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HADAMARD’S FUNDAMENTAL SOLUTION AND

MULTIPLE-CHARACTERISTIC PROBLEMS †

Abstract. In this work, Hadamard’s construction of fundamental solutions for lin-
ear holomorphic PDE is generalized to a rather broad class oflinear holomorphic
PDE. In the case of simple-characteristics, solutions withpolynomial singularity
along the characteristic conoid are constructed which are very close to Hadamard’s
fundamental solution. In the case of multi-characteristics, solutions with exponen-
tial singularity are obtained. It is clear that Hadamard’s procedure is just a kind
of asymptotic method; using this method and singular solutions mentioned above,
some new results for the propagation of singularities are also proved which are
essentially a generalization of Huygens’ Principle.

1. Introduction

Among Hadamard’s contributions to the theory of linear PDE,the construction of fundamental
solution is very prominent and of basic importance. In a certain sense, this contribution of his
summed vast progress in this area to his time, and was very clearly presented in his classical
treatise: “Le Problème de Cauchy” [1] and also in his posthumous monograph: “La Théorie des
Équations aux Dérivées Partielles” [2], which was published in China (1964) in accordance with
his will, hence little known in the West and is now a literature rarity even in China. Hadamard
defined the fundamental solution (solution élémentaire)to be solutions with certain singularity
and tried to find them in the form of an asymptotic series

0(x, y) =
∞∑

h=0

Uh(x, y)kp+h/0(p + h + 1)(1)

wherek = 0 is the equation for the characteristic conoid, andk(x, y) satisfies an important first
relation:

A
(

x,
∂k

∂x

)
= 4k ,(2)

where A(x, ξ) is the principal symbol of the 2nd order linear holomorphic partial differential
operator

Lu =
n∑

i, j =1

ai j (x)
∂2u

∂xi ∂x j
+

n∑

i=1

bi (x)
∂u

∂xi
+ c(x)u,(3)
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ai j (x) = a j i (x), det(ai j (x)) 6= 0 .

Hadamard’s method is actually just the asymptotic method widely used among mathematical
physicists. (2) is just the eiconal equation. Hadamard thenproceeded and obtained the transport
equations forUh and the convergence of the series (1) was proved by standard majoration meth-
ods.
Hadamard’s argument is variational: characteristic conoid is composed of bicharacteristics issu-
ing from the vertex, while the latter are geodesics in a certain metric defined through the principal
symbol which is quadratic. This approach restricted him to partial differential operators of 2nd
order only. But as early as H. Poincaré and E. Cartan, it was known that Hamiltonian variational
principles are equivalent to the principle of integral invariants [3]; the latter principle is sympletic
in nature and thus can be used in a much broader field. J. Leray is aware of this, in the late 50’s
and early 60’s, he published a series of important papers under the general title “Problème de
Cauchy” [4], which contains a generalization of (2) as

g(x, kx) =
k

m − 1
.(4)

Also, it should be mentioned, the 6th or the last of these series, i.e., L. Gårding, T. Kotake and J.
Leray [5] developed systematically the asymptotic approach to the Cauchy problem.

But there is another approach to the theory of fundamental solutions. The year 1930’s saw
I. G. Petrowsky’s work on general PDE which started an algebro-geometrical approach to the
theory of linear PDE with constant coefficients. Fourier-Laplace transform is the main tool, and
this is the beginning of the period when the theory of distributions “dominated” this field. Fun-
damental solutions are now defined to be the solutions of the equationL(u) = δ. Ehrenpreis,
Hörmander and Malgrange proved the existence of the fundamental solutions for general linear
PDE with constant coefficients. For general linear PDE with variable coefficients, Lewy’s fa-
mous example showed the deep difference between the analytic andC∞ frames. For the latter,
we have now the micro- local analysis, with the help of the PsDO and the FIO, we can construct
parametrices, which are approximate fundamental solutions. Thus there arises a problem: can
we also construct distributional fundamental solutions for general linear PDE with variable co-
efficients and what are the relations between these two kindsof fundamental solutions? Another
problem is: Hadamard established his theory for normal elliptic and hyperbolic equations, which
are all of principal type. Then, what can we say about the multiple-characteristic problems? As
will be seen in what follows, Hadamard’s theory is actually aFuchsian theory, while PDE’s with
multiple-characteristics can be considered as an analogy of the ODE’s with irregular singulari-
ties. For the latter, we have the arsenal of such things as theasymptotic expansions in a sector,
the Borel-Laplace transforms etc. All these come from the exponential growth of the solutions.
Thus the Gevrey classes and their dual, the ultra- distributions, offer a natural frame for the
multiple-characteristic problems. For a very clear treatment, see [14], also see [15] for an up-to-
date survey with comprehensive literature. But can we also consider Hadamard’s theory from a
distributional point of view? It is the author’s aim to give partial answers to these problems. We
can prove that Hadamard’s fundamental solution is only one from a broad category of solutions
with definite singularity, and both approaches are closely related and can be unified. But in the
present paper, we must restrict ourselves to first extend Hadamard’s approach to a class of linear
holomorphic PDE of higher order with simple characteristics, and next construct for a class of
linear holomorphic PDE’s with multiple- characteristics asolution with exponential singularity
following Hadamard’s procedure, hence we call it the Hadamard fundamental solution, although
its relation with the distributional fundamental solutionis not clear yet and will be treated later.

The plan of this paper is as follows. In part I, we consider thesimple- characteristic case
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where (4) is valid. In part II, the simplest case of multiple-characteristic problem is considered
where (4) is not valid.

2. Part I. Simple-characteristic Problems

2.1. Notations

Let X be a domain in an analytic complex manifold with complex dimension n, with local
coordinates for its elementx = (x1, · · · , xn). The complex projective space4∗ = Cn+1 \ 0/ ∼
(∼ denotes dilation) is just the space of complex affine functions defined onX, and we denote

〈ξ, x〉 = ξ0 + ξ · x = ξ0 +
n∑

i=1

ξi · xi .(5)

Let P(x, ∂x) be a linear holomorphic partial differential operator of orderm:

P(x, ∂x) =
∑

|α|≤m

aα(x)∂α ,(6)

with principal symbol

Pm(x, ξ) =
∑

|α|=m

aα(x)ξα .(7)

2.2. Characteristic conoid

Bicharacteristics strips forP(x, ∂x) are defined as orbits of the Hamiltonian system

dx

dt
=

∂ Pm(x, ξ)

∂ξ
x|t=0 = y ,

dξ

dt
= −

∂ Pm(x, ξ)

∂x
ξ |t=0 = η ,

Pm(y, η) = 0 ,

(8)

which give extremal curves for the action integral

W =
∫ ∑

ξi dxi − H dt .

In analytic dynamics, the HamiltonianH is the total energy, i.e., the sum of kinectic energy
(quadratic inξ ) and potential energy, and in our case,H should be replaced byPm(x, ξ) which
is homogeneous of degreem in ξ now. H. Poincaré and E. Cartan realized that Hamilton’s
principle of least action is equivalent to the principle of invariance of energy-momentum form.
Thus in our case, we should add another equation forξ0 to (8)

dξ0

dt
=

∑

i

xi
∂

∂xi
Pm(x, ξ) − Pm(x, ξ) ,

ξ0|t=0 = η0 ,

(9)
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and for initial values we should assume

〈η, y〉 = η0 +
n∑

i=1

ηi yi = 0 ,

Pm(y, η) = 0 .

It is readily seen, the system (8), (9) has first integrals

Pm(x, ξ), 〈ξ, x〉 + (1 − m)t Pm(x, ξ)

and also an invariant differential form

ω = 〈 dξ, x〉 + Pm(x, ξ) dt .(10)

Actually, setω = 0 anddω = 0 as differential forms indx, dξ anddt, we could recover (8) and
(9), meaning that this system is the characteristic system for ω and henceω is invariant form, of
(8) and (9) [3] (Chap. 5).

x-components of the system (8), i.e., the bicharacteristic curves inX, through a fixed point
y with Pm(y, η) = 0, η 6= 0, form a surface withy as a conic point which is called the charac-
teristic conoid with vertex aty. We have

THEOREM 1 (J. LERAY). The characteristic conoid can be written as k(x, y) = 0 where
k(x, y) is holomorphic in x and y when|x − y| is small enough, and

Pm(x, kx) =
k

m − 1
(11)

under the assumption

Hessη Pm(y, η) 6= 0 ,(12)

whenη 6= 0.

Proof. The following proof is reproduced from Leray [4] (paper I) whereη is assumed to be
complex and (12) holds whenPm(y, η) = 0. The solution to (8) whenPm(y, η) is arbitrary
gives a mapping

x = y + Pmξ (x, ξ)t + o(t)

= y + Pηm(y, η)t + o(t)

(ξ = η − Pmx(x, ξ)t + o(t))

when|t | is small enough. Thus we may write

x = x(t, y, η) ,

ξ = ξ(t, y, η) ,
(13)

and prove immediately that

D(x1(t, y, η), . . . , xn)

D(η1, . . . , ηn)
= t Hessη Pm(y, η) + o(t) ,

which does not vanish fort 6= 0 when Hessη Pm(y, η) 6= 0 andη 6= 0. Thus we may replace
(t, x, y) by (t, η, y) andvice versa. The invariance ofω (see (10)) gives

〈dξ, x〉 = −Pm(x, ξ) dt + 〈dη, y〉
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from which follows the relation:

d〈ξ, x〉 = −Pm(x, ξ) dt +
n∑

i=1

ξi dxi −
n∑

i=1

ηi dyi ,

(note that〈y, η〉 = 0). Taking(t, x, y) as independent variables, we have

∂

∂t
〈ξ, x〉 = −Pm(x, ξ) ,

∂

∂xi
〈ξ, x〉 = ξi ,

∂

∂yi
〈ξ, x〉 = −ηi .

(14)

SincePm(x, ξ) and〈ξ, x〉 + (1 − m)t Pm(x, ξ) are first integrals,

Pm(x, ξ) = Pm(y, η) ,

〈ξ, x〉 = (m − 1)t Pm(y, η) .
(15)

Substituting (15) into (14), we have

∂

∂t
〈ξ, x〉 = 〈ξ, x〉/(1 − m)t .

Thus there is a functionk(x, y) such that

〈ξ(t, η, y), x(t, η, y)〉 = t
1

1−m k(x, y) .(16)

k(x, y) should be holomorphic inx and y for x, y close enough.x = y corresponds tot = 0
which is singular for〈ξ, x〉 as seen from (16).

From the second equation of (14), we have

ξi =
∂

∂xi
〈ξ, x〉 = t

1
1−m kx(x, y) ,(17)

substituting again into the first equation of (14), we have

−
∂

∂t
〈ξ, x〉 =

〈ξ, x〉
(m − 1)t

=
t

m
m−1

m − 1
k(x, y) ,

but
Pm(x, ξ) = Pm

(
x, t

1
1−m kx

)
= t

m
1−m Pm(x, kx) ,

hence (11).

(11) shows thatk(x, y) = 0 is characteristic. Now take into consideration thatPm(y, η) =
0. If x = x(t, η, y) is a bicharacteristic curve throughy : x|t=0 = y, then, sincePm(x, ξ) is a
first integral,

k[x(t, η, y), y] = (m − 1)Pm[x(t, η, y), kx(x(t, η, y), y)]

= (m − 1)t
m

m−1 Pm[x(t, η, y), ξ(t, η, y)]

= (m − 1)t
m

m−1 Pm(y, η) = 0 .

It means that the whole bicharacteristic curve lies on the surfacek(x, y) = 0. Thus, it is easily
seen,k(x, y) = 0 is an equation for the characteristic conoid.
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In the proof above, the condition Hessη Pm(y, η) 6= 0 is very important. It excludes
multiple-characteristic problems from consideration. Actually, we have the following

LEMMA 1. If a(x, ξ) and b(x, ξ) both vanish at a point(x0, ξ0) and gradξa(x0, ξ0) is
parallel togradξ b(x0, ξ0), thenHessξ [a(x0, ξ0)b(x0, ξ0)] = 0, here x∈

� n , 0 6= ξ ∈
� n .

Proof. Denote differentiation inξ by sub-indices. Since

[a(x, ξ)b(x, ξ)] i j = a(x, ξ)bi j (x, ξ) + ai (x, ξ)b j (x, ξ)

+ a j (x, ξ)bi (x, ξ) + ai j (x, ξ)b(x, ξ) ,

Hessξ [a(x, ξ)b(x, ξ)] can be written as a sum of 2n determinants and we may arrange them such
that every row is of either the following forms:

(ai b1, ai b2, . . . , ai bn) = ai (b1, b2, . . . , bn)

or
(a1bi , a2bi , . . . , anbi ) = bi (a1, a2, · · · , an)

Since these vectors are parallel, each determinant contain2 linearly dependent rows making this
determinant vanishing. Thus the lemma is proved.

Because of this lemma, arguments in this part are usually invalid for partial differential
operator of the form

Pm(x, ∂x) = [a(x, ∂x)]2

which is the simplest double-characteristic case, and would be treated in part II of this paper.

2.3. Characteristic projection

Now we discuss further properties ofk(x, y).

It is easy to see that the solutions of (8), (9) enjoy the following homogeneity properties:

ξi (θ
1−mt, θη, y) = θξi (t, η, y) ,

xi (θ
1−mt, θη, y) = xi (t, η, y) .

(18)

Henceξ is a characteristic projection in Leray’s sense [4] (IV). Set

τ = t
1

m−1 , θ = τ,(19)

we have
τξi (t, η, y) = ξi (1, τη, y) ,

xi (t, η, y) = xi (1, τη, y) .

Thus, denoteτη = ζ, τξ = π , we seexi (t, η, y) are actually functionsxi (1, ζ, y) of (ζ, y),
πi (t, η, y) areξi (1, ζ, y), both are holomorphic in(ζ, y). Hence we write them hereafter simply
asx(ζ, y), π(ζ, y). (16) and (17) now give

k(x, y) = 〈π(ζ, y), x(ζ, y)〉 ,

kxi (x, y) = πi (ζ, y) ,
(20)
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andk(x, y) is also holomorohic in(ζ, y).

The solutions of (8) now give

xi = yi + Pmζi (x, ζ ) + . . . ,

πi = ζi − τ Pmxi (x, ζ ) + . . . ,
(21)

“ . . . ” are terms of higher order. Hence, from the implicit function theorem, we have from the
second equation of (21),

ζi = πi + o(τ) .

Substitute it into the first equation of (21) gives

xi = yi + Pmζi (y, π) + o(τm) .

Differentiate both side with respect tox j , we have

δi j =
n∑

l=1

Pmil (y, π)
∂πl

∂x j
+ · · ·

= τm−2
n∑

l=1

Pmil (y, ξ)
∂πl

∂x j
+ · · ·

=
n∑

l=1

Pmil (y, kx)
∂2k

∂xi ∂x j
+ · · ·

Thus,

n∑

i, j =1

Pmi j (x, kx)
∂2k

∂xi ∂x j
= n + F(ζ, y) .(22)

whereF(ζ, y) is holomorphic in(ζ, y) andF(0, y) = 0. Henceforth, sub-indices always denote
differentiation in fiber variables.

2.4. Construction of Hadamard fundamental solution

Now we will look for a solution toPu = 0 whereP is defined in (6) in the form

u(x, y) =
∞∑

h=0

Uhkp+h/0(p + h + 1) ,(23)

p andUh are to be decided. Whereas (11) plays the role of eiconal equation, we are to find the
transport equations. We proceed first to calculatePm(x, ∂x)U0kp/0(p + 1). By generalized
Leibniz’s formula, we have

Pm(x, ∂x)U0kp/0(p + 1) = U0Pm(x, ∂x)kp/0(p + 1)

+
n∑

i=1

∂U0

∂x j
Pmj(x, ∂x)kp/0(p + 1) + · · · ,

(24)
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where the dots stand for terms containing a factor of the formP(α)
mξ

(x, ∂x)kp/0(p+1), |α| ≥ 2.
For the first term, a careful calculation gives

Pm(x, ∂x)kp/0(p + 1) = Pm(x, kx)kp−m/0(p − m + 1)

+
1

2

n∑

i, j =1

Pmi j (x, kx)
∂2k

∂xi ∂x j
· kp−m+1/0(p − m + 2) + · · · .

(25)

Verification of this result, particularly the coefficient1
2 in front of the second term is tedious.

But a general procedure would be given in Part II, showing that (25) is correct.

For the second term in (24), noting that

Pmj(x, ∂x)kp/0(p + 1) = Pmj(x, kx)kp−m+1/0(p − m + 2) + · · · ;

andkx = t
1

m−1 ξ , Pmj(x, ξ) = dxj
dt , we have

n∑

j =1

∂U0

∂x j
Pmj(x, ∂x)kp/0(p + 1) = t

∑ ∂U0

∂x j

dxj

dt
kp−m+1/0(p − m + 2) + O(kp−m+2) .

Thus, using (22) and (11)

Pm(x, ∂x)U0kp/0(p + 1) =
[ p − m + 1

m − 1
+

n

2

+
1

2
F(ζ, y)

]
U0kp−m+1/0(p − m + 2)

+ t
dU0

dt
kp−m+1/0(p − m + 2) + O(kp−m+2)

=
[
t
dU0

dt
+

( p − m + 1

m − 1
+

n

2

+
1

2
F(ζ, y)

)
U0

]
kp−m+1/0(p − m + 2)

+ O(kp−m+2) .

Sincet d
dt = 1

m−1τ d
dτ

, F(ζ, y) = O(τ), when we are to look for a boundedU0, p must be so
chosen such that

n

2
+

p − m + 1

m − 1
= 0, i.e., p = (1 − m)

(n

2
− 1

)
.(26)

After p is decided, we come next to degreem− 1 (in ∂x) part of P(x, ∂x), i.e. Pm−1(x, ∂x). By
similar calculation as above, we have

Pm−1(x, ∂x)U0kp/0(p + 1) = U0Pm−1(x, ∂x)kp/0(p + 1)

+
∑

|α|>0

1

α!

∂αU0

∂xα
P(α)

m−l ,ξ (x, ∂x)kp/0(p + 1)

= U0Pm−1(x, kx)kp−m+1/0(p − m + 2)

+ O(kp−m+2)

= t Pm−1(x, ξ)U0kp−m+1/0(p − m + 2)

+ O(kp−m+2) .
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Summing up, we have proved

THEOREM 2. We have the following expansion

P(x, ∂x)U0kp/0(p + 1) =
kp−m+1

0(p − m + 2)

[ 1

m − 1
τ

dU0

dτ

+
(n

2
+

p − m + 1

m − 1
+ O(τ)

)
U0

]

+
kp−m+2

0(p − m + 3)
L2(U0) + · · ·

+
kp

0(p + 1)
Lm(U0) ,

(27)

where L2, . . . , Lm are linear holomorphic partial differential operators of order 2, 3, . . . , m
respectively. Thus for the existence of a bounded U0, we must take p= (1− m)

(n
2 − 1

)
and we

have the transport equation for U0:

τ
dU0

dτ
+

[
(m − 1)

(n

2
+

p − m + 1

m − 1

)
+ τ A(τ)

]
U0 = 0 .(28)

We may take

U0 = exp

( ∫ τ

0
A(τ) dτ

)
.(29)

The transport equations forUh are similar to (28) only withp + h to replaceh and a linear
form of Uh−1, . . . ,Uh−m+1 and the derivatives ofUh− j up to order j + 1 as the right hand
side:

τ
dUh

dτ
+

[
p + h − m + 1 +

n

2
(m − 1) + τ A(τ)

]
Uh

= L(Uh−1, . . . ,Uh−m+1) .

(30)

Settingp = (1 − m)
(n

2 − 1
)

as in (26), we have the transport equation forUh

τ
dUh

dτ
+ [h + τ A(τ)] Uh = L(Uh−1, . . . , Uh−m+1) .(31)

Its unique bounded solution is

Uh =
U0

τh

∫ τ

0

τh−1

U0
L(Uh−1, . . . ,Uh−m+1) dτ .(32)

The argument above fails whenp is a negative integer when we should replace (23) by

u(x, y) = U0kp + · · · + U−p−1k−p−1 + U−p logk + · · ·

+ U−p+hk(h) + · · · +
∞∑

h=0

Vhkh/h! ,
(33)

wherek(h) is ah-th primitive of k, i.e.,

k(h) =
∫ k

0
· · ·

∫ k

0
logk dk =

kh

h!

(
logk − 1 − · · · −

1

h

)
,

(h − fold integration) .
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The transport equations forU0, . . . ,U−p−1 are the same as (30), in the deduction of which we
should note that

kk(h) = (h + 1)k(h+1) + kh+1/(h + 1)! ,

while for Vh we have

τ
dVh

dτ
+

[
h +

n

2
(m − 1) + τ A(τ)

]
Vh = U−p+h + L(Vh−1, . . . , Vh−m+1) .(34)

2.5. Convergence of the formal solution

For the convergence of (23) (that for (33) are quite similar,hence omitted) we use the majorant
method as J. Hadamard did in [1].

Let σ = τ
α + η1 + · · · + ηn, 0 < α < 1. SinceU0 is holomorphic in(τ, η) we can find

0 < r < 1 and constantA0 > 0 such that

U0 � A0/
(
1 −

σ

r

)
.(35)

Assume that forU1, . . . ,Uh−1 it is already known that

U j � M A j /
(
1 −

σ

r

)2 j +1
,

then forUh we should first estimateL(Uh−1, . . . ,Uh−m+1). SinceL contains derivatives of
Uh− j up to ordersj + 1, we have

U ( j +1)
h− j � M Ah− j (2h − 2 j + 1) · · · (2h − 2 j + j + 1)/

(
1 −

σ

r

)2h−2 j + j +2

� M12h(2h + 1)(p + h) j −1Ah− j /
(
1 −

σ

r

)2h+2
.

Thus

L(Uh−1, . . . ,Uh−m+1) �
K2h(2h + 1)
(
1 − σ

r
)2h+2

[
Ah−1 + (p + h − 1)Ah−2 + · · ·

+(p + h − 1)(m−1) Ah−m+1
]

.

Hence

Uh �
K2h(2h + 1)

4(h + 1)

[
Ah−1 + (p + h − 1)Ah−2 + · · ·

+(p + h − 1)(m−1) Ah−m+1
]
/
(
1 −

σ

r

)2h
,

(λ) j = λ(λ − 1) · · · (λ − j + 1) .

Setting
Ah = 3K (p + h + 1)

[
Ah−1 + (p + h − 1)Ah−2 + · · ·

+(p + h − 1)(m−1) Ah−m+1
]

,

3 = sup
h

2h(2h + 1)

4(h + 1)(p + h + 1)
.

We have

Uh � Ah/
(
1 −

σ

r

)2h
.
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Since the power series ∑
Ahkp+h/0(p + h + 1)

converges for|k| small enough, we know that the series (23) converges for|k| small enough.
Summing up we have the main result of Part I.

THEOREM 3. Let

P(x, ∂x) =
∑

|α|≤m

aα(x)

( ∂

∂x

)α

= Pm(x, ∂x) + Pm−1(x, ∂x) + · · ·

=
∑

|α|=m

aα(x)

( ∂

∂x

)α
+

∑

|α|=m−1

aα(x)

( ∂

∂x

)α
+ · · · , m ≥ 2

be a linear holomorphic partial differential operator in a domain X of a complex analytic man-
ifold, y ∈ X a fixed point, and

Hessη Pm(y, η) 6= 0 for Pm(y, η) = 0, η 6= 0 .

Then, there exists an Hadamard fundamental solution with anasymptotic expansion

u(x, y) =
∞∑

h=0

Uhkp+h/0(p + h + 1) ,

where p = (1 − m)
(n

2 − 1
)
. k(x, y) = 0 is the equation of characteristic conoid, with k

holomorphic for x close enough to y satisfying

Pm(x, kx) =
k

m − 1
.

When p is a negative integer, the expansion should be modifiedas (33).

2.6. Propagation of Singularities

The method above can also be applied to various problems for linear holomorphic partial dif-
ferential operator, among them, propagation of singularities. J. Leray, Y. Hadamard and C.
Wagschal considered in a series of papers [6], [7], [8] the Cauchy problem for

P(x, ∂x)u = v(x) ,(36)

where

v(x) = f (x)/[g(x)]λ ,(37)

g(x) = 0 is a holomorphic hypersurface inX which is not characteristic forP(x, ∂x). Their
main results go roughly as follows: the singularities of thesolutionu(x) propagate along char-
acteristics issuing from the singularities for the right hand side, i.e., points of the hypersurface
g(x) = 0. But wheng(x) = 0 is characteristic, the behavior of the solution is quite different.
Actually, we have
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THEOREM 4. If the right hand side of (36) is of the form

P(x, ∂x)u = f (x)/[k(x, y)]λ ,(38)

where1 − λ 6= 0,−1, −2, . . . and k(x, y) = 0 is the characteristic conoid with vertex at y.
Then there exists a solution of (38) of the form

u(x, y) =
∞∑

h=0

Uh(x, y)[k(x, y)] p+h/0(p + h + 1) .(39)

where

p = m − λ − 1 .(40)

Proof. Using the procedure as above, we obtain the transport equation forU0 as

τ
dU0

dτ
+

[n

2
(m − 1) − λ + τ A(τ)

]
U0 = f (x)0(1 − λ) .

Denote
µ =

n

2
(m − 1) − λ ,

We have
d

dτ
(τµU0) + A(τ)τµU0 = τµ−1 f (x)0(1 − λ) ,

and

U0 = τ−µ

∫ τ

0
τµ−1 f (x)0(1 − λ)e−

∫
τ

0 A(s) dsdτ .(41)

Whenµ ≤ 0, the integral should be taken in the distributional sense.U0 is bounded.
For the remainingUh, h > 0, we have similar transport equations,

τ
dUh

dτ
+

[n

2
(m − 1) − λ − h + τ A(τ)

]
Uh = L(Uh−1, . . . ,Uh−m+1) ,

the unique bounded solution of which is

Uh =
U0

τh

∫ τ

0

τh−1

U0
L(Uh−1, . . . ,Uh−m+1) dτ .(42)

After (39) is constructed as a formal solution, convergencecan be proved as before.

REMARK 1. When 1− λ = 0, −1, −2, . . . , further modification for (refc1.34) is needed
by adding terms containing logk. The details are omitted.

REMARK 2. The implication of this theorem is as follows. If another hyperplane not
throughy is taken to be the initial hyperplane, its intersection withk(x, y) = 0 are new source
of singularties. According to results already known on the behavoir of solutions, singularities
would propagate along all bicharacteristics issuing from the intersection. But theorem 4 states
that they propagate only alongk(x, y) = 0. This is analogous to the Huygens’ principle for the
wave equation. According to Huygens’ construction, superficially, there would not only be a
wave front going forward, but also another wave front going backward. This apparent contradic-
tion was explained by Fresenel in terms of interference [9].Theorem 4 claims similar results for
general partial differential operators.
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REMARK 3. Some new problems are also motivated by the procedure above. For instance,
if we introduce new variables(z1, . . . , zn) with z1 = k(x, y). OperatorP(x, ∂x) will have the
form

z1

( ∂

∂z1

)m
+ Q(z, ∂z)(43)

whereQ(z, ∂z) contains at most
(

∂
∂z1

)m−1. (43) is of Fuchsian type. In this sense Hadamard’s
theory is also a preliminary Fuchsian theory.
But the transformationx → z is singular atx = y. For the simplest case ofm = 2, takey = 0,
k(x, y) = k(x) is holomorphic atx = 0. Using Morse lemma, which is also valid in complex
holomorphic case (for a proof see e.g. [10]), we will arrive at a holomorphic partial differential
operator with ∂

∂z1
appearing in the principal part in the following form:

(
z1

∂

∂z1
+

n∑

j =2

z j
∂

∂z j

)
∂

∂z1
.

There is a critical point in its Hamiltonian field. A preliminary study is given in [11]. For more
general case, we must study corresponding uniformization problem.

3. Part II. Multiple-characteristic Problems

3.1. Motivation

In this part, we are to modify the Hadamard’s procedure that it would be applicable to multiple-
characteristic problems. We are to consider only the simplest case when the principal symbol
Pm(x, ξ) is factorizable, more precisely, when

Pm(x, ξ) = [a(x, ξ)]2 ,

and to see where lie the main difficulties. For simplicity, weassumea(x, ξ) to be a homogeneous
polynoimal inξ of orderm, such that the original operatorP(x, ∂x) is of order 2m, thus the
principal symbol ofP(x, ∂x) is

P2m(x, ξ) = [a(x, ξ)]2 .(44)

Here, as in Part I, we also assume

Hessηa(y, η) 6= 0, whena(y, η) = 0, η 6= 0 .(45)

We are to use the Hamiltonian system fora(x, ξ) instead of that forP2m(x, ξ), namely, we are
to consider

dx

dt
= aξ (x, ξ), x|t=0 = y,

dξ

dt
= −ax(x, ξ), ξ |t=0 = η,

a(y, η) = 0.

(46)

Let k(x, y) = 0 be the characteristic conoid with respect toa(x, ξ), hence

a(x, kx) =
1

m − 1
k .(47)
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Then

P2m(x, kx) =
1

(m − 1)2
k2 .

If we takez1 = k(x, y) as a new independent variable, the equationP(x, ∂x)u = 0 becomes

z2
1
∂mu

∂zm
1

+ A
(

x,
∂

∂x

) ∂m−1u

∂zm−1
1

+ · · · = 0 ,

or
∂mu

∂zm
1

+
1

z2
1

A
(

x,
∂

∂x

) ∂m−1u

∂zm−1
1

+ · · · = 0 .

This equation looks like an ordinary differential equationwith irregular singularity atz1 = 0.
For such equations as

dw

dt
= t−(2+r ) A(t)w, r = 0, 1, 2, . . . ,

with irregular singularity att = 0, the solution can be of the form

w = exp

[ r+1∑

i=1

(ai t
i )

]
t p f (t)

(see e.g. [12], Chap. 5, Theorem 2.1). Thus we are motivated to find a solution of

P(x, ∂x)u = 0(48)

in the following form:

u = exp[A(x, y)/k(x, y)]




∞∑

h=0

Uhkp+h


 .(49)

whereA(y, y) 6= 0. In constrast to Part I, now we should need eiconal equations for bothA and
k. The latter is (47) while that forA is to be sought. Thus, we should have “eiconal system”.
Transport equations forUh are also to be constructed.

For brevity in the sequel, we always use sub-indices to denote differentiation with respect
to fibre variables such asξ , η, etc., if applicable.

3.2. Notations

In the following we will use repeatly Euler’s formula for homogeneous functionsP(x, ξ) of
orderl :

P(x, ξ) =
1

l

n∑

i1=1

∂i1 P(x, ξ)ξi1

=
1

l (l − 1)

n∑

i1,i2=1

∂i1∂i2 P(x, ξ)ξi1ξi2 = . . .

=
1

(l )r

n∑

i1,i2,... ,ir =1

∂i1∂i2 . . . ∂ir P(x, ξ)ξi1ξi2 . . . ξir = . . .

=
1

l !

n∑

i1,... ,il =1

∂i1 . . . ∂il P(x, ξ)ξi1 . . . ξil .

(50)
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In these formulas,i1, . . . , i l run dependently from 1 ton. This form of P(x, ξ) is more conve-
nient for our purpose than the usual expression

P(x, ξ) =
∑

|α|=l

1

α!
∂α
ξ P(x, ξ)ξα .(51)

Hence, we introduce a new notation

Dβ = ∂i1 . . . ∂il ∼ (∂i1, . . . , ∂il ) ∼ (i1, . . . , i l ) ,(52)

hereβ = (i1, i2, . . . , i l ) is an ordered set ofl elements from the set{1, 2, . . . , n}. Elements
of β may coincide among themselves. If∂α can be written as a certainDβ , we sayDβ is a
permutation of∂α , denoted asβ ∈ σ(α), also|β| is defined to be|α|, actually|β| = cardβ.
Corresponding to the addition of multi-indexα, such asα = α′ + α′′, hence∂α = ∂α′

∂α′′

, we
have the partition ofβ into two subsetsβ = β′ ∪ β′′, β′ ∈ σ(α′), β′′ ∈ σ(α′′) and Dβ =
Dβ ′

Dβ ′′

. So we also denoteβ = β′ + β′′. Similarly, we defineβ′ = β \ β′′ to be deleting from
β the subsetβ′′ while keep the original order of elements inβ′, and also writeβ′ = β − β′′.
Lastly, for multi-indexα = 0 and|α| = 0 meansα = (0, . . . , 0), and∂α = ∂0 = id. For β,
|β| = 0 meansβ = ∅ and alsoD∅ = id, hence we also useβ = 0 to denoteβ = ∅.

DEFINITION 1. When

β = β1 + · · · + βL = β1 ∪ · · · ∪ βL ,(53)

β i 6= 0 and elements inβ i keep their original order inβ, we say that(β1, . . . , βL ) is a partition
of β, L the partition number. Denoteλl = card{β i , |β i | = l }, i.e., the number of l-element-
subsets in (53).[λ] = (λ1, . . . , λ|β|) is called the partition type of (53).

We have an evident but important

LEMMA 2. For the numbers of subsets of various cardinality, we have

1 · λ1 + 2λ2 + · · · + |β|λ|β| = |β|(54)

From (54) we see,λ1 = |β| is possible (λ2 = · · · = λ|β| = 0), it meansβ is partitioned
into the sum of|β| singleton subsets. Butλ1 = |β| − 1 is impossible. In fact, the partition type
of β is just a non-negative- integer solution of (54) as a Diophantine equation.

LEMMA 3. The number of partitions (53) (the order of the subsetsβL is irrelevant) with
the same partition type[λ] is m!/L !(1!)λ1 · · · (m!)λm, |m| = |β|.

Proof. First, constructλ1 singleton-subsets. There are

( m
1

)( m − 1
1

)
· · ·

( m − λ1 + 1
1

)
=

(m)λ1

1!λ1

different ways. Next for the first doubleton-subsets, we take 2 arbitrary elements from the re-
mainingm−λ1 elements in(m−λ1)2/2! ways. (The chosen elements should keep their original
order inβ, thus there shouldn’t be(m− λ1)2 ways, which is the permutation number and hence
contains twice the same set with elements in opposite orders). The second doubleton-subsets
can be chosen in(m − λ1 − 2)2/2! ways and so on. Summing up, the doubleton-subsets can be
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chosen in(m−λ1)2λ2/(2!)λ2 ways. After the(m−1)- element subsets are chosen, there remain
m− [1 ·λ1 +2 ·λ2 +· · ·+ (m−1) ·λm−1] = mλm elements form-element subsets, the number
of which isλm. So they can be chosen in(mλm)λm/(m!)λm ways. Thus we have

(m)λ1(m − λ1)2λ2 · · · (m − [1 · λ1 + 2λ2 + · · · + (m − 1)λm−1])mλm

(1!)λ1(2!)λ2 · · · (m!)λm

ways to generate a partition of type [λ]. But the permutation ofL subsets in the partition is
irrelevant, hence the number of partitions ofβ with the same partition type [λ] is

m!

L !(1!)λ1 · · · (m!)λm
.

3.3. Lemmas on differentiation of composite functions

The computation below relies on differentiation of composite functions. We are to use a modifi-
cation of the Faa-de Bruno formula [16] (p. 78, Exer. 16). To facilitate the computation, we put
the techniques needed as three lemmas.

LEMMA 4. Let P(x, ξ) be a homogeneous polynomial inξ of degree l, then

P(x, ξ) =
∑

|α|=l

1

α!
∂α
ξ P(x, ξ)∂α

x

=
1

l !

∑

1≤i≤n

Dβ
ξ

P(x, ξ)Dβ
x

(55)

Particularly, for P(x, ξ) = ∂α
x , we have

∂α
x =

1

l !

∑

β∈σ(α)

Dβ
x .(56)

For Dα
x , β ∈ σ(α), we have

Dβ
x = ∂α

x(57)

This lemma is quite trival. (57) shows thatDβ
x and ∂α

x are the same when acting on a

function; (56) shows that∂α
x is the average ofDβ

x ’s with β ∈ σ(α); while (55) makes the Euler’s
formula for homogeneous function more symmetric.

Assume8(k) to be a smooth function ofk(x). By chain-rule,∂α
x 8(k) = { linear combina-

tion of 8γ (k)∂i1k · · · ∂2
j1 j2

k · · · }.

But to write down explicitly the coefficients is much easier for Dβ
x than for∂α

x . In fact we
have

LEMMA 5. Let5(β) be the set of partitions ofβ, then

Dβ
x 8(k) =

∑

5(β)

8(L)(k)Dβ1
k · · · DβL

k ,(58)

whereβ = β1 + · · · + βL .
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Proof. We proceed by induction. For|β| = 1, e.g.,Dβ
x = Dx , (58) becomes

Dx18(k) = 8(l)(k)Dx1k

which holds evidently. Suppose that the lemma holds for|β| = m − 1. For |β| = m, we may

assume thatDβ
x = D1Dβ ′

x , |β′| = m−1. Then the partitions ofβ may be one of two kinds. The
first isβ = β1 ⋃

(β2 ⋃
· · ·

⋃
βL ), β1 = {D1} andβ2 ⋃

· · ·
⋃

βL = β′ is a partition ofβ′ with
partition numberL − 1. The second kind are those not containing the singleton-subset{D1},
henceD1 is contained in another subset, sayDβ1

: Dβ1 = D1 · Dβ ′′

x , |β′′| = |β′| − 1. Thus

Dβ
x = D1(Dβ ′′

x Dβ2

x · · · DβL

x ) and the factorDβ ′′

x Dβ2

x · · · DβL

x constitutes a partition ofDβ ′

x of
partition number alsoL . 51(β′) = {β2 ⋃

· · ·
⋃

βL } and52(β′) = {β′′
⋃

β2 ⋃
· · ·

⋃
βL }

exhaust all possible partitions ofβ′. Hence, by induction hypothesis,

Dβ
x 8(k) = D1 · [Dβ ′

x 8(k)]

= D1
∑

5(β ′)

8(L ′) Dβ ′

k · · · DβL′

k

=
∑

51(β ′)

8(L ′+1)(k)D1k Dβ2
k · · · DβL

k

+
∑

52(β ′)

8(L ′)(k)(D1 · Dβ ′

)k · · · DβL
k

=
∑

51(β ′)

8(L)(k)D1k Dβ2
k · · · DβL

k

+
∑

52(β ′)

8(L)(k)(D1 · Dβ ′

k) · · · DβL
k

=
∑

5(β)

8(L)(k)Dβ1
k Dβ2

k · · · DβL
k .

The generalized Leibniz’s formula forD also takes a simpler form, namely, we have

LEMMA 6 (LEIBNIZ ’ S FORMULA).

Dβuv =
∑

β=β1+β2

Dβ1
u · Dβ2

v .(59)

The binomial coefficients disappear hence make the calculation easier. The proof is omitted
for its simplicity.

3.4. Computation of P2m(x, ξ)Ep (General plan)

In order to computeP(x, ∂x)u whereu is expressed as (49), we proceed term by term and start
from P(x, ∂x)EpU0, where Ep = exp[A/k] · kp. Since P = P2m + P2m−1 + · · · + P0
where P2m− j (x, ξ) is a homogeneous polynomial inξ of degree 2m − j , we first compute
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P2m(x, ∂x)EpU0 which by Leibniz’s formula can be written as

P2m(x, ∂x)EpU0 = U0P2m(x, ∂x)Ep +
n∑

i=1

∂ξi P2m(x, ∂x)Ep ·
∂U0

∂xi
+ · · ·(60)

Thus our plan is, first, computeP2m(x, ∂x)Ep, then lower order termsP2m− j (x, ∂x)Ep and

further
∑n

i=1 ∂ξi P2m(x, ∂x)Ep · ∂U0
∂xi

etc. Every term should be expressed as a series in powers

of k. It is to be verified, that the lowest order terms are of the order k2−4m and k3−4m for
determingA(x, y), p andU0. We also denoteP2m(x, ξ) by g(x, ξ) and note that the results are
applicable also toP2m− j (x, ξ) when replacingg by a lower degree polynoimal.

DenoteEp = 8(kp), where8(·) = exp(·), kp = Ak−1 + p logk. From Lemma 4,

g(x, ∂x)Ep =
1

(2m)!

∑

1≤i≤n

Dβ
ξ

P(x, ξ) · Dβ
x Ep , |β| = 2m ,

β = (i1, i2, . . . , i2m) and thei ’s take arbitrary value from(1, 2, . . . , n). Using Lemma 5, we
have

Dβ
x Ep =

∑

5(β)

8(L)(kp)Dβ1
kp · · · DβL

kp ,

and8(L)(kp) = 8(kp) since8(·) = exp(·), hence

Dβ
x Ep = Ep

∑

5(β)

Dβ1
kp · · · DβL

kp .(61)

For Dβ i
kp, for instance, forDβ1

kp

Dβ1
kp = Dβ1

(Ak−1) + pDβ1
logk .

Apply Leibniz’s formula for the first term, we have

Dβ1
(Ak−1) =

∑

β1=η1+γ 1

Dη1
ADγ 1

k−1 .

Apply Lemma 5 toDγ 1
k−1. γ 1 is partitioned asγ 1 = δ11 + · · · + δ1l1, then

Dγ 1
k−1 =

∑

5(γ ′)

8(l1)(k)Dδ11
k · · · Dδ1l1 k, 8(·) = (·)−1

=
∑

5(γ ′)

(−1)l1l1!k−(l1+1) Dδ11
k · · · Dδ1l1 k .

Hence

Dβ1
(Ak−1) =

∑

β1=η1+γ 1

∑

5(γ 1)

Dη1
A(−1)l1(l1!)k−(l1+1) Dδ11

k · · · Dδ1l1 k .(62)

Similarly, apply lemma 5 to computeDβ1
(logk), we have

Dβ1
(logk) =

∑

5(β1)

(−1)l1−1(l1 − 1)!k−l1 Dδ11
k · · · Dδ1l1 k .(63)
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In order to combine (62) and (63), consider the part of (62) whereη1 = 0, i. e., β1 = γ 1, and
they can be combined into

A
∑

5(β1)

(−1)l1l1!k−(l1+1) Dδ11
k · · · Dδ1l1 k ,

and the sum of (62) and (63) gives

Dβ1
(kp) =

∑

β1=η1+γ 1

∑

5(γ 1)

(Dη1
A)∗(−1)l1(l1!)k−(l1+1) Dδ11

k · · · Dδ1l1 k ,(64)

(Dη1
A)∗ denotesDη1

A whenη1 6= 0 and(D0A)∗ = (A − pk/ l1).

Substuting these results into (61), and denotel = (l1, . . . , l L ), |l | = l1 + · · · + l L , l ! =
l1! · · · l L !, l i is the partition number ofηi = (δi1, . . . , δil i ). Re-numberingDδ11

k, . . . , Dδil i k,

. . . asDδ1
k, . . . , DδN

k, N is the total partition number. Then by lemma 4,

g(x, ∂x)Ep =
Ep

(2m)!

∑

β

Dβ
ξ

g(x, ξ) ·
∑

5(β)

(Dη1
A)∗ · · · (DηL

A)∗ ·

· (−1)|l |l !k−(N+L) · Dδ1
k · · · DδN

k , |β| = 2m .

(65)

5(β) under the second
∑

denotesβ twice partitionedβ = β1 + · · · + βL =
∑L

i=1(ηi +
∑l i

j =1 δi j ). If we write Dβ = Di1 Di2 · · · Di2m , (65) can be further simplified:

g(x, ∂x)Ep =
Ep

(2m)!

∑

1≤i≤n

Dβ
ξ

g(x, ξ)(−1)|l |l !k−(N+L) · (Dη1
A)∗ · · ·

· (DηL
A)∗ · Dδ1

k · · · DδN
k .

(66)

To organize further computation, we proceed in the descending order of the 2 partition
numbersL andN.

In the first partitionβ = β1 + · · · + βL , all |β i | > 0 hence

L ≤ |β1| + · · · + |βL | = |β| = 2m .(67)

In the second partitionβ i = ηi + γ i , eitherγ i = 0 andβ i = ηi , eitherγ i 6= 0, γ i =
δi1 + · · · + δil i , all δi j 6= 0, thus|δi | > 0 and

N ≤ |δ1| + · · · + |δN | + |η1| + · · · + |ηL | =
L∑

i=1

|β i | = 2m .(68)

We should also take into consideration that

g(x, ξ) = P2m(x, ξ) = [a(x, ξ)]2 ,

hence

Di g(x, ξ) = 2a(x, ξ)ai (x, ξ) ,

Di D j g(x, ξ) = 2a(x, ξ)ai j (x, ξ) + 2ai (x, ξ)a j (x, ξ) ,

Di D j Dl g(x, ξ) = 2a(x, ξ)ai j l (x, ξ)

+ 2
[
ai (x, ξ)a j l (x, ξ) + a j (x, ξ)ail (x, ξ) + al (x, ξ)ai j (x, ξ)

]
.

(69)
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Sincea(x, kx) = k
m−1 , we have

g(x, kx) =
k2

(m − 1)2
,

Di g(x, kx) =
2k

m − 1
ai (x, ki ) ,

Di D j g(x, kx) =
2k

m − 1
ai j (x, ki ) + 2ai (x, kx)a j (x, kx) ,

Di D j Dl g(x, kx) =
2k

m − 1
ai j l (x, ki ) + 2

∑
ai (x, kx)a j l (x, kx) .

(70)

Thus in thecoefficientsof (66), there may appear powers ofk up tok2.

3.5. Computation of P2m(x, ∂x)Ep (cont’)

I. First consider those terms in (66) whereL = 2m. By (67) all|β i | = 1, and sinceβ i = ηi +γ i ,
then either|γ i | = 1 or |γ i | = 0. Set{1, 2, . . . , 2m} = I

⋃
J, I

⋂
J = ∅, such that fori ∈ I ,

|γ i | = 1, |ηi | = 0 hence|I | = N; for i ∈ J |γ i | = 0, |ηi | = 1. In short, terms in (66)
corresponding toL = 2m are

Ep

(2m)!

∑

|β|=2m

Dβ
ξ

g(x, ξ)
∑

I ,J

(−1)|l |l !k−(N+2m) Dδ1
k · · ·

· DδN
k(Dη1

A)∗ · · · (DηL
A)∗ .

(I-A). N = 2m. From (68), this is the extreme case when allηi = 0, |γ i | = 1, thusγ i = δi ,

and the partition numberl i = 1, |l | = 2m, l ! = 1, Dδ1
k · · · DδN

k = ki1 · · · ki2m . By Euler’s
formula, these terms can be summed up to give

Epg(x, kx)(A − pk)2mk−4m =
Ep

(m − 1)2
(A − pk)2mk2−4m

= Ep

[
A2m

(m − 1)2
k2−4m −

2mpA2m−1

(m − 1)2
k3−4m

+ O(k4−4m)

]
.

(71)

(I-B). N = 2m− 1. Delete any element from{i1, i2, . . . , i2m} and let the remaining correspond
to δ1, . . . , δN . There are 2m such chooses and the following is one typical, thus we should
multiply the results by 2m. Let {δ1, . . . , δN } = {i2, . . . , i2m}, thenl2 = · · · = l2m = 1, l ! = 1,

|l | = 2m − 1; also(Dη1
A)∗ = ∂i1 A, (Dη2

A)∗ = · · · = (DηL
A)∗ = A − pk. By Euler’s

formula,

1

(2m)!

∑

|β|=2m

Dβ
ξ

g(x, ξ)Dδ1
k · · · DδN

k(Dη1
A)∗(−1)2m−1k−(4m−1) ·

·(A − pk)2m−1 =
1

2m

n∑

i=1

∂i g(x, kx)∂i A(−1)2m−1k−(4m−1)(A − pk)2m−1

= −
2k

2m(m − 1)

n∑

i=1

ai (x, kx)∂i Ak−(4m−1)(A − pk)2m−1.
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Sincekx = τξ and from (46)ai (x, ξ) = dxi
dt , the final results for terms corresponding to

L = 2m, N = 2m − 1 is

Ep

[
−

2A2m−1

m − 1
t
d A

dt
k2−4m +

2A2m−2

m − 1
t
d A

dt
(2m − 1)pk3−4m + O(k4−4m)

]
.(72)

(I-C). N = 2m − 2. Delete for instance{i1, i2} from {i1, i2, . . . , i2m} and let the remaining
be δ1, . . . , ∂N ( 1

2(2m)2 such chooses), thenl3 = · · · = l2m = 1, |l | = 2m − 2, l ! = 1,
(Dη1 A)∗ = ∂i1 A, (Dη2 A)∗ = ∂i2 A, all other(Dη A)∗ = A − pk. Use also Euler’s formula and

multiply the results by12(2m)2, the final result is

1

2
Ep

n∑

i1,i2=1

gi1i2(x, kx)∂i1 A∂i2 Ak2−4m(A − pk)2m−2

= Ep

[ n∑

i1,i2=1

1

m − 1
ai1,i2(x, kx)∂i1 A∂i2 A · A2m−2k3−4m

+
(
t
d A

dt

)2
A2m−2k2−4m − p

(
t
d A

dt

)2
(2m − 2)A2m−3k3−4m

+ O(k4−4m)

]
.

(73)

(I-D). N = 2m − 3. A typical example is deleting{i1, i2, i3} from {i1, i2, . . . , i2m} and let
{δ1, . . . , δN } = {i4, i5, . . . , i2m}. A factor (2m)3

3! should be added to the result and the final
result obtained would be

(2m)3

3!
Ep

{ 1

(2m)3
2

∑

i1,i2,i3

[ai1(x, kx)ai2i3(x, kx) + ai2(x, kx)ai2i3(x, kx)

+ ai3(x, kx)ai1i2(x, kx)] ∂i1 A∂i2 A∂i3 A(−1)2m−3A2m−3k3−4m

+ O(k4−4m)
}

= −Ep

[ ∑

i1,i2

ai1,i2(x, kx) ∂i1 A∂i2 A · t
d A

dt
A2m−3k3−4m

+ O(k4−4m)
]
,

(74)

Our computation would stop here. Since forN ≤ 2m − 4, k−(N+L) = O(k4−4m) and
hence omitted.

Summing up, whenL = 2m, we need to consider the casesN = 2m, 2m − 1, 2m − 2 and
2m − 3 to obtain (71), (72), (73) and (74), giving an asymptotic expansion ofP2m(x, ∂x)Ep up
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to O(k4−4m) as

Epk2−4mA2m−2
(
t
d A

dt
−

A

m − 1

)2

− Epk3−4mA2m−3
[
(2m − 2)p

(
t
d A

dt
−

A

m − 1

)2

−
2p

m − 1

(
t
d A

dt
−

A

m − 1

)
A

+
( ∑

i1,i2

ai1,i2(x, kx) ∂i1 A∂i2 A
)(

t
d A

dt
−

A

m − 1

)]

+ EpO(k4−4m) .

(75)

II. L = 2m − 1. From (67),
|β1| + · · · + |β2m−1| = 2m ,

The only solution is: one ofβ i , say|β2m−1| = 2 and other|β i | = 1. A typical choice for the
β i ’s is β j = i j , j = 1, . . . , 2m− 2, β2m−1 = (i2m−1, i2m). There are1

2(2m)2 similar choices,

so we must add a factor12(2m)2 to the results of all particular case.

(II-A). N = 2m. This case can be attained only when forβ i = ηi + γ i , setηi = 0, and
γ i = δi , . . . , γ 2m−2 = δ2m−2. Hencel = (l1, . . . , l L) = (1, . . . , 1, 2), |l | = 2m, l ! = 2. The
terms in (66) arising from this pair of particular(L , N) are

(2m)2

2
Ep

1

(2m)!

∑

1≤i≤n

Dβ
ξ

g(x, ξ)∂i1k · · · ∂i2mk · (−1)2m · 2 · k−(4m−1) ·

·(A − pk)2m = (2m)2Epg(x, kx)k−(4m−1)(A − pk)2m

= Ep

[
(2m)2

(m − 1)2
k3−4mA2m + O(k4−4m)

]
.

(76)

(II-B). N = 2m−1. Now, we have 2 possibilities for the first partition, one isthe same as above,
l = (1, . . . , 1, 2), |l | = 2m−1, l ! = 2. In this case, roughly speaking, one ofDδ (say∂ j ) should

be acted onA, giving ∂ j A. Since there are 2m choices forDδ, we obtain corresponding terms
in (66) as

−
(2m)2

2
· 2m·Ep

1

(2m)!

∑

1≤i≤n

Dβ
ξ

g(x, ξ)∂i1k · · · ∂̂ j k · · ·

· ∂i2mk · ∂ j A · 2 · k2−4m(A − pk)2m−1

= −(2m)2Ep

n∑

j =1

∂ξ j g(x, kx)
∂ A

∂x j
k2−4m(A − pk)2m−1

= −
2(2m)2

m − 1
Ep

[
t
d A

dt
k3−4mA2m−1 + O(k4−4m)

]

(77)

(“
∧

” means wanting).

The second possibility is thatl = (1, 1, . . . , 1) (2m − 1 entries),|l | = 2m − 1, l ! = 1. The

first 2m − 2 Dβ i
(in Dβ i

k) all act onk−1 and the lastDβL
in DβL

k also acts onk−1 giving a
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second order derivature ofk. Thus we have

(2m)2

2
Ep

1

(2m)!

∑

1≤i≤n

Dβ
ξ

g(x, ξ)∂i1 · · · ∂i2m−2k∂2
i2m−1i2m

k · (−1)2m−1 · 1 ·

· (A − pk)2m−1k2m−4

= −
Ep

2

∑

i, j

gi j (x, kx)∂2
i j k · A2m−1k2−4m

+
Ep

2
· p

∑

i, j

gi j (x, kx)∂2
i j k · A2m−2k3−4m + EpO(k4−4m) .

Since it holdsgi j (x, kx) = 2a(x, kx)ai j (x, kx) + 2ai (x, kx)a j (x, kx) = 2k
m−1ai j (x, kx) +

2ai (x, kx)a j (x, kx), we have

−Ep
∑

i, j

ai (x, kx)a j (x, kx)∂2
i j k A2m−1k2−4m

− Ep ·
1

m − 1

∑

i, j

ai j (x, kx)∂2
i j k A2m−1k3−4m

+ pEp
∑

i, j

ai (x, kx)a j (x, kx)∂2
i j k A2m−2k3−4m + EpO(k4−4m) .

But (22) in part I shows that
∑

i, j ai j (x, kx)∂2
l j k = δil (1 + O(t)), and Euler’s formula gives

a j (x, kx) = 1
m−1

∑n
l=1 a j l (x, kx)∂l k, hence the result above can be simplified further to give

−
Ep

m − 1

∑

i, j ,l

ai (x, kx)a j l (x, kx)∂2
i j k∂l k A2m−1k2−4m

−
Ep

m − 1
[n + O(t)] A2m−1k3−4m

+
pEp

m − 1
·
∑

i, j ,l

ai (x, kx)a j l (x, kx) ∂2
i j k ∂l k · A2m−2k3−4m

+ EpO(k4−4m)

= −
Ep

m − 1

∑
al (x, kx) ∂l k(1 + O(t))A2m−1k2−2m

−
Ep

m − 1
[n + O(t)] A2m−1k3−4m

+
pEp

m − 1

∑
al (x, kx) ∂l k(1 + O(t))A2m−2k3−4m + O(k4−4m)

= −
Ep

m − 1

( m

m − 1
+ n

)
(1 + O(t))A2m−1k3−4m + EpO(k4−4m) .

(78)

(II-C). N = 2m− 2. There are also 2 possiblities for the partitionβ = β1 + · · · + βL . The first
is the same as above, i.e.,(2m)2

2 choices of the typel = (1, 1, . . . , 2) (2m− 1 entries),|l | = 2m,

l ! = 2. In order thatN = 2m − 2, among the differentiationsDβ (total order 2m), 2 must be
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chosen acting onA giving terms containing∂i1 A∂i2 A (again (2m)2
2 choices fori and j among

{i1, i2, . . . , i2m}). They give

(2m)2

2
·
(2m)2

2
Ep

1

(2m)!

∑

1≤i≤n

Dβ
ξ

g(x, ξ)∂i1k · · · ∂̂ j1k · · · ∂̂ j2k · · ·

∂i2mk∂ j1 A∂ j2 A · (−1)2m · 2 · k3−4m(A − pk)2m−2

=
(2m)2

2
Ep

∑
gi j (x, kx)∂i A∂ j A · A2m−2k3−4m + EpO(k4−4m)

= (2m)2Ep

(
t
d A

dt

)2
A2m−2k3−4m + EpO(k4−4m) .

(79)

The other possiblity is againl = (1, 1, . . . , 1) (2m − 1 entries),|l | = 2m − 1, l ! = 1. Thus one
and only one of|β i | should be 2. There are(2m)2

2 choices for this subset,βL = (i2m−1, i2m)

is a typical one. Since all entries inl are 1, there would be no further partition forDβL
, either

it acts just onA, giving terms containing∂2A, all other Dβ act onk−1 giving N = 2m − 2

∂k’s; either DβL
acts onk−1 giving ∂2k and among the remainingDβ i

, choose one and only
one acting onA (2m−2 such choices) and the remaining 2m−3 act onk−1 giving 2m−3 ∂k’s.
Thus, there are totally 1+ (2m − 3) = 2m − 2 derivatives onk agreeing withN = 2m − 2.
Hence, these terms are

(2m)2

2
Ep

1

(2m)!

∑

1≤i≤n

Dβ
ξ

g(x, ξ)∂i1k · · · ∂i2m−2k∂2
2m−1,2mA ·

(−1)2m−1 · 1 · (A − pk)2m−2k3−4m

+
(2m)2

2
(2m − 2)Ep

1

(2m)!

∑

1≤i≤n

Dβ
ξ

g(x, ξ)∂i1 A∂i2k · · · ∂i2m−2k ·

· ∂2
2m−1,2mk · (−1)2m−1 · 1 · (A − pk)2m−2k3−4m

= −Ep
∑

i, j

ai (x, kx)a j (x, kx)∂2
i j A · A2m−2k3−4m

−
1

2
Ep

∑

i, j ,l

gi, j ,l (x, kx)∂i A∂2
j l k A2m−2k3−4m + EpO(k4−4m) .
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But
gi, j ,l (x, kx) = 2a(x, kx)ai j l (x, kx) + 2[ai (x, kx)a j l (x, kx)

+ a j (x, kx)ail (x, kx) + al (x, kx)ai j (x, kx)]

=
2k

m − 1
ai j k (x, kx) + 2[ai (x, kx)a j l (x, kx)

+ a j (x, kx)ail (x, kx) + al (x, kx)ai j (x, kx)] ,
∑

j ,l

a j l (x, kx)∂2
j l k = n(1 + O(t)) ,

∑

j

a j (x, kx)∂2
j l k =

1

m − 1

∑

i,l

ai j (x, kx)∂i k∂2
j l k

=
1

m − 1

∑

i

δil ∂i k(1 + O(t))

=
kl

m − 1
(1 + O(t)) ,

∑

j ,l

a j (x, kx)ail (x, kx)∂2
j l k =

1

m − 1

∑

l

ail (x, kx)kl (1 + O(t))

= ai (x, kx)(1 + O(t)) .

Hence,

−Ep
∑

i, j

ai (x, kx)a j (x, kx)∂2
i j A · A2m−2k3−4m

− Ep

[ ∑

i, j ,l

ai (x, kx)a j l (x, kx)∂i A∂2
j l k

+
∑

i, j ,l

a j (x, kx)ail (x, kx)∂i A∂2
j l k

+
∑

i, j ,l

al (x, kx)ai j (x, kx)∂i A∂2
j l k

]
A2m−2k3−4m + EpO(k4−4m)

= −Ep
∑

i, j

ai (x, kx)a j (x, kx)∂2
i j A · A2m−2k3−4m

− Ep

[
n
(
t
d A

dt

)
(1 + O(t))

+
2

m − 1

∑

i,l

ail (x, kx)∂l k∂i A
]
A2m−2k3−4m + EpO(k4−4m)

= −Ep
∑

i, j

ai (x, kx)a j (x, kx)∂2
i j A · A2m−2k3−4m

− Ep(n + 2)t
d A

dt
(1 + O(t))A2m−2k3−4m + EpO(k4−4m) .

(80)

For L = 2n − 1, N ≤ 2m − 3, k−(L+N) = O(k4−4m), hence omitted.

III. L = 2m − 2, andL < 2m − 2. (A) gives now

|β1| + · · · + |β2m−2| = 2m .
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For N = 2m, all Dβ i
k must partitioned into∂ acting onk−1, hence there must appear∂i1k · · ·

∂i2mk, joining them toDβ
ξ

g(x, ξ) givesg(x, kx) = O(k2), hence all these terms areO(k4−4m)

and omitted. ForN = 2m − 1, there would appear 2m − 1 ∂k’s, and Euler’s formula associates

them toDβ
ξ

g(x, ξ) to give ∂i g(x, kx) = 2a(x, kx)ai (x, kx) = O(k), hence the total order of

such terms are againO(k4−4m). N ≤ 2m − 2 can also be neglected.

L ≤ 2m − 3 gives only termsO(k4−4m) hence neglected.

Our computation ofg(x, ∂x)Ep terminates here. We tabulate our results as follows:

I. L = 2m

(I-A) L = 2m, N = 2m, (71).

(I-B) L = 2m, N = 2m − 1, (72).

(I-C) L = 2m, N = 2m − 2, (73).

(I-D) L = 2m, N = 2m − 3, (74).

L = 2m, N ≤ 2m − 4 give terms of orderO(k4−4m), hence negligible.

Summing up, we have (75) for the caseL = 2m.

II. L = 2m − 1

(II-A) L = 2m − 1, N = 2m, (76).

(II-B) L = 2m − 1, N = 2m − 1, (77).

After simplifying terms containing the factors∂2
i j k, we have (78).

(II-C) L = 2m − 1, N = 2m − 2, (79).

Simplifying terms containing∂2
i j k, but reserving∂2

i j A, we have (80).

L = 2m − 1, N ≤ 2m − 3, negligible, since they are terms of the orderO(k4−4m).

III. L ≤ 2m − 2 gives terms of the orderO(k4−4m), hence negligible.

These results are summed as the

PROPOSITION1. The terms of order k2−4m and k3−4m in the asymptotic expansion of
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P2m(x, ∂x)Ep are the following:

k2−4m :Ep A2m−2
(
t
d A

dt
−

A

m − 1

)2
.

k3−4m : − Ep p
[
2(m − 1)A2m−3

(
t
d A

dt
−

A

m − 1

)2

−
2

m − 1
A2m−2

(
t
d A

dt
−

A

m − 1

)]

+ Ep

[
(2m)2A2m−2

(
t
d A

dt
−

A

m − 1

)2

− 2A2m−3
∑

i, j

ai j (x, kx)∂i A∂ j A
(
t
d A

dt
−

A

m − 1

)

−
n(m − 1) + m

(m − 1)2
(1 + O(t))A2m−1

− (n + 2)t
d A

dt
· A2m−2(1 + O(t))

−
∑

i, j

ai (x, kx)a j (x, kx)∂2
i j A · A2m−2

]
.

(81)

3.6. Computation of P2m− j (x, ∂x)Ep

The symbolP(x, ξ) can be written as the sum of homogeneous polynomials inξ of degree
2m − j :

P(x, ξ) = P2m(x, ξ) + P2m−1(x, ξ) + · · · .(82)

P2m(x, ∂x)Ep has been discussed in detail, now we proceed to compute

P2m− j (x, ∂x)EpU0 =P2m− j (x, ∂x)Ep · U0

+
n∑

i=1

∂

∂ξi
P2m− j (x, ∂x)Ep ·

∂U0

∂xi
+ · · · , ( j ≥ 1) .

(83)

First considerP2m− j (x, ∂x)Ep, it is almost the same as above, only replacingg(x, ξ) by
P2m− j (x, ξ), thus for (66) we have now

P2m− j (x, ∂x)Ep =
Ep

(2m − j )!

∑

1≤i≤n

Dβ
ξ

P2m− j (x, ξ)(−1)|l |l !k−(N+L) ·

(Dη1
A)∗ · · · (DηL

A)∗Dδ1
k · · · DδN

k ,

(84)

for (67) and (68), we have now

L ≤ |β1| + · · · + |βL | = 2m − j , ( j ≥ 1) .(85)

N ≤ |δ1| + · · · + |δN | + |β1 − γ 1| + · · · + |βL − γ L | = 2m − j , ( j ≥ 1) .(86)

Thus, the lowest term in (84) is
k2 j −4m. ( j ≥ 1)
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Similarly, ∂ξi P2m− j (x, ξ) is a polynoimal inξ of degree 2m − j − 1, hence

∂

∂ξi
P2m− j (x, ∂x)Ep = O(k2+2 j −4m), ( j ≥ 1).(87)

Since we need only terms of orderk2−4m andk3−4m, so from the contributions of lower order
operatorsP2m− j (x, ∂x)EpU0, we need to consider onlyP2m−1(x, ∂)Ep · U0.

From (84), we have

P2m−1(x, ∂x)Ep =
Ep

(2m − 1)!

∑

1≤i≤n

Dβ
ξ

P2m−1(x, ξ)(−1)|l |l !k−(N+L) ·

· (Dη1
A)∗ · · · (DηL

A)∗Dδ1
k · · · DδN

k .

(88)

Consider the case L = 2m − 1. For N = 2m − 1, we must havel = (1, 1, . . . , 1)

(L = 2m−1 entries),|l | = 2m−1, l ! = 1, δ1 = · · · = δN = 1, corresponding terms in (88) are

Ep · P2m−1(x, kx)(−1)2m−1(A − pk)2m−1k2−4m

= Ep[−P2m−1(x, kx)A2m−1k2−4m

+ (2m − 1)pP2m−1(x, kx)A2m−2k3−4m + O(k4−4m)] .

(89)

Next, let N = 2m − 2. A typical case is to choose(δ1, . . . , δ2m−2) = (i2, . . . , i2m−1),

thus(Dη1
A)∗ = ∂i1 A, (Dη2

A)∗ = · · · = (DηL
A)∗ = A − pk. There are 2m − 1 such choices,

so we should multiply the results obtained by 2m − 1 and obtain terms in (88) corresponding to
L = 2m − 1, N = 2m − 2. They are

Ep

n∑

i=1

∂i P2m−1(x, kx)∂i Ak3−4m(A − pk)2m−2

= Ep

n∑

i=1

∂i P2m−1(x, kx)∂i A · Am−2k3−4m + EpO(k4−4m) .

(90)

WhenN ≤ 2m − 3, k−(N+L) = O(k4−4m) and is negligible.

Consider the case L = 2m − 2. From (67), we have

2m − 2 ≤ |β1| + · · · + |β2m−2| = 2m − 1 .

There is one and only one|β i | = 2, the others:|β i | = 1. We may chooseβ2m−2 =
(i2m−2, i2mm−1), β1 = i1, . . . , β2m−3 = i2m−3. Since there are12(2m−1)2 ways of choosing

|β i | = 2, the results should be multiplied by12(2m − 1)2.

We need only consider the caseN = 2m − 1. This would require that both differentiations

in Dβ2m−2
k acting onk and giving∂i2m−2k∂i2m−1k. Combining the consideration ofL andN we

obtain

1

2
(2m − 1)2Ep

1

(2m − 1)!

∑

1≤i≤n

Dβ
ξ

P2m−1(x, ξ)∂i1k · · · ∂i2m−1k ·

· k3−4m(−1)2m−1(A − pk)2m−1

= −
(2m − 1)2

2
Ep P2m−1(x, kx)A2m−1k3−4m + EpO(k4−4m) .

(91)
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All other terms are neglected. The final result is

P2m−1(x, ∂x)Ep = Ep

[
− P2m−1(x, kx)A2m−1k2−4m

+ (2m − 1)pP2m−1(x, kx)A2m−2k3−4m

+
n∑

i=1

∂i P2m−1(x, kx)
∂ A

∂xi
· A2m−2k3−4m

+ O(k4−4m)
]
.

(92)

3.7. Computation of
∑n

i=1 ∂i P2m(x, ∂x)E p · ∂U0
∂xi

Here we should find the first term in the asymptotic expansion of

∂i P2m(x, ∂x)E p = Qi (x, ∂x)E p ,

Qi (x, ξ) is a homogeneous polynomial ofξ of order 2m − 1. Hence (92)is appliable, with
Qi (x, ξ) replacingP2m−1(x, ξ). But

Qi (x, ξ) = ∂i P2m(x, ξ) = ∂i a
2(x, ξ) = 2a(x, ξ)ai (x, ξ) ,

hence

Qi (x, kx) =
2k

m − 1
ai (x, kx) .

Substitute this into (92) withQi replacingP2m−1, we have

n∑

i=1

∂i P2m(x, ξ)E p ·
∂U0

∂x0
= E p

[
−

2

m − 1
A2m−1k3−4m

∑

i

ai (x, kx)
∂U0

∂xi

+ 2A2m−2k3−4mt
d A

dt

∑

i

Ai (x, kx)
∂U0

∂xi

+ O(k4−4m)

]

= E p
[
2
(
t
d A

dt
−

A

m − 1

)
A2m−2k3−4mt

dU0

dt

+ O(k4−4m)
]
.

(93)

After this long computation, combining (81), (92) and (93),we have

PROPOSITION2. The first terms in the asymptotic expansion of P(x, ∂x)EpU0 is

P(x, ∂x)EpU0 = E p[ A2m−2� (A)U0k2−4m + A2m−3� (A,U0)k3−4m

+ � (A,U0)] .
(94)

where

� (A) =
(
t
d A

dt
−

A

m − 1

)2
− AP2m−1(x, kx) ,

� (A,U0) = A2m−3[ p�1(A,U0) + �
2(A,U0)] ,

(95)
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�
1(A,U0) = −

[
2(m − 1)

(
t
d A

dt
−

A

m − 1

)2
−

2

m − 1
A
(
t
d A

dt
−

A

m − 1

)

− (2m − 1)AP2m−1(x, kx)

]
U0 ,

(96)

�
2(A,U0) = 2A

(
t
d A

dt
−

A

m − 1

)
t
dU0

dt
+

[
(2m)2A

(
t
d A

dt
−

A

m − 1

)2

−
n(m − 1) + m

(m − 1)2
(1 + O(t))A2 − (n + 2)t

d A

dt
· A(1 + O(t))

−
∑

i, j

ai j (x, kx)∂i A∂ j A
(
t
d A

dt
−

A

m − 1

)

− A
∑

i, j

ai j (x, kx)a j (x, kx)∂2
i j A

+ A
∑

i

∂i P2m−1(x, kx)
∂ A

∂xi

]
U0 ,

(97)

� (A,U0) is the remainder which is of order O(k4−4m).

3.8. Eiconal system for A and k

As we mentioned earlier, we should have two equations to determinatek and A. The first is
Leray’s result

a(x, kx) =
k

m − 1
.

� (A) = 0 gives the eiconal equation forA:
(
t
d A

dt
−

A

m − 1

)2
= P2m−1(x, kx)A .(98)

These two equations constitute the eiconal system.

Let t = τm−1 andA = τ B, we have

τ3
(d B

dτ

)2
= (m − 1)2P2m−1(x, kx)B .

Sincekx = τξ , using Taylor’s formula, we have
(d B

dτ

)2
= (m − 1)2τ2(m−2)[ P2m−1(y, η) + O(τ)]B .

Integrating this ODE along the Hamiltonian orbit fora(x, ξ), we have

2
√

B = (m − 1)

∫ τ

0
τm−2√

P2m−1(y, η) + O(τ) dτ + C .

Let C = 0 and assume that

P2m−1(y, η) 6= 0 ,(99)

We have

B =
1

4
τ2m−2P2m−1(y, η)(1 + O(t)) ,

A =
1

4
τ2m−1P2m−1(y, η)(1 + O(t)) .

(100)
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We are to obtain transport equation forU0 from � (A,U0) = 0. In order to simplify it,
substitute (100) into it and we have

�
1(A,U0) = −

[
2(m − 1)P2m−1(x, kx)A −

2

m − 1
P1/2

2m−1(x, kx)A3/2

− (2m − 1)P2m−1(x, kx)A
]
U0

=
m

4(m − 1)
τ4m−2P2

2m−1(y, η)(1 + O(t))U0 ,

(101)

�
2(A,U0) =

1

4(m − 1)
τ4m−2P2

2m−1(y, η)(1 + O(t))τ
dU0

dτ

+
(2m)2

16
[τ2m−1P2m−1(y, τ )]3(1 + O(τ))U0

−
1

16(m − 1)2
[2m2n − 2mn+ 4m2 − 5m + 2] ·

· [τ2m−1P2m−1(y, η)]2(1 + O(τ))U0

−
1

4
τ2m−1P2m−1(y, η)(1 + O(τ))

[
2
∑

i, j

ai j (x, kx)∂i A∂ j A

+
∑

i, j

ai (x, kx)a j (x, kx)∂2
i j A −

∑

i

∂i P2m−1(x, kx)
∂ A

∂xi

]
U0 .

(102)

3.9. Transport equation for U0

� (A,U0) = 0 is the transport equation forU0 which is its bounded solution. For this purpose,
(102) should be further simplified.

Note that
∂ A

∂ηi
=

n∑

j =1

∂ A

∂x j

∂x j

∂ηi

and the Hamiltonian system forx gives

x j = y j + a j (y, η)t + O(t) ,

hence
∂x j

∂ηi
= ai j (y, η)t + O(t) ,

D(x)

D(η)
= tHessηa(y, η)(1 + O(t)) .

Denote [Hessηa(y, η)]−1 = (bi j (y, η)). We have

∂ A

∂x j
= t−1

∑

i

bi j (y, η)(1 + O(t))
∂ A

∂η j
.

But (100) givesA as a function ofη, we have

∂ A

∂x j
=

1

4
t−1

∑

i

bi j (y, η)(1 + O(t))P2m−1, j (y, η) = O(τm) ,(103)
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thus,

∑

i, j

ai j (x, kx)∂i A∂ j A = O(τm−2+2m) = τ2m−1O(τm−1) .(104)

Next, denoteD = t d
dt =

∑
i ai (x, kx) ∂

∂xi
, we have

∑

i, j

ai (x, kx)a j (x, kx)∂i j A =
∑

i

ai (x, kx)D(∂i A)

=
∑

i

D(ai (x, kx)∂i A) −
∑

i

∂i A · Dai

= D2A −
∑

i

∂i ADai

= D
( A

m − 1
+ [ P2m−1(x, kx)A]1/2

)
−

∑

i

∂i ADai

=
1

m − 1
DA +

P DA+ ADP

2
√

P A
−

∑
∂i ADai ,

(hereP = P2m−1(x, kx)) .

Since

DA = t
d A

dt
=

A

m − 1
+

√
P A,

then, the expression above can be simplified further:

=
τ2m−1

4(m − 1)2
P2m−1(y, η)(1 + O(τ)) +

3τ2m−1

4(m − 1)
P2m−1(y, η)(1 + O(τ))

+
τ2m−1

2
P2m−1(y, η)(1 + O(τ)) +

1

4
DP2m−1(x, kx) −

∑
∂i ADai

=
(2m − 1)2

4(m − 1)2
τ2m−1P2m−1(y, η) −

∑

i

∂i ADai .
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Now

∑

i

∂i ADai =
∑

i, j

∂ A

∂xi
a j (x, kx)

∂

∂x j
ai (x, kx)

=
∑

i, j

∂ A

∂xi
a j (x, kx)

(
aix j (x, kx) +

∑

l

ail (x, kx)
∂2k

∂x j ∂xl

)

=
∑

i, j

∂ A

∂xi
a j (x, kx)(aix j (x, kx) + δi j (1 + O(τ))

=
∑

i, j

∂ A

∂xi
a j (x, kx)aix j (x, kx) +

∑

i

ai (x, kx)
∂ A

∂xi
(1 + O(τ))

=
∑

i, j

∂ A

∂xi
a j (x, kx)aix j (x, kx) + t

d A

dt
(1 + O(τ))

= τ2m−1O(τ) +
A

m − 1
+

√
P2m−1(x, kx)A(1 + O(τ))

= τ2m−1O(τ) +
( 1

4(m − 1)
+

1

2

)
τ2m−1P2m−1(y, η)(1 + O(τ))

=
2m − 1

4(m − 1)
τ2m−1P2m−1(y, η)(1 + O(τ)) .

(105)

For the last term in (102), we have

∑

i

∂i P2m−1(x, kx)
∂ A

∂xi
= O(τ3m−2) = τ2m−1O(τm−1)(106)

Substituting (104), (105), (106) into (102), we have

�
2(A,U0) =

1

4(m − 1)
[τ2m−1P2m−1(y, η)]2(1 + O(τ))

[
τ

dU0

dτ
−

( M

4(m − 1)
+ τ f (τ, η, y)

)
U0

]
,

(107)

hereM = 2m(m − 1)(n + 1), f (τ, η, y) is holomorphic in(τ, η) nearτ = 0.

Combining (101) for�1(A,U0) and (107) for�2(A,U0), we obtain finally the transport
equation forU0:

τ
dU0

dτ
+

[
mp−

M

4(m − 1)
− τ f (τ, η, y)

]
U0 = 0 .(108)

ForU0 to be bounded nearτ , we must choose

p =
M

4m(m − 1)
=

n + 1

2
,(109)

and

U0 = exp

(∫ τ

0
f (s, η, y) ds

)
.(110)
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3.10. Main result

We have been seeking a solution for the equationP(x, ∂x)u = 0 in the form of (49):

u(x, y) = exp[A(x, y)/k(x, y)]
∞∑

h=0

Uhhp+h ,

what we have attained up to present is only the solution of eiconal system fork(x, y) ((47)) and
A(x, y) ((98)) and also the transport equation forU0 ((108)). Hence,p is defined by (109),U0
by (110) andA(x, y) by (100).

ForUh, h ≥ 1, we would obtain similar equation as (108) only withp + h replacingp and
the right hand side would be an expression linear inUh−1, . . . ,Uh−2m and their derivatives, i.e.

τ
dUh

dτ
+ [mh− τ f (τ, η, y)]Uh = L(Uh−1, . . . ,Uh−2m+1) .(111)

The only bounded solution of it is

Uh =
U0

τmh

∫ τ

0

smh−1

U0
L(Uh−1, . . . ,Uh−2m+1) ds.(112)

Thus we are brought back to the case of simple-characteristic problems as discussed in Part I and
we come to our main result:

THEOREM 5. Let P(x, ∂x) be a holomorphic linear partial differential operator of order
2m (m> 1) in a domain X of an analytic complex mainfold. Let the principal symbol of P(x, ∂x)

be of the form
P2m(x, ξ) = [a(x, ξ)]2 ,

such that for y∈ X,
Hessη[a(y, η)] 6= 0 for a(y, η) = 0, η 6= 0.

Further, we also assume that

P2m−1(y, η) 6= 0 and m≥ 2.

Then there exist solutions of P(x, ∂x)u = 0 with the asymptotic expansion

u(x, y) = exp[A(x, y)/k(x, y)]
∞∑

h=0

Uhhp+h .

Here k(x, y) = 0 is an equation of the characteristic conoid, which satisfies

a(x, kx) =
k

m − 1
.

A(x, y) is given by (98):

A(x, y) =
1

4
τ2m−1P2m−1(y, η)(1 + O(τ)) ,

U0 and Uh, h = 1, 2, . . . , are determined by transport equation (108) and (??), p is determined
by (109). Thus U0 and Uh are given by (110) and (112). This asymptotic expansion converges
for |k(x, y)| small enough.
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