RAINBOW CONNECTION IN GRAPHS

GARY CHARTRAND, Kalamazoo, GARRY L. JOHNS, Saginaw Valley, KATHLEEN A. MCKEON, New London, PING ZHANG, Kalamazoo

(Received July 31, 2006)

Abstract. Let G be a nontrivial connected graph on which is defined a coloring $c\colon E(G)\to\{1,2,\ldots,k\},\ k\in\mathbb{N},\$ of the edges of G, where adjacent edges may be colored the same. A path P in G is a rainbow path if no two edges of P are colored the same. The graph G is rainbow-connected if G contains a rainbow u-v path for every two vertices u and v of G. The minimum k for which there exists such a k-edge coloring is the rainbow connection number $\operatorname{rc}(G)$ of G. If for every pair u,v of distinct vertices, G contains a rainbow u-v geodesic, then G is strongly rainbow-connected. The minimum k for which there exists a k-edge coloring of G that results in a strongly rainbow-connected graph is called the strong rainbow connection number $\operatorname{src}(G)$ of G. Thus $\operatorname{rc}(G) \leqslant \operatorname{src}(G)$ for every nontrivial connected graph G. Both $\operatorname{rc}(G)$ and $\operatorname{src}(G)$ are determined for all complete multipartite graphs G as well as other classes of graphs. For every pair a,b of integers with $a\geqslant 3$ and $b\geqslant (5a-6)/3$, it is shown that there exists a connected graph G such that $\operatorname{rc}(G)=a$ and $\operatorname{src}(G)=b$.

Keywords: edge coloring, rainbow coloring, strong rainbow coloring

MSC 2000: 05C15, 05C38, 05C40

1. Introduction

Let G be a nontrivial connected graph on which is defined a coloring $c \colon E(G) \to \{1, 2, \dots, k\}, \ k \in \mathbb{N}$, of the edges of G, where adjacent edges may be colored the same. A u - v path P in G is a rainbow path if no two edges of P are colored the same. The graph G is rainbow-connected (with respect to c) if G contains a rainbow u - v path for every two vertices u and v of G. In this case, the coloring c is called a rainbow coloring of G. If k colors are used, then k is a rainbow k-coloring. The minimum k for which there exists a rainbow k-coloring of the edges of k is the rainbow connection number k for k a rainbow coloring of k a rainbow coloring of k and k rainbow coloring of k rainbow coloring rainbow coloring of k rainbow coloring of k rainbow coloring rainbow coloring of k rainbow coloring rainbow colori

Let c be a rainbow coloring of a connected graph G. For two vertices u and v of G, a rainbow u-v geodesic in G is a rainbow u-v path of length d(u,v), where d(u,v) is the distance between u and v (the length of a shortest u-v path in G). The graph G is strongly rainbow-connected if G contains a rainbow u-v geodesic for every two vertices u and v of G. In this case, the coloring c is called a strong rainbow coloring of G. The minimum k for which there exists a coloring c: $E(G) \to \{1, 2, \ldots, k\}$ of the edges of G such that G is strongly rainbow-connected is the strong rainbow connection number $\operatorname{src}(G)$ of G. A strong rainbow coloring of G using $\operatorname{src}(G)$ colors is called a minimum strong rainbow coloring of G. Thus $\operatorname{rc}(G) \leqslant \operatorname{src}(G)$ for every connected graph G.

Since every coloring that assigns distinct colors to the edges of a connected graph is both a rainbow coloring and a strong rainbow coloring, every connected graph is rainbow-connected and strongly rainbow-connected with respect to some coloring of the edges of G. Thus the rainbow connection numbers rc(G) and src(G) are defined for every connected graph G. Furthermore, if G is a nontrivial connected graph of size m whose diameter (the largest distance between two vertices of G) is diam(G), then

(1)
$$\operatorname{diam}(G) \leqslant \operatorname{rc}(G) \leqslant \operatorname{src}(G) \leqslant m.$$

To illustrate these concepts, consider the Petersen graph P of Figure 1, where a rainbow 3-coloring of P is also shown. Thus $rc(P) \leq 3$. On the other hand, if u and v are two nonadjacent vertices of P, then d(u,v)=2 and so the length of a u-v path is at least 2. Thus any rainbow coloring of P uses at least two colors and so $rc(P) \geq 2$. If P has a rainbow 2-coloring c, then there exist two adjacent edges of G that are colored the same by c, say e=uv and f=vw are colored the same. Since there is exactly one u-w path of length 2 in P, there is no rainbow u-w path in P, which is a contradiction. Therefore, rc(P)=3.

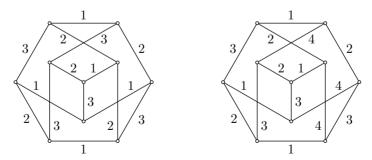


Figure 1. A rainbow 3-coloring and a strong rainbow 4-coloring of the Petersen graph

Since $\operatorname{rc}(P)=3$, it follows that $\operatorname{src}(P)\geqslant 3$. Furthermore, since the edge chromatic number of the Petersen graph is known to be 4, any 3-coloring c of the edges of P results in two adjacent edges uv and vw being assigned the same color. Since u,v,w is the only u-w geodesic in P, the coloring c is not a strong rainbow coloring. Because the 4-coloring of the edges of P shown in Figure 2 is a strong rainbow coloring, $\operatorname{src}(P)=4$.

As another example, consider the graph G of Figure 2(a), where a rainbow 4-coloring c of G is also shown. In fact, c is a minimum rainbow coloring of G and so rc(G) = 4, as we now verify.

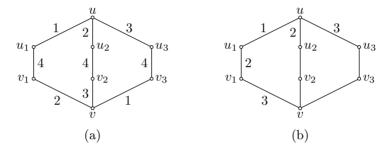


Figure 2. A graph G with rc(G) = src(G) = 4

Since diam $(G) \ge 3$, it follows that $rc(G) \ge 3$. Assume, to the contrary, rc(G) = 3. Then there exists a rainbow 3-coloring c' of G. Since every u - v path in G has length 3, at least one of the three u - v paths in G is a rainbow u - v path, say u, u_1, v_1, v is a rainbow u - v path. We may assume that $c'(uu_1) = 1$, $c'(u_1v_1) = 2$, and $c'(v_1v) = 3$. (See Figure 2(b).)

If x and y are two vertices in G such that d(x,y)=2, then G contains exactly one x-y path of length 2, while all other x-y paths have length 4 or more. This implies that no two adjacent edges can be colored the same. Thus we may assume, without loss of generality, that $c'(uu_2)=2$ and $c'(uu_3)=3$. (See Figure 2(b).) Thus $\{c'(vv_2),c'(vv_3)\}=\{1,2\}$. If $c'(vv_2)=1$ and $c'(vv_3)=2$, then $c'(u_2v_2)=3$ and $c'(u_3v_3)=1$. In this case, there is no rainbow u_1-v_3 path in G. On the other hand, if $c'(vv_2)=2$ and $c'(vv_3)=1$, then $c'(u_2v_2)\in\{1,3\}$ and $c'(u_3v_3)=2$. If $c'(u_2v_2)=1$, then there is no rainbow u_2-v_3 path in G; while if $c'(u_2v_2)=3$, there is no rainbow u_2-v_1 path in G, a contradiction. Therefore, as claimed, rc(G)=4.

Since $4 = rc(G) \leq src(G)$ for the graph G of Figure 2 and the rainbow 4-coloring of G in Figure 2(a) is also a strong rainbow 4-coloring, src(G) = 4 as well.

If G is a nontrivial connected graph of size m, then we saw in (1) that $\operatorname{diam}(G) \leq \operatorname{rc}(G) \leq \operatorname{src}(G) \leq m$. In the following result, it is determined which connected graphs G attain the extreme values 1, 2 or m.

Proposition 1.1. Let G be a nontrivial connected graph of size m. Then

- (a) src(G) = 1 if and only if G is a complete graph,
- (b) rc(G) = 2 if and only if src(G) = 2,
- (c) rc(G) = m if and only if G is a tree.

Proof. We first verify (a). If G is a complete graph, then the coloring that assigns 1 to every edge of G is a strong rainbow 1-coloring of G and so src(G) = 1. On the other hand, if G is not complete, then G contains two nonadjacent vertices u and v. Thus each u - v geodesic in G has length at least 2 and so $src(G) \ge 2$.

To verify (b), first assume that rc(G) = 2 and so $src(G) \ge 2$ by (1). Since rc(G) = 2, it follows that G has a rainbow 2-coloring, which implies that every two nonadjacent vertices are connected by a rainbow path of length 2. Because such a path is a geodesic, src(G) = 2. On the other hand, if src(G) = 2, then $rc(G) \le 2$ by (1) again. Furthermore, since src(G) = 2, it follows by (a) that G is not complete and so $rc(G) \ge 2$. Thus rc(G) = 2.

We now verify (c). Suppose first that G is not a tree. Then G contains a cycle $C: v_1, v_2, \ldots, v_k, v_1$, where $k \geq 3$. Then the (m-1)-coloring of the edges of G that assigns 1 to the edges v_1v_2 and v_2v_3 and assigns the m-2 distinct colors from $\{2, 3, \ldots, m-1\}$ to the remaining m-2 edges of G is a rainbow coloring. Thus $rc(G) \leq m-1$. Next, let G be a tree of size m. Assume, to the contrary, that $rc(G) \leq m-1$. Let c be a minimum rainbow coloring of G. Then there exist edges e and f such that c(e) = c(f). Assume, without loss generality, that e = uv and f = xy and G contains a u - y path u, v, \ldots, x, y . Then there is no rainbow u - y path in G, which is a contradiction.

Proposition 1.1 also implies that the only connected graphs G for which rc(G) = 1 are the complete graphs and that the only connected graphs G of size m for which src(G) = m are trees.

2. Some rainbow connection numbers of graphs

In this section, we determine the rainbow connection numbers of some well-known graphs. We refer to the book [1] for graph-theoretical notation and terminology not described in this paper. We begin with cycles of order n. Since $\operatorname{diam}(C_n) = \lfloor n/2 \rfloor$, it follows by (1) that $\operatorname{src}(C_n) \geqslant \operatorname{rc}(C_n) \geqslant \lfloor n/2 \rfloor$. This lower bound for $\operatorname{rc}(C_n)$ and $\operatorname{src}(C_n)$ is nearly the exact value of these numbers.

Proposition 2.1. For each integer $n \ge 4$, $rc(C_n) = src(C_n) = \lceil n/2 \rceil$.

Proof. Let C_n : $v_1, v_2, \ldots, v_n, v_{n+1} = v_1$ and for each i with $1 \le i \le n$, let $e_i = v_i v_{i+1}$. We consider two cases, according to whether n is even or n is odd.

Case 1. n is even. Let n=2k for some integer $k \ge 2$. Thus $\operatorname{src}(C_n) \ge \operatorname{rc}(C_n) \ge \operatorname{diam}(C_n) = k$. Since the edge coloring c_0 of C_n defined by $c_0(e_i) = i$ for $1 \le i \le k$ and $c_0(e_i) = i - k$ if $k + 1 \le i \le n$ is a strong rainbow k-coloring, it follows that $\operatorname{rc}(C_n) \le \operatorname{src}(C_n) \le k$ and so $\operatorname{rc}(C_n) = \operatorname{src}(C_n) = k$.

Case 2. n is odd. Then n=2k+1 for some integer $k \ge 2$. First define an edge coloring c_1 of C_n by $c_1(e_i)=i$ for $1 \le i \le k+1$ and $c_1(e_i)=i-k-1$ if $k+2 \le i \le n$. Since c_1 is a strong rainbow (k+1)-coloring of C_n , it follows that $\operatorname{rc}(C_n) \le \operatorname{src}(C_n) \le k+1$.

Since $\operatorname{rc}(C_n) \geqslant \operatorname{diam}(C_n) = k$, it follows that $\operatorname{rc}(C_n) = k$ or $\operatorname{rc}(C_n) = k+1$. We claim that $\operatorname{rc}(C_n) = k+1$. Assume, to the contrary, that $\operatorname{rc}(C_n) = k$. Let c' be a rainbow k-coloring of C_n and let u and v be two antipodal vertices of C_n . Then the u-v geodesic in C_n is a rainbow path and the other u-v path in C_n is not a rainbow path since it has length k+1. Suppose, without loss of generality, that $c'(v_{k+1}v_{k+2}) = k$.

Consider the vertices v_1, v_{k+1} , and v_{k+2} . Since the $v_1 - v_{k+1}$ geodesic $P \colon v_1, v_2, \ldots, v_{k+1}$ is a rainbow path and the $v_1 - v_{k+2}$ geodesic $Q \colon v_1, v_n, v_{n-1}, \ldots, v_{k+2}$ is a rainbow path, some edge on P is colored k as is some edge on Q. Since the $v_2 - v_{k+2}$ geodesic $v_2, v_3, \ldots, v_{k+2}$ is a rainbow path, it follows that $c'(v_1v_2) = k$. Similarly, the $v_n - v_{k+1}$ geodesic $v_n, v_{n-1}, v_{n-2}, \ldots, v_{k+1}$ is a rainbow path and so $c'(v_nv_1) = k$. Thus $c'(v_1v_2) = c'(v_nv_1) = k$. This implies that there is no rainbow $v_2 - v_n$ path in C, producing a contradiction. Thus $v_1 - v_n = v_$

A well-known class of graphs constructed from cycles are the wheels. For $n \ge 3$, the wheel W_n is defined as $C_n + K_1$, the join of C_n and K_1 , constructed by joining a new vertex to every vertex of C_n . Thus $W_3 = K_4$. Next, we determine rainbow connection numbers of wheels.

Proposition 2.2. For $n \ge 3$, the rainbow connection number of the wheel W_n is

$$rc(W_n) = \begin{cases} 1 & \text{if } n = 3, \\ 2 & \text{if } 4 \le n \le 6, \\ 3 & \text{if } n \ge 7. \end{cases}$$

Proof. Suppose that W_n consists of an n-cycle C_n : $v_1, v_2, \ldots, v_n, v_{n+1} = v_1$ and another vertex v joined to every vertex of C_n . Since $W_3 = K_4$, it follows by Proposition 1.1 that $rc(W_3) = 1$. For $4 \le n \le 6$, the wheel W_n is not complete and

so $\operatorname{rc}(W_n) \geq 2$. Since the 2-coloring $c \colon E(W_n) \to \{1,2\}$ defined by $c(v_i v) = 1$ if i is odd, $c(v_i v) = 2$ if i is even, and $c(v_i v_{i+1}) = 1$ if i is odd, and $c(v_i v_{i+1}) = 2$ if i is even is a rainbow coloring, it follows that $\operatorname{rc}(W_n) = 2$ for $1 \leq i \leq n \leq n$.

Finally, suppose that $n \ge 7$. Since the 3-coloring $c \colon E(W_n) \to \{1,2,3\}$ defined by $c(v_iv) = 1$ if i is odd, $c(v_iv) = 2$ if i is even, and c(e) = 3 for each $e \in E(C_n)$ is a rainbow coloring, it follows that $\operatorname{rc}(W_n) \le 3$. It remains to show that $\operatorname{rc}(W_n) \ge 3$. Since W_n is not complete, $\operatorname{rc}(W_n) \ge 2$. Assume, to the contrary, that $\operatorname{rc}(W_n) = 2$. Let c' be a rainbow 2-coloring of W_n . Without loss of generality, assume that $c'(v_1v) = 1$. For each i with $1 \le i \le n-2$, $1 \le i \le n-2$, $1 \le i \le n-2$, it follows that $1 \le i \le n-2$. Since $1 \le i \le n-2$, it follows that $1 \le i \le n-2$. This forces $1 \le i \le n-2$, which in turn forces $1 \le i \le n-2$. Similarly, $1 \le i \le n-2$. Since $1 \le i \le n-2$, there is no rainbow $1 \le n-2$, $1 \le n-2$, which is a contradiction. Therefore, $1 \le n-2$, there is no rainbow $1 \le n-2$, $1 \le n-2$, which is a contradiction. Therefore, $1 \le n-2$, there is no rainbow $1 \le n-2$, which is a contradiction. Therefore, $1 \le n-2$, there is no rainbow $1 \le n-2$, which is a contradiction. Therefore, $1 \le n-2$, there is no rainbow $1 \le n-2$, which is a contradiction. Therefore, $1 \le n-2$, $1 \le n$

Proposition 2.3. For $n \ge 3$, the strong rainbow connection number of the wheel W_n is

$$\operatorname{src}(W_n) = \lceil n/3 \rceil.$$

Proof. Suppose that W_n consists of an n-cycle C_n : $v_1, v_2, \ldots, v_n, v_{n+1} = v_1$ and another vertex v joined to every vertex of C_n . Since $W_3 = K_4$, it follows by Proposition 1.1 that $\operatorname{src}(W_3) = 1$. If $4 \le n \le 6$, then $\operatorname{rc}(W_n) = 2$ by Proposition 2.2 and so $\operatorname{src}(W_n) = 2$ by Proposition 1.1. Therefore, $\operatorname{src}(W_n) = \lceil n/3 \rceil$ for $1 \le n \le 6$.

Thus we may assume $n \ge 7$. Then there is an integer k such that $3k-2 \le n \le 3k$. We first show that $\operatorname{src}(W_n) \ge k$. Assume, to the contrary, that $\operatorname{src}(W_n) \le k-1$. Let c be a strong rainbow (k-1)-coloring of W_n . Since $\deg v = n > 3(k-1)$, there exists $S \subseteq V(C_n)$ such that |S| = 4 and all edges in $\{uv \colon u \in S\}$ are colored the same. Thus there exist at least two vertices $u', u'' \in S$ such that $d_{C_n}(u', u'') \ge 3$ and $d_{W_n}(u', u'') = 2$. Since u', v, u'' is the only u' - u'' geodesic in W_n , it follows that there is no rainbow u' - u'' geodesic in W_n , which is a contradiction. Thus $\operatorname{src}(W_n) \ge k$.

To show that $\operatorname{src}(W_n) \leq k$, we provide a strong rainbow k-coloring $c \colon E(W_n) \to \{1, 2, \dots, k\}$ of W_n defined by

$$c(e) = \begin{cases} 1 & \text{if } e = v_i v_{i+1} \text{ and } i \text{ is odd,} \\ 2 & \text{if } e = v_i v_{i+1} \text{ and } i \text{ is even,} \\ j+1 & \text{if } e = v_i v \text{ if } i \in \{3j+1, 3j+2, 3j+3\} \text{ for } 0 \leqslant j \leqslant k-1. \end{cases}$$

Therefore, $\operatorname{src}(W_n) = k = \lceil n/3 \rceil$ for $n \ge 7$ as well.

We now determine the rainbow connection numbers of all complete multipartite graphs, beginning with the strong connection number of the complete bipartite graph $K_{s,t}$ with $1 \leq s \leq t$.

Theorem 2.4. For integers s and t with $1 \le s \le t$,

$$\operatorname{src}(K_{s,t}) = \lceil \sqrt[s]{t} \rceil.$$

Proof. Since $\operatorname{src}(K_{1,t}) = t$, the result follows for s = 1. So we may assume that $s \ge 2$. Let $\lceil \sqrt[s]{t} \rceil = k$. Hence

$$1 \leqslant k - 1 < \sqrt[s]{t} \leqslant k.$$

Therefore, $(k-1)^s < t \leqslant k^s$ and so $(k-1)^s + 1 \leqslant t \leqslant k^s$.

First, we show that $\operatorname{src}(K_{s,t}) \geqslant k$. Assume, to the contrary, that $\operatorname{src}(K_{s,t}) \leqslant k-1$. Then there exists a strong rainbow (k-1)-coloring of $K_{s,t}$. Let U and W be the partite sets of $K_{s,t}$, where |U|=s and |W|=t. Suppose that $U=\{u_1,u_2,\ldots,u_s\}$. Let there be given a strong rainbow (k-1)-coloring c of $K_{s,t}$. For each vertex $w\in W$, we can associate an ordered s-tuple $\operatorname{code}(w)=(a_1,a_2,\ldots,a_s)$ called the color code of w, where $a_i=c(u_iw)$ for $1\leqslant i\leqslant s$. Since $1\leqslant a_i\leqslant k-1$ for each i $(1\leqslant i\leqslant s)$, the number of distinct color codes of the vertices of W is at most $(k-1)^s$. However, since $t>(k-1)^s$, there exists at least two distinct vertices w' and w'' of W such that $\operatorname{code}(w')=\operatorname{code}(w'')$. Since $c(u_iw')=c(u_iw'')$ for all i $(1\leqslant i\leqslant s)$, it follows that $K_{s,t}$ contains no rainbow w'-w'' geodesic in $K_{s,t}$, contradicting our assumption that c is a strong rainbow (k-1)-coloring of $K_{s,t}$. Thus, as claimed, $\operatorname{src}(K_{s,t})\geqslant k$.

Next, we show that $\operatorname{src}(K_{s,t}) \leq k$, which we establish by providing a strong rainbow k-coloring of $K_{s,t}$. Let $A = \{1, 2, \dots, k\}$ and $B = \{1, 2, \dots, k-1\}$. The sets A^s and B^s are Cartesian products of the s sets A and s sets B, respectively. Thus $|A^s| = k^s$ and $|B^s| = (k-1)^s$. Hence $|B^s| < t \leq |A^s|$. Let $W = \{w_1, w_2, \dots, w_t\}$, where the vertices of W are labeled with t elements of A^s and such that the vertices $w_1, w_2, \dots, w_{(k-1)^s}$ are labeled by the $(k-1)^s$ elements of B^s . For each i with $1 \leq i \leq t$, denote the label of w_i by

(2)
$$\mathbf{w}_i = (w_{i,1}, w_{i,2}, \dots, w_{i,s}).$$

For each i with $1 \le i \le (k-1)^s$, we have $1 \le w_{i,j} \le k-1$ for $1 \le j \le s$. We now define a coloring $c: E(K_{s,t}) \to \{1, 2, \ldots, k\}$ of the edges of $K_{s,t}$ by

$$c(w_iu_j)=w_{i,j} \quad \text{where } 1\leqslant i\leqslant t \text{ and } 1\leqslant j\leqslant s.$$

Thus for $1 \le i \le t$, the color code $code(w_i)$ of w_i provided by the coloring c is in fact \mathbf{w}_i , as described in (2). Hence distinct vertices in W have distinct color codes.

We show that c is a strong rainbow k-coloring of $K_{s,t}$. Certainly, for $w_i \in W$ and $u_j \in U$, the $w_i - u_j$ path w_i, u_j is a rainbow geodesic. Let w_a and w_b be two vertices of W. Since these vertices have distinct color codes, there exists some l with $1 \leq l \leq s$ such that $\operatorname{code}(w_a)$ and $\operatorname{code}(w_b)$ have different l-th coordinates. Thus $c(w_a u_l) \neq c(w_b u_l)$ and w_a, u_l, w_b is a rainbow $w_a - w_b$ geodesic in $K_{s,t}$. We now consider two vertices u_p and u_q in U, where $1 \leq p < q \leq s$. Since there exists a vertex $w_i \in W$ with $1 \leq i \leq (k-1)^s$ such that $w_{i,p} \neq w_{i,q}$, it follows that u_p, w_i, u_q is a rainbow $u_p - u_q$ geodesic in $K_{s,t}$. Thus, as claimed, c is a strong rainbow k-coloring of $K_{s,t}$ and so $\operatorname{src}(K_{s,t}) \leq k$.

With the aid of Theorem 2.4, we are now able to determine the strong rainbow connection numbers of all complete multipartite graphs.

Theorem 2.5. Let $G = K_{n_1, n_2, ..., n_k}$ be a complete k-partite graph, where $k \ge 3$ and $n_1 \le n_2 \le ... \le n_k$ such that $s = \sum_{i=1}^{k-1} n_i$ and $t = n_k$. Then

$$\operatorname{src}(G) = \begin{cases} 1 & \text{if } n_k = 1, \\ 2 & \text{if } n_k \geqslant 2 \text{ and } s > t, \\ \lceil \sqrt[s]{t} \rceil & \text{if } s \leqslant t. \end{cases}$$

Proof. Let $n = \sum_{i=1}^{k} n_i$. If $n_k = 1$, then $G = K_n$ and by Proposition 1.1, $\operatorname{src}(G) = 1$. Suppose next that $n_k \ge 2$ and s > t. Since $n_k \ge 2$, it follows that $G \ne K_n$ and so $\operatorname{src}(G) \ge 2$ by Proposition 1.1. It remains to show that $\operatorname{src}(G) \le 2$ in this case.

Partition the multiset $S = \{n_1, n_2, \dots, n_k\}$ into two submultisets

$$A = \{a_1, a_2, \dots, a_p\}$$
 and $B = \{b_1, b_2, \dots, b_q\},\$

where then p + q = k, such that

$$a = \sum_{i=1}^{p} a_i \leqslant \sum_{j=1}^{q} b_j = b$$

and b-a is the minimum nonnegative integer among all such partitions of S. Hence $K_{a,b}$ is a spanning subgraph of G. Since $\operatorname{diam}(K_{a,b}) = 2$, for every two nonadjacent

vertices u and v of $K_{a,b}$, a path P is a u-v geodesic in $K_{a,b}$ if and only if P is a u-v geodesic in G. Thus, from Theorem 2.4,

$$\operatorname{src}(G) \leqslant \operatorname{src}(K_{a,b}) = \lceil \sqrt[a]{b} \rceil.$$

We claim that $b \leq 2^a$. Assume, to the contrary, that $b > 2^a$. Since s > t, it follows that $q \geq 2$. We consider two cases, according to $a \leq 3$ or $a \geq 4$. If G is a complete k-partite graph with $a \leq 3$, then the only ordered pairs (a,b) for $K_{a,b}$ are: (2,3), (2,4), (3,3), (3,4), (3,5), (3,6). In all cases, $\operatorname{src}(G) \leq \operatorname{src}(K_{a,b}) = \lceil \sqrt[a]{b} \rceil = 2$. Hence we may assume that $a \geq 4$. Let b_1 be the smallest element of B. Hence $a + b_1 > b - b_1$. Because $a \geq 4$, it follows that

$$b_1 > \frac{b-a}{2} > \frac{2^a - a}{2} > \frac{3a-a}{2} = a.$$

Let $A' = \{b_1\}$ and let the multiset $B' = S - \{b_1\}$. Since $b_2 \in B'$, $b_1 \leq b_2$, and $a < b_1$, this contradicts the defining properties of the sets A and B. Hence, as claimed, $b \leq 2^a$. Thus

$$\operatorname{src}(G) \leqslant \lceil \sqrt[a]{b} \rceil \leqslant \lceil \sqrt[a]{2^a} \rceil = 2,$$

giving us the desired result.

Next, suppose that $s \leq t$. Let W be the unique independent set of $n_k = t$ vertices of G. Since $K_{s,t}$ is a connected spanning subgraph of G, it follows again, since $\operatorname{diam}(G) = 2$, that

$$\operatorname{src}(G) \leqslant \operatorname{src}(K_{s,t}) = \lceil \sqrt[s]{t} \rceil.$$

We claim that $\operatorname{src}(G) = \lceil \sqrt[s]{t} \rceil$. Assume, to the contrary, that $\operatorname{src}(G) = l < \lceil \sqrt[s]{t} \rceil$. Then $t > l^s$. This implies that there exists a strong rainbow l-coloring c of G. Since every vertex of G belonging to W has degree s in G, the coloring c produces a color code $\operatorname{code}(w)$ for each vertex w of W consisting of an ordered s-tuple, each entry of which is an element of $\{1, 2, \ldots, l\}$. Since the number of distinct color codes for the vertices of W is at most l^s and $|W| = t > l^s$, there exist two vertices w' and w'' in W having the same color code. This, however, implies that the two edges in each w' - w'' geodesic in G have the same color, contradicting the assumption that c is a strong rainbow l-coloring of G.

According to Theorems 2.4 and 2.5, the strong rainbow connection number of a complete multipartite graph can be arbitrarily large. This is not the case for the rainbow connection number of a complete multipartite graph however, as we show next. We begin with complete bipartite graphs.

Theorem 2.6. For integers s and t with $2 \le s \le t$,

$$\operatorname{rc}(K_{s,t}) = \min\{\lceil \sqrt[s]{t} \rceil, 4\}.$$

Proof. First, observe that for $2 \leq s \leq t$, $\lceil \sqrt[s]{t} \rceil \geqslant 2$. Let U and W be the partite sets of $K_{s,t}$, where |U| = s and |W| = t. Suppose that $U = \{u_1, u_2, \dots, u_s\}$. We consider three cases.

Case 1. $\lceil \sqrt[s]{t} \rceil = 2$. Then $s \leqslant t \leqslant 2^s$. Since

$$2 \leqslant \operatorname{rc}(K_{s,t}) \leqslant \operatorname{src}(K_{s,t}) = \lceil \sqrt[s]{t} \rceil = 2,$$

it follows that $rc(K_{s,t}) = 2$.

Case 2. $\lceil \sqrt[s]{t} \rceil = 3$. Then $2^s + 1 \leqslant t \leqslant 3^s$. Since

$$2 \leqslant \operatorname{rc}(K_{s,t}) \leqslant \operatorname{src}(K_{s,t}) = \lceil \sqrt[s]{t} \rceil = 3,$$

it follows that $\operatorname{rc}(K_{s,t})=2$ or $\operatorname{rc}(K_{s,t})=3$. We claim that $\operatorname{rc}(K_{s,t})=3$. Assume, to the contrary, that there exists a rainbow 2-coloring of $K_{s,t}$. Corresponding to this rainbow 2-coloring of $K_{s,t}$, there is a color code $\operatorname{code}(w)$ assigned to each vertex $w\in W$, consisting of an ordered s-tuple (a_1,a_2,\ldots,a_s) , where $a_i=c(u_iw)\in\{1,2\}$ for $1\leqslant i\leqslant s$. Since $t>2^s$, there exist two distinct vertices w' and w'' of W such that $\operatorname{code}(w')=\operatorname{code}(w'')$. Since the edges of every w'-w'' path of length 2 are colored the same, there is no rainbow w'-w'' path in $K_{s,t}$, a contradiction. Thus, as claimed, $\operatorname{rc}(K_{s,t})=3$.

Case 3. $\lceil \sqrt[s]{t} \rceil \geqslant 4$. Then $t \geqslant 3^s + 1$. We claim that $\operatorname{rc}(K_{s,t}) = 4$. First, we show that $\operatorname{rc}(K_{s,t}) \geqslant 4$. Assume, to the contrary, that there exists a rainbow 3-coloring of $K_{s,t}$. In this case, corresponding to this rainbow 3-coloring of $K_{s,t}$, there is a color code, $\operatorname{code}(w)$, assigned to each vertex $w \in W$, consisting of an ordered s-tuple (a_1, a_2, \ldots, a_s) , where $a_i = c(u_i w) \in \{1, 2, 3\}$ for $1 \leqslant i \leqslant s$. Since $t > 3^s$, there exist two distinct vertices w' and w'' of W such that $\operatorname{code}(w') = \operatorname{code}(w'')$. Since every w' - w'' path in $K_{s,t}$ has even length, the only possible rainbow w' - w'' path must have length 2. However, since $\operatorname{code}(w') = \operatorname{code}(w'')$, the colors of the edges of every w' - w'' path of length 2 are the same. Hence there is no rainbow w' - w'' path in $K_{s,t}$, a contradiction. Thus, as claimed, $\operatorname{rc}(K_{s,t}) \geqslant 4$.

To verify that $rc(K_{s,t}) \leq 4$, we show that there exists a rainbow 4-coloring of $K_{s,t}$. Let $A = \{1,2,3\}$, $W = \{w_1,w_2,\ldots,w_t\}$, $W' = \{w_1,w_2,\ldots,w_{3^s}\}$, and W'' = W - W'. Assign to the vertices in W' the 3^s distinct elements of A^s and assign to the vertices in W'' the identical code whose first coordinate is 4 and all whose remaining coordinates are 3. Corresponding to this assignment of codes is a coloring

of the edges of $K_{s,t}$, where $c(w_iu_j) = k$ if the jth coordinate of $code(w_i)$ is k. We claim that this coloring is, in fact, a rainbow 4-coloring of $K_{s,t}$. Let x and y be two nonadjacent vertices of $K_{s,t}$. Suppose first that $x, y \in W$. We consider three cases.

Case i. $x, y \in W'$. Since $\operatorname{code}(x) \neq \operatorname{code}(y)$, there exists i with $1 \leq i \leq s$ such that $\operatorname{code}(x)$ and $\operatorname{code}(y)$ have different ith coordinates. Then the path x, u_i, y is a rainbow x - y path of length 2 in $K_{s,t}$.

Case ii. $x \in W'$ and $y \in W''$. Suppose that the first coordinate of code(x) is a, where $1 \le a \le 3$. Then x, u_1, y is a rainbow x - y path of length 2 in $K_{s,t}$ whose edges are colored a and 4.

Case iii. $x, y \in W''$. Let $z \in W'$ such that the first coordinate of $\operatorname{code}(z)$ is 1 and the second coordinate of $\operatorname{code}(z)$ is 2. Then x, u_1, z, u_2, y is a rainbow x - y path of length 4 in $K_{s,t}$ whose edges are colored 4, 1, 2, 3, respectively.

Finally, suppose that $x, y \in U$. Then $x = u_i$ and $y = u_j$, where $1 \le i < j \le s$. Then there exists a vertex $w \in W'$ whose *i*th and *j*th coordinates are distinct. Then x, w, y is a rainbow x - y path in $K_{s,t}$.

Thus this coloring is a rainbow 4-coloring of $K_{s,t}$ and so $rc(K_{s,t}) = 4$ in this case.

Next, we determine rainbow connection numbers of all complete multipartite graphs.

Theorem 2.7. Let $G = K_{n_1, n_2, ..., n_k}$ be a complete k-partite graph, where $k \ge 3$ and $n_1 \le n_2 \le ... \le n_k$ such that $s = \sum_{i=1}^{k-1} n_i$ and $t = n_k$. Then

$$\operatorname{rc}(G) = \begin{cases} 1 & \text{if } n_k = 1, \\ 2 & \text{if } n_k \geqslant 2 \text{ and } s > t, \\ \min\{\lceil \sqrt[s]{t} \rceil, 3\} & \text{if } s \leqslant t. \end{cases}$$

Proof. Let $n=s+t=\sum\limits_{i=1}^k n_i$. If $n_k=1$, then $G=K_n$ and by Proposition 1.1, $\operatorname{rc}(G)=1$. Suppose next that $n_k\geqslant 2$ and s>t. By Theorem 2.5, $\operatorname{src}(G)=2$ and so $\operatorname{rc}(G)=2$ by Proposition 1.1.

Next, suppose that $s \leq t$. Since $n_k \geq 2$, it follows that $G \neq K_n$ and so $\operatorname{rc}(G) \geq 2$. By Theorem 2.5, $\operatorname{src}(G) = \lceil \sqrt[s]{t} \rceil$ and so $\operatorname{rc}(G) \leq \lceil \sqrt[s]{t} \rceil$. To show that $\operatorname{rc}(G) \leq 3$ as well, we provide a rainbow 3-coloring of G. Let V_1, V_2, \ldots, V_k be the partite sets of G with

$$V_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,n_i}\}$$

for $1 \leq i \leq k$. Furthermore, let

$$U = V_1 \cup V_2 \cup \ldots \cup V_{k-1} = \{u_1, u_2, \ldots, u_s\}$$

such that $u_i = v_{k-1,i}$ for $1 \le i \le n_{k-1}$. Thus |U| = s. Define a coloring c^* of the edges of G by

$$c^*(e) = \begin{cases} 1 & \text{if } e = v_{i,j}v_{i+1,j} \text{ for } 1 \leqslant i \leqslant k-2 \text{ and } 1 \leqslant j \leqslant n_i \text{ or} \\ & \text{if } e = u_l v_{k,l} \text{ for } 1 \leqslant l \leqslant s, \\ 2 & \text{if } e = v_{1,j}v_{k,l} \text{ for } 1 \leqslant j \leqslant n_1 \text{ and } s+1 \leqslant l \leqslant t, \\ 3 & \text{otherwise.} \end{cases}$$

Let x and y be two nonadjacent vertices of G. Then $x,y\in V_i$ for some i with $1\leqslant i\leqslant k$. Let $x=v_{i,p}$ and $y=v_{i,q}$, where $1\leqslant p< q\leqslant n_i$. If $1\leqslant i\leqslant k-1$, then $x,v_{i+1,p},y$ is a rainbow x-y path in G whose edges are colored 1 and 3. Thus we may assume that i=k. If $1\leqslant p< q\leqslant s$, then x,u_p,y is a rainbow x-y path in G whose edges are colored 1 and 3. If $s+1\leqslant p< q\leqslant t$, then $x,v_{1,1},v_{2,1},y$ is a rainbow x-y path in G whose edges are colored 2, 1 and 3, respectively. If $1\leqslant p\leqslant s$ and $s+1\leqslant q\leqslant t$, then $x,v_{1,1},y$ is a rainbow x-y path whose edges are colored 3 and 2. Thus $\operatorname{rc}(G)\leqslant 3$. Therefore, as claimed, $\operatorname{rc}(G)\leqslant \min\{\lceil \sqrt[s]{t}\rceil, 3\}$.

Assume, to the contrary, that $\operatorname{rc}(G) < \min\{\lceil \sqrt[s]{t} \rceil, 3\} \leqslant 3$. Since $\operatorname{rc}(G) \geqslant 2$, it follows that $\operatorname{rc}(G) = 2$. Let c' be a rainbow 2-coloring of G. Thus, we can associate a color code $\operatorname{code}(w) = (a_1, a_2, \ldots, a_s)$ to each vertex $w \in W$, where $a_i = c(u_i w) \in \{1, 2\}$ for $1 \leqslant i \leqslant s$. Since $\sqrt[s]{t} > 2$, it follows that $t > 2^s$ and so there exist two distinct vertices w' and w'' of W such that $\operatorname{code}(w') = \operatorname{code}(w'')$. Hence the two edges of each w' - w'' path of length 2 are colored the same and so there is no rainbow w' - w'' path in $K_{s,t}$, producing a contradiction. Thus, as claimed, $\operatorname{rc}(K_{s,t}) = 3 = \min\{\lceil \sqrt[s]{t} \rceil, 3\}$ in this case.

3. On rainbow connection numbers with prescribed values

We have seen that $rc(G) \leq src(G)$ for every nontrivial connected graph G. By Proposition 1.1, it follows that for every positive integer a and for every tree T of size a, rc(T) = src(T) = a. Furthermore, for $a \in \{1, 2\}$, rc(G) = a if and only if src(G) = a. If a = 3 and $b \geq 4$, then by Propositions 2.2 and 2.3, $rc(W_{3b}) = 3$ and $src(W_{3b}) = b$. For $a \geq 4$, we have the following.

Theorem 3.1. Let a and b be integers with $a \ge 4$ and $b \ge (5a - 6)/3$. Then there exists a connected graph G such that rc(G) = a and src(G) = b.

Proof. Let n = 3b - 3a + 6 and let W_n be the wheel consisting of an n-cycle C_n : $v_1, v_2, \ldots, v_n, v_1$ and another vertex v joined to every vertex of C_n . Let G be the graph constructed from W_n and the path P_{a-1} : $u_1, u_2, \ldots, u_{a-1}$ of order a-1 by identifying v and u_{a-1} .

First, we show that rc(G) = a. Since $b \ge (5a - 6)/3$ and $a \ge 4$, it follows that b > a and so $n = 3b - 3a + 6 \ge 7$. By Proposition 2.2, we then have $rc(W_n) = 3$. Define a coloring c of the graph G by

$$c(e) = \begin{cases} i & \text{if } e = u_i u_{i+1} \text{ for } 1 \leqslant i \leqslant a - 2, \\ a & \text{if } e = v_i v \text{ and } i \text{ is odd,} \\ a - 1 & \text{if } e = v_i v \text{ and } i \text{ is even,} \\ 1 & \text{otherwise.} \end{cases}$$

Since c is a rainbow a-coloring of the edges of G, it follows that $rc(G) \leq a$.

It remains to show that $\operatorname{rc}(G) \geqslant a$. Assume, to the contrary, that $\operatorname{rc}(G) \leqslant a-1$. Let c' be a rainbow (a-1)-coloring of G. Since the path $u_1, u_2, \ldots, u_{a-1}$ is the only $u_1 - u_{a-1}$ path in G, the edges of this path must be colored differently by c'. We may assume, without loss of generality, that $c'(u_iu_{i+1})=i$ for $1\leqslant i\leqslant a-2$. For each j with $1\leqslant j\leqslant 3b-3a+6$, there is a unique u_1-v_j path of length a-1 in G and so $c'(vv_j)=a-1$ for $1\leqslant j\leqslant 3b-3a+6$. Consider the vertices v_1 and v_{a+1} . Since $b\geqslant (5a-6)/3$, any v_1-v_{a+1} path of length a-1 or less must contain v and thus two edges colored a-1, contradicting our assumption that c' is a rainbow (a-1)-coloring of G. This implies that $\operatorname{rc}(G)\geqslant a$ and so $\operatorname{rc}(G)=a$.

Next, we show that $\operatorname{src}(G) = b$. Since $n = 3b - 3a + 6 = 3(b - a + 2) \ge 7$, it follows by Proposition 2.3 that $\operatorname{src}(W_n) = b - a + 2$. Let c_1 be a strong rainbow (b - a + 2)-coloring of W_n . Define a coloring c of the graph G by

$$c(e) = \begin{cases} c_1(e) & \text{if } e \in E(W_n), \\ b - a + 2 + i & \text{if } e = u_i u_{i+1} \text{ for } 1 \leqslant i \leqslant a - 2. \end{cases}$$

Since c is a strong rainbow b-coloring of G, it follows that $src(G) \leq b$.

It remains to show that $\operatorname{src}(G) \geqslant b$. Assume, to the contrary, that $\operatorname{src}(G) \leqslant b-1$. Let c^* be a strong rainbow (b-1)-coloring of G. We may assume, without loss of generality, that $c^*(u_iu_{i+1})=i$ for $1\leqslant i\leqslant a-2$. For each j with $1\leqslant j\leqslant 3b-3a+6$, there is a unique u_1-v_j geodesic in G, implying $c^*(vv_j)\in C=\{a-1,a,\ldots,b-1\}$. Let $S=\{vv_j\colon 1\leqslant j\leqslant 3b-3a+6\}$. Then |S|=3b-3a+6 and |C|=b-a+1. Since at most three edges in S can be colored the same, the b-a+1 colors in C can

color at most 3(b-a+1)=3b-3a+3 edges, producing a contradiction. Therefore, $src(G) \ge b$ and so src(G)=b.

Combining Propositions 1.1, 2.2, 2.3 and Theorem 3.1, we have the following.

Corollary 3.2. Let a and b be positive integers. If a = b or $3 \le a < b$ and $b \ge (5a - 6)/3$, then there exists a connected graph G such that rc(G) = a and src(G) = b.

We conclude with two conjectures and a result.

Conjecture 3.3. Let a and b be positive integers. Then there exists a connected graph G such that rc(G) = a and src(G) = b if and only if $a = b \in \{1, 2\}$ or $3 \le a \le b$.

It is easy to see that if H is a connected spanning subgraph of a nontrivial (connected) graph G, then $rc(G) \leq rc(H)$. We have already noted that if, in addition, diam(H) = 2, then $src(G) \leq src(H)$. However, the question arises as to whether this is true when $diam(H) \geq 3$.

Conjecture 3.4. If H is a connected spanning subgraph of a nontrivial (connected) graph G, then $src(G) \leq src(H)$.

If Conjecture 3.4 is true, then for every nontrivial connected graph G of order n,

$$\operatorname{diam}(G) \leqslant \operatorname{rc}(G) \leqslant \operatorname{src}(G) \leqslant n - 1.$$

The following can be proved immediately.

Proposition 3.5. For each triple d, k, n of integers with $2 \le d \le k \le n-1$, there exists a connected graph G of order n with $\operatorname{diam}(G) = d$ such that $\operatorname{rc}(G) = \operatorname{src}(G) = k$.

References

zbl

[1] G. Chartrand, P. Zhang: Introduction to Graph Theory. McGraw-Hill, Boston, 2005.

Authors' addresses: Kathy McKeon, Connecticut College, Department of Mathematics, 270 Mohegan Avenue, Box 5561, New London, CT 06320, USA; Garry L. Johns, Saginaw Valley State University, University Center, Department of Mathematical Sciences, MI 48710-0001, USA; Ping Zhang, Gary Chartrand, Western Michigan University, Department of Mathematics, Kalamazoo, MI 49008, USA, e-mail: ping.zhang@wmich.edu.