constructing a sequence of polynomials approximating
every f € C[0,1].

E. Borel (1871-1956) proved that the sequence of polynomials

pale) = Y f () dnm(@)
m=0

uniformly approximates f where the gy, ., are fixed polynomials independent of
f. His gy, are constructed as follows. Set

0 2>
gum(@) = { na—(m—1), mLLg<'m
—nz + (m + 1), %gxg—m:q.

Note that the g, are non-negative, sum to 1, and g, ,(m/n) = 1. Let (by
the Weierstrass theorem) ¢y, be any polynomial satisfying

1
|gn,m($) - QH,m(x)l < )

for all x € [0,1]. It is now not difficult to verify that the p, do approximate
f. However the Bernstein polynomials are so much more satisfying in so many
ways.

Kuhn’s Proof. There are many elegant and simple proofs of Weierstrass’
theorem. But perhaps the most elementary proof (of which we are aware) is the
following due to Kuhn [1964]. Kuhn’s proof uses one basic inequality, namely
Bernoulli’s inequality

(14+h)" >14+nh

which is valid for h > —1 and n € IV.
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We present Kuhn’s proof except that we save a step by recalling (see (3.1))
that we need only approximate continuous polygonal lines which we can write
as

m—1
9(z) = g1(x) + D [gin1 (@) — gi(@)]h(z — 2:)
i=1
where the 0 = zg < 21 < -+ < ,, = 1 are the abscissae of the polygonal line
g, each g; is linear, g;11 — g; vanishes at x;, and

1, >0
M@_{Q z<0"
This form was used in the proofs of Runge/Phragmén, of Mittag-Leffler and of
Lebesgue. In fact, in the first two of these proofs it was noted that it suffices
to find a sequence of polynomials bounded on [—1,1] and approximating h
uniformly on [—1,—d] U [, 1], for any given § > 0.
Kuhn simply writes down such a sequence of polynomials, namely

= (52)]"

(Note that the polynomials {x[2p,(z) — 1]} uniformly converge to |z| on [—1, 1].
See Lebesgue’s proof.)
It is more convenient to consider the simpler

gn(x) = (1—2")",
which is just a shift and rescale of p,,. On [0, 1] the ¢,, are decreasing and satisfy

gn(0) =1, gn(1) = 0. The requisite facts concerning the p,, therefore reduce to
showing

lim g,(z) =

n—oo

1, 0<z<1/2
0, 1/2<z<1"

Let « € [0,1/2). Then from Bernoulli’s inequality
1> qn(x)=(1- x")Qn >1—(2x)™
Since 0 < 2z < 1, we have
lim g, (z) = 1.

Let « € (1/2,1). Then using Bernoulli’s inequality we obtain

1 1 an Y 22)" .
e (i) 2o
and thus
1
0 < gn(z) < Ga)
As 2z > 1, it follows that
nh_}rrgo qn(z) = 0.

The monotonicity of the ¢, implies that this approximation is appropriately
uniform. This ends Kuhn’s proof.
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