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Abstract

If N = qkn2 is an odd perfect number, where q is the Euler prime, then we show
that σ(n) ≤ qk is necessary and sufficient for Sorli’s conjecture that k = νq(N) = 1 to
hold. It follows that, if k = 1 then the Euler prime q is the largest prime factor of N

and that q > 10500. We also prove that qk < 2
3n2.

1 Introduction

Perfect numbers are positive integral solutions to the number-theoretic equation σ(N) = 2N ,
where σ is the sum-of-divisors function. Euclid derived the general form for the even case;
Euler proved that every even perfect number is given in the Euclidean form N = 2p−1(2p−1)
where p and 2p − 1 are prime. On the other hand, it is still an open question to determine
existence (or otherwise) for an odd perfect number. Euler proved that every odd perfect
number is given in the so-called Eulerian form N = qkn2 where q ≡ k ≡ 1 (mod 4) and
gcd(q, n) = 1. (We call q the Euler prime of the odd perfect number N , and the component
qk will be called the Euler’s factor of N .) As of February 2012, only 47 even perfect numbers
are known (13 of which were found by the distributed computing project GIMPS [13]), while
no single example of an odd perfect number has been found. (Ochem and Rao of CNRS,
France are currently orchestrating an effort to push the lower bound for an odd perfect
number from the previously known 10300 to a significantly improved 101500 (see [7]). Nielsen
has obtained the lower bound ω(N) ≥ 9, for the number of distinct prime factors of N ; and

the upper bound N < 24ω(N)
([13, 14]).

Let σ(x) denote the sum of the divisors of the natural number x. That is, let σ(x) =
∑

d|x d. Let ω(x) denote the number of distinct prime factors of x. Let νq(N) denote the
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highest power of q that divides N ; that is, if l = νq(N), then ql|N but ql+1 ∤ N . Let
I(x) = σ(x)/x denote the abundancy index of x.

Sorli conjectured in [10] that the exponent k = νq(N) on the Euler prime q for an odd
perfect number N given in the Eulerian form N = qkn2 is one.

Throughout this paper, we will let

N = qkn2 =

ω(N)
∏

j=1

qj
βj

denote the canonical factorization of the odd perfect number N . That is,

min(qj) = q1 < q2 < q3 < · · · < qω(N) = max(qj).

Note that q is never the smallest prime divisor of N . This is because q, being congruent to
1 modulo 4, satisfies (q + 1)|σ(qk)|σ(N) = 2N giving q+1

2
|N , so N must have a smaller odd

prime divisor than q.

2 Odd Perfect Numbers Circa 2008

We begin with the following definition:

Definition 1. An odd perfect number N is said to be given in Eulerian form if N = qkn2

where q ≡ k ≡ 1 (mod 4) and gcd(q, n) = 1.

The author made the following conjecture [3]:

Conjecture 2. Suppose there is an odd perfect number given in Eulerian form. Then
qk < n.

The author formulated Conjecture 2 on the basis of the following result:

Lemma 3. If an odd perfect number N is given in Eulerian form, then I(qk) <
5

4
<

√

8

5
<

I(n).

Proof. Since q is the Euler prime and

I(N) = 2 = I(qk)I(n2),

we appeal to some quick numerical results. Since

I(qk) <
q

q − 1
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and q ≡ 1 (mod 4), we know that q ≥ 5. Consequently, we have

1 < I(qk) <
5

4
= 1.25.

On the other hand,

I(n2) =
2

I(qk)

so that we obtain the bounds

1.6 =
8

5
< I(n2) < 2.

But it is also (fairly) well-known [6, 8, 9] that the abundancy index (as a function) satisfies
the inequality

I(ab) ≤ I(a)I(b)

with equality occurring if and only if gcd(a, b) = 1.
In particular, by setting a = b = n, we get

2

I(qk)
= I(n2) < (I(n))2

whereupon we get the lower bound

√

8

5
<

√

2

I(qk)
=

√

I(n2) < I(n).

We get the rational approximation
√

8/5 ≈ 1.264911.

Remark 4. When Conjecture 2 was formulated in 2008, the author was under the naive
impression that the divisibility constraint gcd(q, n) = 1 induced an “ordering” property for
the Euler prime-power qk and the component n =

√

N/qk, in the sense that the related
inequality qk < n2 followed from the result I(qk) < I(n2). (Indeed, the author was able to
derive the (slightly) stronger result qk < σ(qk) ≤ (2/3)n2 [3]).

We reproduce the proof for a generalization of the author’s result mentioned in Remark
4 in the following theorem.

Theorem 5. Suppose there is an odd perfect number with canonical factorization

N =

ω(N)
∏

i=1

qi
αi

where the qi’s are primes and q1 < q2 < · · · < qω(N). Then, for all i with 1 ≤ i ≤ ω(N), the
numbers ρi = σ(N/qi

αi)/qi
αi are positive integers and satisfy ρi ≥ 3.
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Proof. Since

N =

ω(N)
∏

i=1

qi
αi

is an odd perfect number and qi
αi||N ∀i, then the quantity ρi = σ(N/qi

αi)/qi
αi is an integer

(because gcd(qi
αi , σ(qi

αi)) = 1).
Suppose ρi = 1. Then σ(N/qi

αi) = qi
αi and σ(qi

αi) = 2N/qi
αi . Since N is an odd

perfect number, qi is odd, whereupon we have an odd αi by considering parity conditions
from the last equation. But this means that qi is the Euler prime q, and we rewrite the
equations using qi

αi = qk and N/qi
αi = N/qk = n2, giving σ(qk) = 2n2 and σ(n2) = qk. This

contradicts Dandapat, et. al. [1] who showed in 1975 that no odd perfect number satisfies
these constraints. This implies that ρi 6= 1.

Suppose ρi = 2. Then σ(N/qi
αi) = 2qi

αi and σ(qi
αi) = N/qi

αi . Since N/qi
αi is odd, then

the last equation gives αi is even. Applying the σ function to both sides of the last equation,
we get σ(σ(qi

αi)) = σ(N/qi
αi) = 2qi

αi . This last equation implies that qi
αi is superperfect.

This contradicts Suryanarayana [11] who showed in 1973 that “There is no odd superperfect
number of the form p2α” (where p is prime). This implies that ρi 6= 2. Since ρi ∈ N, ρi ≥ 3
and we are done.

Corollary 6. If an odd perfect number N is given in Eulerian form, then qk < (2/3)n2.

Next, we define the functions L(q) and U(q).

Definition 7. If q is the Euler prime of an odd perfect number N given in Eulerian form,
then

L(q) = (3q2 − 4q + 2)/(q(q − 1))

and
U(q) = (3q2 + 2q + 1)/(q(q + 1)).

The author obtained the following results in the same year (2008).

Lemma 8. Let N be an odd perfect number given in Eulerian form. Then we have the
bounds L(q) < I(qk) + I(n2) ≤ U(q).

Proof. Starting from the (trivial) inequalities

q + 1

q
≤ I(qk) <

q

q − 1

we get
2(q − 1)

q
< I(n2) =

2

I(qk)
≤ 2q

q + 1
.

Notice that
q

q − 1
<

2(q − 1)

q

for q an Euler prime. Consequently

I(qk) < I(n2)
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a result which was mentioned earlier in Remark 4.

Consider the product

(

I(qk) − q + 1

q

) (

I(n2) − q + 1

q

)

. This product is nonnegative

since
q + 1

q
≤ I(qk) < I(n2). Expanding the product and simplifying using the equation

I(qk)I(n2) = 2, we get the upper bound U(q) =
3q2 + 2q + 1

q(q + 1)
for the sum I(qk) + I(n2).

Next, consider the product

(

I(qk) − q

q − 1

)(

I(n2) − q

q − 1

)

. This product is negative

since I(qk) <
q

q − 1
< I(n2). Again, expanding the product and simplifying using the

equation I(qk)I(n2) = 2, we get the lower bound L(q) =
3q2 − 4q + 2

q(q − 1)
for the same sum

I(qk) + I(n2).
A quick double-check gives that, indeed, the lower bound L(q) is less than the upper

bound U(q), if q is an Euler prime.

Remark 9. Notice that, from the proof of Lemma 8, we have

q

q − 1
<

2(q − 1)

q

which implies that

(

q

q − 1

)2

< 2. Thus

1 < I(qk) <
q

q − 1
<

√
2 =

2√
2

<
2(q − 1)

q
< I(n2) < 2.

Also, observe from Lemma 3 that

I(qk) <
5

4
<

√

8

5
<

√

2

I(qk)

which implies that I(qk)
√

I(qk) <
√

2. It follows that

I(qk) <
3
√

2.

We get the rational approximation 3
√

2 ≈ 1.259921.

We give explicit bounds for the sum I(qk) + I(n2) in the following corollary.

Corollary 10. Let N be an odd perfect number given in Eulerian form. Then we have the
following (explicit) numerical bounds.

2.85 =
57

20
< I(qk) + I(n2) < 3

with the further result that they are best-possible.
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Proof. This corollary can be proved using Lemma 8 and basic differential calculus, and is
left as an exercise to the interested reader.

Remark 11. As remarked by Joshua Zelinsky a few years back, “Any improvement on the
upper bound of 3 would have (similar) implications for all arbitrarily large primes and thus
would be a very major result.” (e.g., U(q) < 2.99 implies q ≤ 97.) In this sense, the
inequality

2.85 =
57

20
< I(qk) + I(n2) < 3

is best-possible.

Remark 12. Note that, from Lemma 8,

L(q) =
3q2 − 4q + 2

q(q − 1)
= 3 − q − 2

q(q − 1)

and

U(q) =
3q2 + 2q + 1

q(q + 1)
= 3 − q − 1

q(q + 1)
.

Observe that, when L(x) and U(x) are viewed as functions on the domain D = R\{−1, 0, 1},
then

L(x + 1) = U(x)

and

U(2) = U(3) = L(3) =
17

6
< 2.84.

3 Sorli’s Conjecture

We now state Sorli’s conjecture on odd perfect numbers.

Conjecture 13. If N is an odd perfect number with Euler prime q then q||N .

Remark 14. In other words, if the odd perfect number N is given in the Eulerian form
N = qkn2, then Sorli’s conjecture predicts that k = νq(N) = 1. Note that, in general by
Remark 4 we have

qk <
√

N = qk/2n

which gives qk/2 < n. Furthermore, the inequality σ(qk) ≤ (2/3)n2 from Theorem 5 gives
us (

√
6/2)qk/2 < n. Together, these two inequalities imply (

√
6/2)qk < n2. Note that for

further reference, we get the rational approximation
√

6
2

≈ 1.22474487.

We give a set of conditions equivalent to Sorli’s conjecture. (In that direction, recall that
the components qk and n2 of the odd perfect number N = qkn2 are related via the inequality
qk < n2, as mentioned in Remark 4.)

We begin with the following lemma, which gives a sufficient condition for Sorli’s conjecture
to hold.

Lemma 15. Let N be an odd perfect number given in Eulerian form. If n < q, then k = 1.
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Proof. If n < q, then by Corollary 6, q ≤ qk < n2 < q2 so k = 1.

Remark 16. Via a similar argument, we get that n < q2 also implies k = 1.

It turns out that n < q is also a necessary condition for Sorli’s conjecture to hold.

Lemma 17. Let N be an odd perfect number given in Eulerian form. If Conjecture 2 is
true, then Sorli’s conjecture is false.

Proof. If Conjecture 2 is true, then qk < n. Suppose Sorli’s conjecture is also true. Then
k = 1. It follows that q < n. Thus, k = 1 implies that q < n. The contrapositive of the last
statement is n < q implies that k > 1, which contradicts Lemma 15.

The last lemma in this section gives another condition equivalent to Sorli’s conjecture.

Lemma 18. Let N be an odd perfect number given in Eulerian form. Then n < σ(q) if and
only if n < q.

Proof. Assume that n < σ(q). If q < n, then q < n < σ(q) = q + 1, contradicting the fact
that n ∈ N. Now, assume that n < q. Since

q < q + 1 = σ(q),

it follows that n < σ(q).

Theorem 19. Let N be an odd perfect number given in Eulerian form. Then Sorli’s con-
jecture is true if and only if σ(n) ≤ qk.

Hence if Sorli’s conjecture is true, q is the largest prime which divides N .
Using a lower bound for the largest prime factor of an odd perfect number obtained by

Goto and Ohno [5], we have the following theorem.

Theorem 20. Let N be an odd perfect number given in Eulerian form. If Sorli’s conjecture
is true, then q > 108.

Proof. Suppose that Sorli’s conjecture is true. Then k = 1, and by Theorem 19, n < q.
This means that the Euler prime q is the largest prime factor of the odd perfect number
N = qkn2. By [5], we get q > 108.

We can improve on Theorem 20 by using a recent lower bound of 101500 for the magnitude
of an odd perfect number obtained by Ochem and Rao.

Theorem 21. Let N be an odd perfect number given in Eulerian form. If Sorli’s conjecture
is true, then q > 10500.

Proof. Suppose that Sorli’s conjecture is true. Then k = 1, and by Theorem 19, n < q.
Consequently, n2 < q2, which gives N̄ = qn2 < q3, where N̄ is the same odd perfect number
as N = qkn2 when k = 1. Since N̄ > 101500, we get q > 10500.
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4 Conclusion

Sorli’s conjecture, if proved, will enable easier computations with odd perfect numbers be-
cause then the abundancy index I(qk) for the Euler prime q collapses to I(q) = (q + 1)/q.
In addition, the Euler prime becomes the largest prime factor.
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