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HADAMARD’'SFUNDAMENTAL SOLUTION AND
MULTIPLE-CHARACTERISTIC PROBLEMST

Abstract. In this work, Hadamard’s construction of fundamental sohs for lin-
ear holomorphic PDE is generalized to a rather broad clabsezr holomorphic
PDE. In the case of simple-characteristics, solutions ywélynomial singularity
along the characteristic conoid are constructed whichamngalose to Hadamard’s
fundamental solution. In the case of multi-characterstolutions with exponen-
tial singularity are obtained. It is clear that Hadamard'scedure is just a kind
of asymptotic method; using this method and singular smhstimentioned above,
some new results for the propagation of singularities ase proved which are
essentially a generalization of Huygens’ Principle.

1. Introduction

Among Hadamard’s contributions to the theory of linear PBig, construction of fundamental
solution is very prominent and of basic importance. In aaBrsense, this contribution of his
summed vast progress in this area to his time, and was veaylcleresented in his classical
treatise: “Le Probléme de Cauchy” [1] and also in his postbus monograph: “La Théorie des
Equations aux Dérivées Partielles” [2], which was pui#i$ in China (1964) in accordance with
his will, hence little known in the West and is now a liter&uarity even in China. Hadamard
defined the fundamental solution (solution élementdind)e solutions with certain singularity
and tried to find them in the form of an asymptotic series

o
(1) T, y) = Y Un(x, kP T(p+h+1)
h=0

wherek = 0 is the equation for the characteristic conoid, &d, y) satisfies an important first
relation:

) A(x, g—:) — 4K,

where A(x, &) is the principal symbol of the 2nd order linear holomorphatjal differential
operator

n 2 n
a“u au
(3 LU=ijZ_laij (X)m-l—i_glh (X)a + c(x)u,
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gj (x) = aji (x), detg;j (x)) #0.
Hadamard’'s method is actually just the asymptotic methadelyiused among mathematical
physicists. (2) is just the eiconal equation. Hadamard pieneeded and obtained the transport
equations fotJ,, and the convergence of the series (1) was proved by standgadation meth-
ods.
Hadamard’s argument is variational: characteristic cdi®composed of bicharacteristics issu-
ing from the vertex, while the latter are geodesics in a @erteetric defined through the principal
symbol which is quadratic. This approach restricted himadial differential operators of 2nd
order only. But as early as H. Poincaré and E. Cartan, it was/h that Hamiltonian variational
principles are equivalent to the principle of integral ingats [3]; the latter principle is sympletic
in nature and thus can be used in a much broader field. J. Legayare of this, in the late 50’s
and early 60's, he published a series of important papersruhé general title “Probleme de
Cauchy” [4], which contains a generalization of (2) as

k
4 ky) = ——.
(4) g(x, kx) o1
Also, it should be mentioned, the 6th or the last of theseesetie., L. Garding, T. Kotake and J.
Leray [5] developed systematically the asymptotic apgndache Cauchy problem.

But there is another approach to the theory of fundamentatisns. The year 1930's saw
I. G. Petrowsky’s work on general PDE which started an algg@ometrical approach to the
theory of linear PDE with constant coefficients. Fourieplaze transform is the main tool, and
this is the beginning of the period when the theory of distiitms “dominated” this field. Fun-
damental solutions are now defined to be the solutions ofdhat®nL (u) = §. Ehrenpreis,
Hormander and Malgrange proved the existence of the fuedtahsolutions for general linear
PDE with constant coefficients. For general linear PDE wahable coefficients, Lewy's fa-
mous example showed the deep difference between the anahgdiC> frames. For the latter,
we have now the micro- local analysis, with the help of the ®<€dd the FIO, we can construct
parametrices, which are approximate fundamental solsitidmus there arises a problem: can
we also construct distributional fundamental solutionsgieneral linear PDE with variable co-
efficients and what are the relations between these two kihfimxdamental solutions? Another
problem is: Hadamard established his theory for normatédland hyperbolic equations, which
are all of principal type. Then, what can we say about theiplalcharacteristic problems? As
will be seen in what follows, Hadamard'’s theory is actualfuehsian theory, while PDE’s with
multiple-characteristics can be considered as an analbthedDE's with irregular singulari-
ties. For the latter, we have the arsenal of such things aasymptotic expansions in a sector,
the Borel-Laplace transforms etc. All these come from theoerntial growth of the solutions.
Thus the Gevrey classes and their dual, the ultra- distabst offer a natural frame for the
multiple-characteristic problems. For a very clear treaimsee [14], also see [15] for an up-to-
date survey with comprehensive literature. But can we assider Hadamard's theory from a
distributional point of view? It is the author’s aim to givartial answers to these problems. We
can prove that Hadamard'’s fundamental solution is only oo fa broad category of solutions
with definite singularity, and both approaches are closelgted and can be unified. But in the
present paper, we must restrict ourselves to first extena@idact’s approach to a class of linear
holomorphic PDE of higher order with simple characteristiand next construct for a class of
linear holomorphic PDE’s with multiple- characteristics@ution with exponential singularity
following Hadamard’s procedure, hence we call it the Had@nfizndamental solution, although
its relation with the distributional fundamental solutismot clear yet and will be treated later.

The plan of this paper is as follows. In part |, we considerdimeple- characteristic case
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where (4) is valid. In part Il, the simplest case of multiglearacteristic problem is considered
where (4) is not valid.

2. Part |. Simple-characteristic Problems

2.1. Notations

Let X be a domain in an analytic complex manifold with complex digien n, with local
coordinates for its elememt= (1, - - - , Xn). The complex projective spa@* = C"*1\0/ ~
(~ denotes dilation) is just the space of complex affine fumstidefined orX, and we denote

n
®) EX)=+E-X=(+) & X.
i=1

Let P(Xx, dx) be a linear holomorphic partial differential operator ofi@rm:

(6) PX,dx) = Y aa(0d*,

lee]<m

with principal symbol

™ Pm(x.&) = Y aa(x)&".
|a|=m
2.2. Characteristic conoid
Bicharacteristics strips faP(x, dx) are defined as orbits of the Hamiltonian system

dx _ 9Pm.8)

dt 84‘;: |t:0 =Y,

8) dé  9Pm(x. &) 3
a ——Tﬂtzo—'],
Pm(y.n) =0,

which give extremal curves for the action integral

W=/Zgidxi—Hdt.

In analytic dynamics, the HamiltoniaH is the total energy, i.e., the sum of kinectic energy
(quadratic irg) and potential energy, and in our casé should be replaced bipm(x, &) which

is homogeneous of degrem in & now. H. Poincaré and E. Cartan realized that Hamilton's
principle of least action is equivalent to the principle wfariance of energy-momentum form.
Thus in our case, we should add another equatiogto (8)

@ =
§olt=0 =10+

0
Xij X gy P §) = Pm(x.£).
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and for initial values we should assume
n

(n.y)=no+ Y niyi =0,
=

It is readily seen, the system (8), (9) has first integrals

Pm(X, §), (¢, %) + (1 — mtPm(X, §)
and also an invariant differential form
(10) o = (d&, X) + Pm(x, &) dt.

Actually, setw = 0 anddw = 0 as differential forms inlx, d¢ anddt, we could recover (8) and
(9), meaning that this system is the characteristic system find hencev is invariant form, of
(8) and (9) [3] (Chap. 5).

x-components of the system (8), i.e., the bicharacteristices inX, through a fixed point
y with Pm(y, n) = 0, # 0, form a surface witty as a conic point which is called the charac-
teristic conoid with vertex ay. We have

THEOREM1 (J. LERAY). The characteristic conoid can be written agxky) = 0 where
k(x, y) is holomorphic in x and y whejx — y| is small enough, and

k
11 P, ky) = ——
(11) m (X, Kx) ]
under the assumption
(12) Hess; Pm(y, n) # 0,

whenn # 0.

Proof. The following proof is reproduced from Leray [4] (paper |) evbn is assumed to be
complex and (12) holds wheRm(y, n) = 0. The solution to (8) wherPm(y, n) is arbitrary
gives a mapping
X =Y+ Pmg (X, §)t + 0o(1)
=y -+ Pym(y, mt + o(t)
(& = n — Pmx(X, §)t + o(t))

when|t| is small enough. Thus we may write
X=X(t,y,n),

(13) t.y.m
E§=¢&ty.n,

and prove immediately that
Dxat,y, m, ..., %n)
D(']l; ey nn)

which does not vanish fdr # 0 when HessPm(y, n) # 0 andn # 0. Thus we may replace
(t, X, y) by (t, n, y) andvice versa The invariance ofv (see (10)) gives

=t Hess Pm(y, n) +o(t),

(dé, x) = —Pm(x, §)dt + (dn, y)
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from which follows the relation:

n n
d(&, x) = —Pm(x, £)dt+ Y & dx — Y nidy,
i=1 i=1

(note thaty, n) = 0). Taking(t, X, y) as independent variables, we have

9
5(& X) = —Pm(X, &),
b
(14) o EX =6
|
K
aYi
SincePm(x, &) and (&, X) + (1 — m)t Pm(X, &) are first integrals,
Pm(X, &) = Pm(y.n),
(€, X) = (M —DtPm(y,n).

Substituting (15) into (14), we have

<‘$;:v X> =-n-
(15)

d
g(é, X) = (§,X)/(1—mt.
Thus there is a functiok(x, y) such that

(16) E(t 0, y).X(, 7, y)) = tEmK(X, y).

k(x, y) should be holomorphic i andy for x, y close enoughx = y corresponds td = 0
which is singular forg, x) as seen from (16).

From the second equation of (14), we have

a 1
(17) SI (%‘» X> =tim kX(X7 Y) s

substituting again into the first equation of (14), we have
m
d (&, x) tm-1
_— = = k
at("’&’x> (M-t m-1 *.y).
but
1 m_
Pm(X, &) = Pm(X, tT-mkx) = tT-m Pm(X, kx) ,
hence (11).

(11) shows thak(x, y) = 0 is characteristic. Now take into consideration tRaf{(y, n) =
0. If x = Xx(t, n, y) is a bicharacteristic curve through: X|i—g = Y, then, sincePm(x, &) is a
first integral,
K[x(t, n, ), YI = (M — 1) Pm[X(t, n, y), kx(X(t, 1, ¥), Y)]

_m_
= (M — Htm=1Pn[x(t, n, y), &, 1, y)]
— (M~ D1 P(y, ) = 0.
It means that the whole bicharacteristic curve lies on thiasak(x, y) = 0. Thus, it is easily

seenk(x, y) = 0is an equation for the characteristic conoid.
O
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In the proof above, the condition Hg3n(y,n) # 0 is very important. It excludes
multiple-characteristic problems from considerationtuadly, we have the following

LEmmA 1. If a(x, &) and hx, &) both vanish at a pointxg, &) and gracga(xo,go) is
parallel tograd:b(xo, £0), thenHesg [a(xo, £0)b(Xo, &0)] = O, here xe C", 0 # & € C".

Proof. Denote differentiation i§ by sub-indices. Since

[a(x, §)b(x, §)]ij = a(x, §)bjj (X, §) + & (X, £)bj (X, &)
+aj (X, £)bj (X, §) + ajj (x, £)b(X, &),

Hesg [a(x, §)b(x, )] can be written as a sum of 2leterminants and we may arrange them such
that every row is of either the following forms:

(ajby, aiby, ..., abn) = aj(by, by, ... . bn)
or

Since these vectors are parallel, each determinant cahtaiaarly dependent rows making this
determinant vanishing. Thus the lemma is proved.

|

Because of this lemma, arguments in this part are usuallglithfor partial differential
operator of the form
Pm(X, dx) = [a(X, 3x)]?

which is the simplest double-characteristic case, and dvbeltreated in part Il of this paper.

2.3. Characteristic projection

Now we discuss further propertiesiafx, y).
It is easy to see that the solutions of (8), (9) enjoy the foilhg homogeneity properties:

§©O ™, 0n,y) = 05 (t, 0, ),

(18)
X (01™t, 0n, y) = Xi (t, 1, Y) .

Hencet is a characteristic projection in Leray’s sense [4] (IV)t Se

(29) T=tm-1 0=r,
we have
gt n, ) =§&@ 1Y),
Xitny)=x(@1ny.
Thus, denoten = ¢, t&§ = m, we seex; (t, n, y) are actually functions; (1, ¢, y) of (¢, y),

i (t, n, y) are&j (1, ¢, y), both are holomorphic iz, y). Hence we write them hereafter simply
asx(¢,y), 7(¢,y). (16) and (17) now give

KX, y) = (£, ¥), X(£. ¥))

(20)
kx (X, Y) =i (5. Y)
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andk(x, y) is also holomorohic ifiZ, y).
The solutions of (8) now give

X =VYi+PmgX ) +...,

(21)
wi =& —TtPmx (X, ) +...,

“..." are terms of higher order. Hence, from the implicit funatitheorem, we have from the
second equation of (21),

§i =m +0(7).
Substitute it into the first equation of (21) gives

Xi =Yi + Pmg (Y. m) +0(x™).
Differentiate both side with respectig, we have
n am)|
Sj =) Pnit (¥, m) =~ + -
=1 X]

n
m—2 87'[|
— P 4.
Ty mil (0 £) 5+

I=1
n
=Y Pmil(y, kX)aj% 4o
=1 )
Thus,
n 92k
(22 > Pmij(x, kX)W =n+F@.y).

ij=1

whereF (¢, y) is holomorphic in(¢, y) andF (0, y) = 0. Henceforth, sub-indices always denote
differentiation in fiber variables.

2.4. Construction of Hadamard fundamental solution

Now we will look for a solution toPu = 0 whereP is defined in (6) in the form

(23) U, y) = Y UnkP™/T(p+h+1),
h=0

p andUp, are to be decided. Whereas (11) plays the role of eiconatiequave are to find the
transport equations. We proceed first to calcuRtgx, dx)UgkP/I'(p + 1). By generalized
Leibniz’s formula, we have

Pm(x, 3)UokP/ T'(p + 1) = UgPm(x, 3x)kP/T'(p+1)

(24) N 9Ug
+;umj(x, HKP/T(P+D) +-,
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where the dots stand for terms containing a factor of the fB,t(r@ (X, 3)kP/T(p+1), || > 2.
For the first term, a careful calculation gives

Pm(X, 3)kP/T(p+ 1) = Pm(X, k)kP™M/T(p—m+1)

(25) KPT™L r(p—m42) 4+

n 2
1 <k
+3 Z Prij (%, k) = —
i,j=1
Verification of this result, particularly the coefficie%ﬁn front of the second term is tedious.
But a general procedure would be given in Part I, showing &%) is correct.
For the second term in (24), noting that

Prj (X, 30kP/T(p+1) = Pmj(x, kokP™™ L/ T(p—m+2) + ..

1 .
andky = tm-1&, Ppj(x, §) = %X—J, we have

dx;
Z 2U°Pm,(x ax)kp/r(p+1)—tZaU° e KPR/ T(p — m+-2) + OKP™2).
—1 9%
=
Thus, using (22) and (11)

—-—m+1 n
Pm(X, 9x)UokP/T'(p+1) = I:pmi—l + 5

1
+ 5F@ Y JUgkP ™/ T(p—m+2)

+ t%kp’mﬂ/ T(p—m+2) + OKkP~M+2)
dUg p—-m+1 n
Sl e i
1
+ 5F (@ Y)Uo]kP™ Y/ T(p-m+2)
+ O(kp7m+2).
sincet$: = =Lt F(¢,y) = O(x), when we are to look for a boundéth, p must be so

chosen such that

p—-m+1 . . n_
(26) 2Jrﬁ_o, e, p=(1— m)( )

After pis decided, we come next to degmee- 1 (in dx) part of P(X, dx), i.e. Pm_1(X, dx). By
similar calculation as above, we have

Pm—1(X, 3x)UokP/T'(p+ 1) = UgPm_1(x, 3)kP/T'(p+ 1)

1 9%Ug _ ()
+ Zoa T P e 0 90KP/T(p+ 1)
o>

= UgPm_1(x, k)kP~™ /T (p—m+2)
+ o(kp—m+2)

= tPp_1(x. UokP™™ 1/ T(p —m 4 2)
+ O(KP~™M+2y
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Summing up, we have proved

THEOREM2. We have the following expansion

kp—m+1 [ 1 dyg
F(p—m+2) m—lt dr
n p-m+1
+(§+7m_1 +0(1)Uo
KP—m+2

+F(p—m+3)

P(x, 9x)UgkP/T(p+ 1) =

@7)
L2(Uo) + -

kP LmU
+ = )
rprp MY
where Lp, ..., Lm are linear holomorphic partial differential operators ofder 2,3,..., m
respectively. Thus for the existence of a boundgdag must take p= (1 —m) (% —1) and we
have the transport equation fordJ

dUg n p-m+1
28) rW+[(m—1)(5+ﬁ)+m(r)]uo_o.
We may take
T
(29) Ug = exp(/ A7) dr) .
0
The transport equations faly, are similar to (28) only withp + h to replaceh and a linear
form of Un_1, ... , Un_my1 and the derivatives df,_j up to orderj + 1 as the right hand
side:
dUp n
—_— h— 14 =(m-1 A U
30 = +[p+ M+14sm—1+r (r)] h

=L(Un-1,..., Uh—m+1) -
Settingp = (1 — m) (2 — 1) as in (26), we have the transport equationtgr
2

dy
(31) N+ TA@IUp = LWUn-1. . Unomid)
Its unique bounded solution is
Ug [° .L.h—l
(32) Up = —h s To L(Up-1,....Up_myr)dr.

The argument above fails whemis a negative integer when we should replace (23) by
u(x, y) = UgkP + -+ U_p_1k P~ + U_plogk + -
33 00
e +U—p+hk(h)+'~+Zthh/h!,
h=0

wherek™ is ah-th primitive ofk, i.e.,

Kk Kh 1
[ _K 1.1
K _/0 /Ologkdk h!(logk 1 h),

(h — fold integration .
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The transport equations faly, ... ,U_p_; are the same as (30), in the deduction of which we
should note that
kk®™ = (h 4+ DkMHD L kM +1/h 4 1)1,

while for Vi, we have

dv n
(34) rd—: n [h +5Mm-1+ rA(r)] Vi =U_pih+LVh 1, Vhomed) -

2.5. Convergence of the formal solution

For the convergence of (23) (that for (33) are quite simiiance omitted) we use the majorant
method as J. Hadamard did in [1].

Leto = 5 +n1+---+nn, 0 < a < 1. SinceUg is holomorphic in(z, n) we can find
0 <r < 1and constan®g > 0 such that
o
(35) Uo < Ao/(1-2).

Assume that folJq, ... , Up_1 itis already known that

o 2j+1
Uj <« MAj/(1-2)7,

then forUp we should first estimate (Up_1, ... , Uhn_m+1). Sincel contains derivatives of
Unh_j upto orderg + 1, we have
; . o 2h—2j+j+2
ur(]J_thl) <K MAR_j2h=2j+1)---(2h -2+ ] +1)/ (l— ;:)
o\ 2h+2
< MiZh@h+D(p+h)j_1An_j/ (1- =) .
Thus
K2h(2h + 1)
L(Uh_1, .-, Up_me1) < W [An—1+ (P+h—DA 2+
T
+(p+h—Dm-1)Ah—m+1] -
Hence K2h(2h + 1)
+
- = A h— DA .
Un < 0T D [An-1+(p+ )An—2 +
o\2h
+(P+h = D1 Ar-mea] /(1 7).
Mj=r2-1---(—j+1.
Setting
An=AK(p+h+D[An1+(P+h—DA_2+ -
+(P+h—Dm-1)Ah—m+1] -
2h(2h +1
A = sup @ +D .
h 4h+D(p+h+1)
We have

o< (1-2)”
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Since the power series
> ARkPHT(p+h+ 1)

converges fok| small enough, we know that the series (23) convergeskiosmall enough.
Summing up we have the main result of Part I.

THEOREM3. Let

P = Y a0 (5-)"

lee]<m

= Pm(X, 0x) + Pm_1(X, 0x) + - -~
=> aa(x)<§—x)a+ > 1aa(x)(§—x)a+..., m> 2

|a|=m o|=m—

be a linear holomorphic partial differential operator in athain X of a complex analytic man-
ifold, y € X a fixed point, and

Hess, Pm(y, n) # Ofor Pm(y,n) =0, n #0.
Then, there exists an Hadamard fundamental solution witasymptotic expansion
o
ux,y) =y UpkP™/r(p+h+1),
h=0

where p= (1 —m) (% - 1). k(x,y) = 0 is the equation of characteristic conoid, with k
holomorphic for x close enough to y satisfying

k
Pm(x, kx) = o1

When p is a negative integer, the expansion should be modsi¢si3).

2.6. Propagation of Singularities

The method above can also be applied to various problemsnfeairl holomorphic partial dif-
ferential operator, among them, propagation of singuéexit J. Leray, Y. Hadamard and C.
Wagschal considered in a series of papers [6], [7], [8] thedBg problem for

(36) P(x, dx)u = v(X),
where
37) v(x) = Fx)/[g00]*,

g(x) = 0 is a holomorphic hypersurface X which is not characteristic foP(x, dx). Their
main results go roughly as follows: the singularities of sleéutionu(x) propagate along char-
acteristics issuing from the singularities for the righbtiaside, i.e., points of the hypersurface
g(x) = 0. But wheng(x) = 0 is characteristic, the behavior of the solution is quitéedent.
Actually, we have
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THEOREMA4. If the right hand side of (36) is of the form
(39) P(x, dou = f(x)/[kx, y)I*,

wherel — A # 0,—1,—2,... and k(x, y) = 0 is the characteristic conoid with vertex at y.
Then there exists a solution of (38) of the form

o

(39) ux, y) = > Un(x Ik P T(p+h+1).
h=0

where

(40) p=m—i—1.

Proof. Using the procedure as above, we obtain the transport eguati Ug as

du n
Td—ro + [E(m -D-2+ rA(r)] Ug= f(X)Ir@-»x).
Denote 0
=—-(m-1 —
" 2(m )— A,
We have q
d—(Tﬂuo) + A(T)thUg = 10T @ — 1),
T

and

T T
(41) Ug = ‘L'i'u/ r“’lf(x)r‘(l — e fO A(S)dsdf )

0

Whenp < 0, the integral should be taken in the distributional sebigis bounded.
For the remainingJp,, h > 0, we have similar transport equations,

. dUp
dr
the unique bounded solution of which is

n
+|53M=D =2 =h+7A®|Un = LUh-1. . Uh-ma)

Ug [° .L.h—l
(42) Uh=— L(Up-1,....Up_myr)dr.
™ Jo Uo
After (39) is constructed as a formal solution, convergerarebe proved as before.
O
REMARK 1. When1- 1 =0, -1, -2, ..., further modification for (refc1.34) is needed

by adding terms containing ldg The details are omitted.

REMARK 2. The implication of this theorem is as follows. If anotheplrplane not
throughy is taken to be the initial hyperplane, its intersection vkitk, y) = 0 are new source
of singularties. According to results already known on tebavoir of solutions, singularities
would propagate along all bicharacteristics issuing fromintersection. But theorem 4 states
that they propagate only aloigx, y) = 0. This is analogous to the Huygens’ principle for the
wave equation. According to Huygens’ construction, supitfy, there would not only be a
wave front going forward, but also another wave front goiaghward. This apparent contradic-
tion was explained by Fresenel in terms of interferenceT8korem 4 claims similar results for
general partial differential operators.
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REMARK 3. Some new problems are also motivated by the procedureeabov instance,

if we introduce new variable&, ... , zn) with z; = k(X, y). OperatorP(x, dx) will have the
form

9 \m
(43) 2(55) +Q@

whereQ(z, 97) contains at mos@%)m_l. (43) is of Fuchsian type. In this sense Hadamard'’s
theory is also a preliminary Fuchsian theory.

But the transformation — z is singular atx = y. For the simplest case af = 2, takey = 0,
k(x, y) = k(x) is holomorphic ak = 0. Using Morse lemma, which is also valid in complex
holomorphic case (for a proof see e.g. [10]), we will arrive dolomorphic partial differential
operator with83—21 appearing in the principal part in the following form:

n
a d a
71— zj— | —.
(1821+j2_:2 JazJ-)azl

There is a critical point in its Hamiltonian field. A prelinary study is given in [11]. For more
general case, we must study corresponding uniformizatiobl@m.

3. Part I1. Multiple-characteristic Problems

3.1. Motivation

In this part, we are to modify the Hadamard’s procedure thaould be applicable to multiple-
characteristic problems. We are to consider only the sistglase when the principal symbol
Pm(x, &) is factorizable, more precisely, when

Pm(x, &) = [a(x, §)]2,

and to see where lie the main difficulties. For simplicity,assume(x, £) to be a homogeneous
polynoimal in& of orderm, such that the original operatd(x, dx) is of order 2n, thus the
principal symbol ofP(x, dx) is

(44) Pom(x. £) = [a(x, £)]%.
Here, as in Part |, we also assume
(45) Hessa(y, n) # 0, whena(y,n) =0, n #0.

We are to use the Hamiltonian system &K, &) instead of that foPym (X, £), namely, we are
to consider

dx _
a - af(xi S)! X|t:0 - y’
d

(46) d_i = —ax(X, &), Eli=o=n,
aly,n) =0.

Letk(x, y) = 0 be the characteristic conoid with respecatg, &), hence

1
(47) ax, k) = m|<.
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Then 1
Pom(X, kx) = ————Kk2.
2m (X, Kx) m_ 12

If we takez; = k(x, y) as a new independent variable, the equaRgr, dx)u = 0 becomes

,20Mu N A(X 3 )amflu N 0

17om , — m cee = s

321 0X 321

or

oM 1 (X a)am*%Jr _o

az)" zi " 9x 3ZT*1 '

This equation looks like an ordinary differential equatieith irregular singularity agz; = O.
For such equations as

?j_’f =t @AW, r=012...,
with irregular singularity at = 0, the solution can be of the form
r+1 )
w= exp[Z(a;t')}tp f(t)
i=1
(see e.g. [12], Chap. 5, Theorem 2.1). Thus we are motivatédd a solution of
(48) P(x,ox)u=0
in the following form:
(.¢]
(49) u = exp[A(X. y)/K(x. y)] (Z Uhkp+h) :
h=0

whereA(y, y) # 0. In constrast to Part I, now we should need eiconal equafmrbothA and
k. The latter is (47) while that foA is to be sought. Thus, we should have “eiconal system”.
Transport equations fddy, are also to be constructed.

For brevity in the sequel, we always use sub-indices to dedifferentiation with respect
to fibre variables such ds 7, etc., if applicable.

3.2. Notations

In the following we will use repeatly Euler's formula for hageneous function®(x, &) of
orderl:

1 n
PO,&) =T > 8, P D&,
i1:1
1 n
= =D 2 PO, =

I1,i2:]_
1 n
=0 D i, 8 POXEE iy G =

i1,i2,...,ir:1

(50)

= ai1~-~ai| P(ng)%—il-”&h'
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In these formulad,, ... , i| run dependently from 1 to. This form of P(x, &) is more conve-
nient for our purpose than the usual expression

1
(51) PO, &)= ) —0EP(X,£)E.

lee|=l "
Hence, we introduce a new notation
(52) D =8i, .8 ~ @Bipsoe s 8) ~ (1sen i),

heref = (i1,io,...,i)) is an ordered set dfelements from the sdf, 2, ..., n}. Elements
of B may coincide among themselves. 3f can be written as a certab?, we sayD? is a
permutation of0*, denoted a$ € o (), also|g| is defined to bdu|, actually|8| = cardg.

Corresponding to the addition of multi-index such asx = o’ + «”, henced® = 3% 3¢", we

have the partition of into two subset®8 = g’ U 8", B/ € o(@'), B” € o(a”) andDP =

DA DP”. So we also denotg = g + B”. Similarly, we define8’ = g \ B” to be deleting from
B the subseB” while keep the original order of elements g, and also writes” = g — g”.

Lastly, for multi-indexa = 0 and|a| = 0 meansx = (0, ..., 0), andd% = 30 = id. For 8,

|8l = 0 means8 = ¥ and alsoD? = id, hence we also use = 0 to denotes = @.

DEFINITION 1. When

(53) B=pr+...+pt=ptu...upL,
ﬁi # 0and elements iﬁi keep their original order irg, we say thatgl, ..., gb)is a partition
of B8, L the partition number. Denote; = card{g', |8'| = |}, i.e., the number of |-element-

subsets in (53)[A] = (A1, ..., A ) is called the partition type of (53).

We have an evident but important

LEMMA 2. For the numbers of subsets of various cardinality, we have
(54) 1- a1+ 20+ +1BIrg = IB]

From (54) we see)1 = |B| is possible {, = --- = A = 0), it meansp is partitioned
into the sum of 8] singleton subsets. But; = || — 1 is impossible. In fact, the partition type
of B is just a non-negative- integer solution of (54) as a Diopiharequation.

LEMMA 3. The number of partitions (53) (the order of the subsgitsis irrelevant) with
the same partition typpr] is mi/LI(1D 1 ... (mhAm |m| = |A].

Proof. First, construchq singleton-subsets. There are

my/ m-1 m—2g+1y _ (My
(1)( 1 )( 1 )_ml
different ways. Next for the first doubleton-subsets, westalarbitrary elements from the re-
mainingm— A, elements itm—211)2/2! ways. (The chosen elements should keep their original
order inB, thus there shouldn’t ben — 11)2 ways, which is the permutation number and hence

contains twice the same set with elements in opposite grd@itse second doubleton-subsets
can be chosen itm — 11 — 2)»/2! ways and so on. Summing up, the doubleton-subsets can be
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chosen inm— A1)2A2/(2!)*2 ways. After them— 1)- element subsets are chosen, there remain
m—[1-A1+2-Ap+---+(M—1)-Am_1] = Mim elements fom-element subsets, the number
of which isim. So they can be chosen(im)hm),\m/(m!)km ways. Thus we have
(M), (M =2Ap)2p, - (M—=[1-A1+ 242 +---+ (M= DAm_1Dmy,,
(Ah*1(2h*2.... (mh)rm
ways to generate a partition of typg][ But the permutation oL subsets in the partition is
irrelevant, hence the number of partitionsfofvith the same partition type\] is

m!
LI (mbrm

3.3. Lemmas on differentiation of composite functions

The computation below relies on differentiation of compe$iinctions. We are to use a modifi-
cation of the Faa-de Bruno formula [16] (p. 78, Exer. 16). Jdilftate the computation, we put
the technigues needed as three lemmas.

LEMMA 4. Let P(x, &£) be a homogeneous polynomial&rof degree I, then

1
PO, &)= D —OEP(X, £

laj=l

(55) )
=5 > D{Px.£D
" 1<i<n
Particularly, for P(x, &) = 3%, we have
1 B
(56) 3¢ = o > Dx.
Beo(a)
For DY, B € o (), we have
(57) Df = o

This lemma is quite trival. (57) shows thﬁl{? and 9y are the same when acting on a

function; (56) shows th&iy is the average OD)/?’S with 8 € o («); while (55) makes the Euler’s
formula for homogeneous function more symmetric.

Assumed (k) to be a smooth function d&f(x). By chain-rule 0 ® (k) = { linear combina-

i . 2
tion of &7 (k)dj k- - - ajljzk' Y

But to write down explicitly the coefficients is much easier Df than forag. In fact we
have

LEMMA 5. LetII(B) be the set of partitions ¢, then

(58) Diok = 3 oL DF k.- Dk,
1)

whereg = g1+ ... + gL.
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Proof. We proceed by induction. Fog| = 1, e.g.,Df = Dy, (58) becomes
Dy, ®(k) = 1 (k) Dy, k

which holds evidently. Suppose that the lemma holdggor= m — 1. For|8| = m, we may
assume thaID)’? =Dq Df/, |8’] = m— 1. Then the partitions g# may be one of two kinds. The
firstisg = L UUB2---UBY), B = (D1} andB2J---|J BL = B is a partition ofg’ with
partition number. — 1. The second kind are those not containing the singletbsetfiD1},
henceD; is contained in another subset, s@f" : DA* = D - Dfﬂ, 187 = |8'| — 1. Thus
Df = Dl(Df” sz e DQL) and the factoer” D)’?Z e D)’?L constitutes a partition de/ of

partition number alsd.. Ty(8) = {B21J---UBL} anda(8) = (8" UB2U---UBL)
exhaust all possible partitions gf. Hence, by induction hypothesis,

D{@(k) = Dy - [Df ®(K)]
=0y Y oDk DAk
n)
= 3 o+ DaDkDF k- Dk
M1(8)
+ Y oM k(D - DF)k--- DF K
M2(8")
3 oM (kDkD k- - DF K
M1(8)
+ Y oDy DKy DF K
M2(8)
= 3 oL DF kD k.. DF k.
1)

|

The generalized Leibniz’s formula fd@ also takes a simpler form, namely, we have

LEMMA 6 (LEIBNIZ'S FORMULA).
(59) DPuw= Y D u.DFu.

B=p1+p2

The binomial coefficients disappear hence make the calonlaasier. The proof is omitted
for its simplicity.
3.4. Computation of Pom(X, £)Ep (General plan)
In order to computd (X, dx)u whereu is expressed as (49), we proceed term by term and start

from P(x, 9x)EpUg, where Ep = exp[A/K] - kP. SinceP = Pom + Pom—1 + --- + Py
where Pom_j (X, &) is a homogeneous polynomial inof degree tn — j, we first compute
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Pom(X, dx) EpUg Which by Leibniz's formula can be written as

n
ou
(60) P2m(X, 8X)EpUO = UO PZm(X, ax)Ep + Z a%'l PZm(X, aX)Ep ’ 8XO + -
i=1 !

Thus our plan is, first, computBom(X, dx) Ep, then lower order term®&m_j (X, 9x) Ep and
furtherZin:1 g, Pom(X, 9x)Ep - %—LXJIO etc. Every term should be expressed as a series in powers
of k. It is to be verified, that the lowest order terms are of theeokd—4™ and k3—4M for
determingA(X, y), p andUg. We also denot®,y (X, &) by g(X, &) and note that the results are
applicable also td>m_j (x, &) when replacing by a lower degree polynoimal.

DenoteEp = ®(Kp), whered () = exp(-), kp = Ak—1 4 plogk. From Lemma 4,

1 p p
9. 30Ep = o D DgP(x.£) - DkEp. 5] =2m,
1<i<n
B = (i1,i2,...,iom) and thei’s take arbitrary value frongl, 2, ..., n). Using Lemma 5, we

have N .
D{Ep= Y oM kp)DP kp---DF kp,
)
and®(L) (kp) = @ (kp) sinced(-) = exp(-), hence

(61) DEEp=Ep Y DFkp---DF kp.

I(B)
For D' kp, for instance, foDﬂlkp

DA'kp = DF' (Ak"1) + pDF logk .
Apply Leibniz’s formula for the first term, we have
pfrakh= Y praprkl

Blepltyl

Apply Lemma 5 toD? 'k—1. 1 is partitioned ag't = 511 + - .. + 511, then

D7’k 1= ¥ oD k- Dk, () = ()7L
")
= Y (gD pt L piTi
(")
Hence
62 Dpfakh= 3 3 DAYk YDk Dk
Bl=nl+yin(yh
Similarly, apply lemma 5 to compuﬂéﬂl(log k), we have
63 DA ogk) = 3 (—11~1d; — k1D k. D3 k.
g 1
(Y
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In order to combine (62) and (63), consider the part of (62¢meh? = 0,i. e, g1 = y1, and
they can be combined into

A Y (—pu kD pac . pti
neh
and the sum of (62) and (63) gives
649 DFkp= Y 3 @A Dk D D,
Br=n'+yt(yh

(D" A)* denotesD”" A whenn® # 0 and(DOA)* = (A — pk/Iy).

Substuting these results into (61), and denote (I1,..., 1), I =1+ --- + 1, I} =
I4!---1L1, I; is the partition number of' = (§'1, ..., 511y, Re-numberingd?®*'k, . .., D3 k,
... asD%%, ..., D"k, N is the total partition number. Then by lemma 4,

_ P B 1% Lo
90X, d0Ep = 55 D DY) Y (DT A (DT A
(65) B 1(g)

(=ML poi. . Dk i8] = 2m.

I1(B) under the secony_ denotes3 twice partitioned8 = gL+ . 4+ 8L = Zil;l('?i +

leizléij ). If we write D# = Dj, Dj, - - - Dj,,_, (65) can be further simplified:

_ _Ep p Iy 1—(N+L) 1
90 B0Ep = o D Dpgtx H)(=DllItk (DT A
(66) 1<i<n
(0" A . D¥k... D"k,

To organize further computation, we proceed in the desogndider of the 2 partition
numbersL andN.

In the first partitiong = B+ 4L, all |ﬂi| > 0 hence
(67) L <1+ -+ =18l =2m.

In the second partilt_ionﬂi = ni + yi, eitheryi =0 andﬁi = ni, eitheryi # 0, yi =
sl ... 45l allsil 0, thus|s'| > 0and

L
(68) N <ot 4+ 18N+t 4+ b =) 18 =2m.
i=1

We should also take into consideration that
g(x, £) = Pam(x, £) = [a(x, )],
hence
Dig(x, §) = 2a(x, §)a (X, §) ,
DiDjg(x, &) = 2a(x, §)aij (X, §) + 23 (X, §)aj (X, §),
DiDj Dig(x, §) = 2a(x, §)ajj| (X, §)
+ 2[a (x, £)aji (x, §) + aj (X, £)aj| (X, &) + g (X, §)ajj (X, £)] .

(69)
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Sincea(x, ky) = % we have
k2
X, kx) = ———,
a(x, kx) m_12

2k

Dig(x, kx) = e (X, ki),
(70) m2|_<
Di Djg(x, kx) = i (% ki) + 2a; (X, kx)aj (X, kx) ,

2k
Di D} Dyg(x, kx) = ———aiji (X, ki) +2 & (X, k)aji (6 kx) .

Thus in thecoefficientf (66), there may appear powerslofip to k2.

3.5. Computation of Pom(X, 3x)Ep (cont’)

| First consider those terms in (66) where= 2m. By (67) all|ﬁi | =1, and sin(:qisi = ni +yi,
then eitherly'| = 1or|y'| = 0. Set{1,2,...,2m} = | [J J, I N J = @, such that foii € I,
ly'l = 1,1n'| = O hencell| = N; fori € J|y'| =0,|5'| = 1. In short, terms in (66)
corresponding th. = 2m are

E
a2 DLgx. &) Y (~DlMlik-(N+2m pdiy..
emt = 2

DN K(DT A .. (D" A

(I-A). N = 2m. From (68), this is the extreme case whenll= 0, |y'| = 1, thusy' = &',
and the partition numbef = 1, |I| = 2m, I! = 1, D%'k... D"k = Ki, - - - ki,,. By Eulers
formula, these terms can be summed up to give

E
Epg(x, kx)(A — pky?Mk M = ——B_ (A — ply2Mk2—4m

(m-1
2m m—1
71) _ Ep[ AT 2am 2mp A 3—4m
(m—1)2 (m—1)7?

+ o<k4*4m>] .
(I-B). N = 2m — 1. Delete any element froffiy, io, ... , iom} and let the remaining correspond
tosl, ..., sN. There are th such chooses and the following is one typical, thus we should
multiply the results by &1. Let {51, ..., 8N} ={ip,... .iomh thenly = - =lpm=1,11 =1,
I| = 2m — 1; also(D" A)* = 9, A, (DT°A)* = ... = (D" A)* = A— pk. By Euler's
formula,

1 1 N 1 1y —(Am—
G 3 Dgg(x,g)D‘s k---D% k(D" A)*(—1)2M-1g—(4m-1)
" |pl=2m

1 n
(A= PR = 2o 3 74 9(x. kg A1 @M DA - plo?m
i=1
2 d

_ i i —(4m-1) _ 2m-1
= 72m(m_1)§a,(x,kx)a,Ak (A— pky“™ L,
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Sinceky = t& and from (46)a (X, &) = %’% the final results for terms corresponding to
L=2m N=2m—-1is

2A2M-1 dA 2A2M=2 d A
72 Ep|— t— K2 L 2 o om— DpkTAM 4 oM | .
(72) p|: m-1 dt + m-—1 dt( )P + 0 )
(I-C). N = 2m — 2. Delete for instancéi, io} from {iq,io, ..., iom} and let the remaining
best, ..., 8N (3(2m); such chooses), theg = - = Iom = 1, I| = 2m -2, 1! = 1,

(DMAY* =9, A, (D2A)* =, A, all other(D" A)* = A — pk. Use also Euler’s formula and
multiply the results by% (2m)», the final result is

1 s _ _
SEp D iaip (X kdi, Adi, AKCTAM(A — ploM2
i1,io=1
|
=Ep[ D O kol Al A ATTAEA

(73) i1,ip=1
dA\2 om_2 2-4m dAy2 2m-3;,3—4m
+<ta) AZM-22—4m _ p(ta> (2m — 2) A2M—3k
+ 0(k4—4m)] .
(I-D). N = 2m — 3. A typical example is deletingiq,i5, i3} from {i1,io,...,iom} and let
(61, ..., sNY = i is, ..., iom}. A factor (23L,)3 should be added to the result and the final

result obtained would be

%Ep{ !

3 MZ Z [, (X, kx)a,ig (X, kx) + @, (X, Kx)@j,i4 (X, Kx)

i1,i2.i3
+ a5 (%, k)i, (X, K] 8y Adi, Adjg A(—1)2M—3A2M=3)3-4m
(74) +okt=m]

dA om-3, 3-4
=—Ep[2ail,i2(x, k) By A, A- - AP 33-4m

i1,iz

+ O(k4_4m)] )

Our computation would stop here. Since fdr< 2m — 4, k-(N+tL) = k44 and
hence omitted.

Summing up, wher. = 2m, we need to consider the cadéds= 2m, 2m — 1, 2n — 2 and
2m — 3 to obtain (71), (72), (73) and (74), giving an asymptotipansion ofPom(x, dx) Ep up
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to O(k#—4M) as

Epi-man 2( 8 - A’
—E k3’4mA2m’3[(2m — 2)p(t?j—tA - mi_l)z
(75) m2p1(tdd_f~ B %)A
+ <|§:2 aiy i (% Ke) ailAaizA)(t% - %)]

+ EpO(kA—4m) .

Il.L =2m— 1. From (67),

Y+ + 12 = 2m,
The only solution is: one oﬁ' say|ﬁ2m 1 =2and otherlﬂ | = 1. Atypical choice for the
Bisis gl = ij,j=1....2m-2, B2M=1 — (i5m_1,iom). There ar%(Zm)z similar choices,
so we must add a factc%(Zm)z to the results of all particular case.
(II -A). N = 2m. This case can be attained only when ﬂir— 77 + y setn = 0, and

yl=6, .., y2M2 = §2m-2 Hencel = (I4,....11) =(1,...,1,2),|I| =2m,I! = 2. The
terms in (66) arising from th|s pair of particulélc, N) are

2
( 2)2 p(2m)' > p? EGOGE) K- B K- (—1)2M. 2. —(4m=1)
1<i<n
(76) (A— pk)Zm — (2m)2Epg(x kx)k7(4m—1)(A_ pk)zm
= Ep | gk A 4 06 |

(11-B). N = 2m—1. Now, we have 2 possibilities for the first partition, onéhis same as above,
I =(,..., 1,2),|l| = 2m—1,1! = 2. In this case, roughly speaking, onelf (saydj) should
be acted o, giving dj A. Since there arerfl choices forD?, we obtain corresponding terms
in (66) as

(2m); B -
—am Ep(2 = >~ DEgx, £)diyk- - Gk
1<|<n
Bk - 3 A2 KETAM(A — p|<)2m—1
(77) n

= —(2m)2Ep Y ¢ 9(x, kx) k2 AM(A - ply?M—t
=
_ _ZéZm)zEp[ ?j?ks 4mp2m—1 4 (- 4m)]

(*/\” means wanting).
The second possibility is that= (1, 1,...,1) 2m—1 entries)|l| =2m-1,I! =1. The
first 2m — 2 D#' (in D' K) all act onk 1 and the lasDP" in DA k also acts ork—1 giving a
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second order derivature &f Thus we have

2
(2)2 p(Zm)l > DLax.£)d, - By k02 i, K (~D2ML 1

I2m—1l2m
1<i<n

) (A _ pk)2m71k2m74

p 2 2m—2,,3—4 4—4
+5 ng,,(x k)3 k- AZT2ETAM L EpO(K*TAM)

Since it holdsg;j (x, kx) = 2a(x, kx)ajj (X, kx) + 2aj (X, kx)aj (X, kx) = mz—l(laij (x, ky) +
2a; (X, kx)aj (X, kx), we have

—Ep Y& (X, ka)aj (X, ke)dF k AT L2 —4m
i

+ pEpZa,(X kx)aj (X, kx)82 AZM=23-AM L B O(kAAM)
i

But (22) in part | shows thazi’j &j (X, kx)aﬁk = §j; (1 + O(t)), and Euler’s formula gives

aj (X, kx) = ﬁ Z{‘zl aj| (X, kx)d Kk, hence the result above can be simplified further to give

Za(x kaji (, kx)a ko k AZM—12—4m
| R

1[n + O(t)] A2M—1j3—4m

PEp , , 2 2m—2,, 3—4
+m~i§jla(x,kx)aj|(x,kx)8ijk8|k-Am k>—4m
78) + EpO(k4—4m)

Ep 2m-1;,2-2m
= — P2 D a(x ko ak(L+ Ot) A"k

pl[n + O(t)] A2m71k374m

PEp 2m—-2;,3—4m 4-4m
+ = D06 k) k(L4 O) AT - Ok
Ep

m
= g (g )@+ 0w AP A 4 ROk,

(I1-C). N = 2m — 2. There are also 2 possiblities for the partitpr= g1 + - - - + L. The first
is the same as above, |é2f2”J choices of the type= (1,1, ..., 2) (2m — 1 entries)|l| = 2m,
I! = 2. In order thatN = 2m — 2, among the differentiation®? (total order 2n), 2 must be
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chosen acting o\ giving terms containingj, Ad;, A (again(z%)2 choices fori and j among
{i1,i2,....iom}). They give

(2m), (2m); 1 B . 3 3.
TR Ep(Zm)! Z Dgg(Xv‘f)allk'"311k"'312k"'

1<i<n
Bipm KD}y A}, A - (=12 - 2. K374M(A — pk)2M—2
(79) (2m), 2m—2,,3—4m 4-4m
= Engij(x,kX)aiAajA~A k + EpO(k )

dA)?

The other possiblity is again= (1, 1, ..., 1) (2m — 1 entries)|l| = 2m — 1,I! = 1. Thus one
and only one ofg'| should be 2. There ar@g’—)? choices for this subseB- = (iom_1.i2m)

is a typical one. Since all entries lirare 1, there would be no further partition fBrﬁL, either
it acts just onA, giving terms containing)zA, all other D# act onk*_1 giving N = 2m — 2
ok’s; either DA acts onk 1 giving 32k and among the remainin@ﬁ', choose one and only
one acting om (2m — 2 such choices) and the remaining 2 3 act onk—1 giving 2m— 3 9k’s.
Thus, there are totally & (2m — 3) = 2m — 2 derivatives ork agreeing withN = 2m — 2.
Hence, these terms are

(2m)» 1 g 2
2 EP G Y DG, )iy K- digy oK 1 omA-
" 1<i<n
(2m) 1
+5 2(2m—2)EpW 3 Dgg(x,g)ailAaizk...aimzk.

1<i<n

=—Ep Y a(x k0aj (x, kx)aﬁ A. AZM—2y3—4m
i
1

SEp D G (X ko AT Kk AP L EpO(KAAM) |

il
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But
gi,j.1 (X, kx) = 2a(x, kx)ajj| (X, kx) + 2[a; (X, kx)aji (X, Kx)
+ aj (x, kx)aj| (X, kx) + & (X, kx)ajj (X, kx)]
2k
= 78k (% k) + 2[ai (x, koaj) (x, ke)
+a;j (X, kajl (X, kx) + & (X, kx)aij (X, k)] ,
> aji(x k0dafk =n(1+ O(t)),
I
1
D2 kodfik = —— Z| aj (x. k) dj ka2 k
J i,
1
= ——7 > ik +Owm)
i
k
=——a
——(1+0w).
1
2y (x koai (x. kodfik = =3 Zai (x. koki (1 + O(t)
il [
=3 (X k)1 + O()).
Hence,
_Ep Z a (X, kX)aj (X, kx)aﬁ A- A2m72k374m
0]
_ Ep[ Zl & (x, kx)aji (X, kx)d; A k
i,
+ ) aj(x, kil (x, k)i Ak
il
+ 3 a0 koaij (x, koo AT k| A2 4 EpO(ict-Am)
i,j,l
(80) = —Ep Yy a(x k)aj (x, ka)df A~ AZM23Am

i
- Epl:n(tdd—f\)(l‘l— o)

2
1 Y ail (x. ka)d ko A] AZM=23-4m 4 E Lo kA4m)
il

+—
m —

= —Ep Yy a(x k)aj (x, k)3 A~ AZ23—4m
i
dA 2m—21,3—4m 4—4m
- Ep(n+2)ta(l+ o)A k + EpO(K ).
ForL =2n—1,N < 2m— 3, k= (L+N) — ok4=4M) hence omitted.
I11.L =2m — 2, andL < 2m — 2. (A) gives how

1BY 4+ -+ 1822 = 2m.
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For N = 2m, all D'k must partitioned intd acting onk—1, hence there must appedfk- - -
3, K, joining them tngg(x, £) givesg(x, kx) = O(k?), hence all these terms a@k4—4™m)
and omitted. FoN = 2m — 1, there would appeam2 — 1 dk’s, and Euler’s formula associates
them to Dgg(x, &) to give 9; g(x, kx) = 2a(x, kx)a; (X, kx) = O(k), hence the total order of
such terms are aga'@(k“‘“m). N < 2m — 2 can also be neglected.

L < 2m — 3 gives only term®(k*~*™) hence neglected.

Our computation 0§ (x, dx) Ep terminates here. We tabulate our results as follows:

l. L=2m

(I-A) L =2m, N = 2m, (71).
(I-B) L =2m, N =2m—1, (72).
(I-C) L =2m, N =2m—2, (73).

(I-D) L =2m, N = 2m — 3, (74).

L =2m, N < 2m — 4 give terms of orde©®(k*~*™), hence negligible.
Summing up, we have (75) for the case= 2m.

. L=2m—1
(11-A) L =2m—1,N = 2m, (76).

(1-B) L=2m—1,N =2m— 1, (77).
After simplifying terms containing the factoﬁ% k, we have (78).
(I1-C) L=2m—1,N = 2m — 2, (79).

Simplifying terms containin@ﬁ k, but reserving)ﬁ A, we have (80).

L =2m—1,N < 2m— 3, negligible, since they are terms of the or@gik*—4M).
I11. L < 2m — 2 gives terms of the orded(k*~*M), hence negligible.

These results are summed as the

PROPOSITIONL. The terms of order 4™ and I3—4M in the asymptotic expansion of
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Pom(X, dx) Ep are the following:
dA A \2
P ( dt m—1)
dA A )2
dt m-—1
2 omadA A
T m-— 1A (t_ B )]

K34m: g, p[Z(m —1 A2m—3(t

dt m-1
+ Ep[(zm)zAzm*Z(tdd—/t'\ - %)2
dA A )

dt m-1

(81) — 2p2m=3 > aij (x. kx)d ADj A(t

i
_nm-1+m

(m—1)2
—(n+ 2)tdd—/t'\ - AZM2(1 4 Ot))

(14 O(t)) AZm-1

_ Z a (X, kx)aj (X, kx)aﬁ A- AZm—Z:I .
i
3.6. Computation of Pom_j (X, 3x)Ep

The symbolP(x, &) can be written as the sum of homogeneous polynomiaks @fi degree
2m— j:

(82) P(x, &) = Pom(X, §) + Pom—1(X, §) +--- .
Pom(X, dx) Ep has been discussed in detail, now we proceed to compute

Pom—j (X, dx) EpUp =Pom—j (X, 3x)Ep - Ug

(83) N 9Ug .
+§EP2mfj(Xvax)Ep'm+”' (=D,

First considerPZm,j (X, 9x) Ep, it is almost the same as above, only replaaytg, £) by
Pom—j (X, &), thus for (66) we have now

Ep B 1= (N+L)
Pom—j (X, ) Ep = ———— > D/ Pam_j(x, §)(=D'llk :
(84) (@m =t 1<i<n
(D" AY* ... (D" A*DY k... DOk,
for (67) and (68), we have now
(85) L<it+--+1B-1=2m—j, (j=1D.
(86) N<ist 4+ -+ N+ 18—yl Bt =yt =2m—j, (j = D).

Thus, the lowest term in (84) is .
K2I=4m (j > 1)
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Similarly, 9 Pom—j (X, &) is a polynoimal ing of degree th — j — 1, hence

(87) % Pom—j (X, ) Ep = O(K2F21=4M)  (j > 1),
|

Since we need only terms of orde?4M andk3—4M, so from the contributions of lower order
operatorsPom_ j (X, dx) EpUg, we need to consider onlgm_1(X, ) Ep - Up.
From (84), we have
Ep B My~ (N+L)
— — | .
Pam-10% 50 Ep = 5P 1_2 D Pom-1(x, £)(=1) 11k

<i<n

(88)
(SN

(D" A*... (D" A*DY k... DO k.

Consider thecase L = 2m — 1. ForN = 2m — 1, we must havé = (1,1,...,1)
(L =2m—1entries)|l| = 2m—1,1' = 1,81 = ... = §N = 1, corresponding terms in (88) are

Ep - Pom_1(X, ko) (—1)2M~1(A — pk)2M—1,2-4m
(89) = Ep[—Pom_1(x, kx) AZM~1|2—4m
+(2M — 1) pPom_1.(X, k) AZM=23=4M 4 o(kA—4m)]

Next, let N = 2m — 2. A typical case is to choos@l, ..., 82M2) = (i, ..., iom_1),
thus(D”lA)* =3, A, (D’72A)* =...= (D77L A)* = A — pk. There are &h — 1 such choices,
so we should multiply the results obtained by 2 1 and obtain terms in (88) corresponding to
L=2m—1,N=2m— 2. They are

n
Ep Y 8 Pam—1(X, kx)d AKZ4M(A — pky2™—2
(90) =t
=Ep Y 8 Poam_1(x. ko dy A- AT 234N 1 B OKAAM)
i=1

WhenN < 2m — 3, k~(N+L) = ok*=4™M) and is negligible.
Consider thecase L = 2m — 2. From (67), we have
am—2< g+ 4 |pM 2 =2m - 1.
There is one and only 0n|¢3i| = 2, the others:|ﬂi| = 1. We may choosgé?zm*2 =
(i2m-2.i2mm-1), B* =i1...., B2M2 = izm_3. Since there arg (2m — 1), ways of choosing
I8'| = 2, the results should be multiplied By2m — 1),.

We need only consider the cale= 2m — 1. This would require that both differentiations

ian/_szm*Zk acting onk and givingd;,, ,Kdj, k. Combining the consideration afandN we
obtain

1 1
5(2m = DoEp > Df Pom-1(x. £)di, K- i1k
‘1

<i<n
(91) . k3—4m(_1)2m—1(A _ pk)Zm—l
__(@m-1)

5 EpPam-1(x. k) AZM—L3-4m | E o kd—4m)
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All other terms are neglected. The final result is
Pom-1(%, x)Ep = Ep| — Pam-1(x, k) A% 14
+(2M — 1) pPom_1(x, kx) AT 2k3—4M
(92) N A ooz
3 Porm_ .k Z . p2m k34m
+2 i Pom—1(X X)Bxi
+ O(k4—4m)] .
3.7. Computation of 31" 8 Pom(X, dx)EP - %—L)ﬂf’

Here we should find the first term in the asymptotic expansfon o
3 Pom (X, 9)EP = Qj (x, 0x)EP,
Qi (x, &) is a homogeneous polynomial éfof order 2n — 1. Hence (92)is appliable, with
Qi (x, &) replacingPom_1(X, &). But
Qi (x, &) = i Pam(x, &) = %a%(x, ) = 2a(x, £)& (X, £) ,
hence K
Qi (X, kx) = P (X, kx) .
Substitute this into (92) witl®Q; replacingPym_1, we have
3 Panix EP- 20 [ 2 pEmydam g 0 32

X m-—1
i=1 0 i

dA U
+ dt ,Z i (X, x)—aXi

93
( ) + o(k4—4m):|

dA A dy
_EP an A2Mm—2; 3—4m; Z -0
E [Z(t dt m-— 1) t dt
+ o<k4*4m)] .
After this long computation, combining (81), (92) and (98% have

PrROPOSITION2. The first terms in the asymptotic expansion ¢k Fx) EpUg is

P(x, 8x)EpUg = EP[AZM=2£(A)Uk?4M 1 AZM=3 7 (A Ug)k3—4m

(94)
+R(A, Ug)] .
where
dA A 2
5 ER = (tgr — =) — APam-10x. ko),

J (A, Ug) = A2™3[p7) (A, Ug) + J2(A, Up)],
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‘71(A,U0)=—[2(m—1)(td_A A )2 2 A( dA A )

(96) dt  m-1 — Fri—
— (2m — 1)A|32m_1(X, kX)]UO ,
_ dA A dUO dA A )
T Vo) = 2A(tg7 - =g ) + | mA( gy - 5=5)
_nm—bm UNRATY
oz LT OMAT - (Dt - A+ OW)
dA A
(97) - in:a«'j (x ko An A(t 50— )

- AZ aij (%, k0aj (x, ka)af A
N

A
+ Aiz 9 Pom—1(X, kX)a]UO )
R(A, Up) is the remainder which is of order @*—*M).

3.8. Eiconal system for A and k

As we mentioned earlier, we should have two equations tormdétatek and A. The first is
Leray’s result
k
ax, ky) = ——.
(X, kx) m—1
E(A) = 0 gives the eiconal equation féx.

98) ( dA A

d m-1
These two equations constitute the eiconal system.
Lett = 7™ 1 andA = B, we have

2
)" = Pam-1x. koA

dB\2
3 _ _1\2
T (—dt) = (M- D“Pom_1(X, kx)B.

Sinceky = t&, using Taylor's formula, we have

dB\2
(E) = (m— 12 2™ D[Py _1(y. ) + O(1)]B.

Integrating this ODE along the Hamiltonian orbit ffx, &), we have

T
2VB=(m-— 1)/0 ™2 /Pom_1(Y.n) + O(x)dr 4+ C.
Let C = 0 and assume that
(99) Pom—1(y,m) #0,

We have

1 _
B= thm 2Py 1(y, ML+ O(1)),

(100) 1
A= Zfzm_]'PZm—l(yv ML+ O).
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We are to obtain transport equation fdg from J (A, Ug) = 0. In order to simplify it,
substitute (100) into it and we have

2 2
J1(A Ug) = —[2(m = DPam_1(x. ko A= —== Py 1 (x. ko) A¥?

(101) — (2m = 1)Pom_1(x, ko A]Ug
m

= mﬁmfz Pzzm_l(y, n(L+ O(t)Ug,

J2(A,Ug) = am=1

2
+ %[fzm’l Pom—1(y. D131+ O(x))Ug

1 2 2
——— _[2m°n—2mn+4m? — 5m + 2] -
16(m—1)2[ ]

e 1Py 1 (y, M1 + O(x)Ug

- du
r4m=2 P22m—1(Yv A+ O(t))td—TO

(102)

1 o
= 27" P a(y. M@+ o<r>>[22eu,- (X, kx)d Adj A
0]

oA
. ) 2 .
+ ; g (X, kx)aj (X, kx)aij A— ,Z 9 Pom—1(X, kX)E}UO.
3.9. Transport equation for Ug

J (A, Up) = 0is the transport equation falg which is its bounded solution. For this purpose,
(102) should be further simplified.

Note that

and the Hamiltonian system fargives

Xj =Yj+ajy,mt+0(),

hence 3
X
a_{ = ajj (y. Mt + O(t),
i
D(x) _
By = tHesga(y, n)(1+ O(t)).

Denote [Hesga(y, )] =1 = (bjj (v, n)). We have

A _ 1N A
o =t Xijb., (v, M@+ O“”an,- :

But (100) givesA as a function of;, we have

aA

1_
(103) o~ 4 1izbij (v, M@+ O)Pam-1,j (¥, ) = O™,
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thus,

(104) > aj (x, kx)d Adj A= O(xM2H2M) = 2M=lgm=t)
i

Next, denoteD = t$; = 37 & (x, kX)aa_xi’ we have

> ai (%, kaaj ( k0)dij A=Y & (x, k) D(3 A)
iJ i
= D@ x.kod A) = D% A- D
i i

=D?A-) 3 ADa

D(% + [Pam-1(x ko AIY/2) - Xi:ai ADg

1 PDA+ ADP
DA+ — 0 ADg ,
m-—1 2/PA Z I g

(hereP = Pom_1(x, kx)) .

Since

A A
DA=td—=—+4/pA,
di m-1

then, the expression above can be simplified further:

2m-1 3¢2m-1
= 2= 12 Pom—1(y, m(1+ O(2)) + =D Pom_1(Y, 1)(1+ O(1))
1L.2m—1 1
T Pom—1(y, (1 + O(7)) + Z D Pom_1(X, kx) — Z 3 ADg
_ (2m-1)2

= am— 1)272m71 Pom—1(y, ) — Z 3 ADg .
1
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Now
A
> % ADg =Za aj (X, kx) a(x kx)
i i
2
—Z aJ X, kX)<a'X x, kX)+Za"(X )3Xj3XI>
_ Z Waj (X, kx) (@ix; (X, kx) + 8ij (1 + O(1))
ij o
05) _ Z EaJ (X, kx)ain (X, kx) + Z aj (X, kx)a(l-i— O(1))

d
= Z aJ (X, kx)aix; (X, kx>+t—<1+ 0(1))

f2m—10(z> + % +v/Pam-1(X. k) A(L+ O(1))

t2m—1o(f) + (

2m—-1 541

T am-1)" " Pom—1(y, m(1+ O(7)) .

1 1\ om-1
am—1 " §)f Pom—1(Y. m(1+ O(1))

For the last term in (102), we have

aA _ _ _
(106) > 8 Poam—1(X, koo = O(r3M-2) — 2m-1g(;Mm-1y
- i

Substituting (104), (105), (106) into (102), we have

J2(A,Upg) =

2 )[rzf“—lpm_l(y, mI2(1+ O(1))
[ dUo ( M
dr 4m-—1)

(107)
+rf (@0 y)Uol.

hereM = 2m(m — 1)(n + 1), f(z, n, y) is holomorphic in(z, n) neart = 0.

Combining (101) for71(A, Ug) and (107) for7>(A, Ug), we obtain finally the transport
equation forJg:

du
(108) r—°+[mp— —rf(r,n,y)]Uo=

M
4m—1)
ForUg to be bounded near, we must choose

M _n+1
4m(m — 1) 2

(109) p=
and

(110) Ug = exp(/T f(s,n, y)ds) .
0
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3.10. Mainresult

We have been seeking a solution for the equaR®@R, dx)u = 0 in the form of (49):

o
u(x, y) = exp[Ax, y)/Kk(x, y)] Y UphPTh,
h=0
what we have attained up to present is only the solution afngitsystem fok(x, y) ((47)) and
A(X, y) ((98)) and also the transport equation €y ((108)). Hencep is defined by (109)Uqg
by (110) andA(x, y) by (100).
ForUp, h > 1, we would obtain similar equation as (108) only wjih+ h replacingp and

the right hand side would be an expression lineddjn 1, .. ., Un_2m and their derivatives, i.e.
dUp
(111) vt [mh—<f(z,n, Y)]Uph = L(Up_1,...,Uh_oms1) -

The only bounded solution of it is

Up T smhfl
——L(Up-1...., Uh-2m+1) ds.

112 Up = —
( ) h Zmh o Uo

Thus we are brought back to the case of simple-charactepisiblems as discussed in Part | and
we come to our main result:

THEOREMS. Let P(x, dx) be a holomorphic linear partial differential operator ofder
2m (m> 1) inadomain X of an analytic complex mainfold. Let the priratisymbol of Rx, dx)
be of the form

Pom(x, ) = [a(x, £)]2,
such that for ye X,
Hess[a(y, n)] # Ofor a(y,n) =0, n # 0.

Further, we also assume that
Pom_1(Y,n) # 0and m> 2.

Then there exist solutions of(R, dx)u = 0 with the asymptotic expansion

u(x, y) = exp[Ax, y)/K(x, y)] Y UphPTh.
h=0

Here k(x, y) = 0is an equation of the characteristic conoid, which satisfies

k
a.(X, kx) = m .

A(X, y) is given by (98):
1 ome
A, y) = 7 Pom_1(y. (1 + O(D))
Upand U,,h=1,2, ..., are determined by transport equation (108) afd)( p is determined

by (109). Thus g and U, are given by (110) and (112). This asymptotic expansionerges
for |k(x, y)| small enough.
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