

An Existence Result for a Class of Non Convex Problems of the Calculus of Variations

Giulia Treu

Dipartimento di Matematica e Informatica, Università di Udine,
 via delle Scienze 206, 33100 Udine, Italy.
 e-mail: treu@dimi.uniud.it

Received January 8, 1996

Revised manuscript received April 3, 1997

We consider the functional

$$\int_{\Omega} [h(\gamma_K(\nabla u(x))) + u(x)] dx \quad u(x) \in W_0^{1,1}(\Omega)$$

where γ_K is the gauge function of a convex set K and $h : [0, \infty[\rightarrow [0, \infty]$ is a possibly non convex function. In the case $K \subset \mathbb{R}^2$ is a closed polytope and $\Omega \subset \mathbb{R}^2$ is a bounded convex set we provide a sufficient condition for the existence of the minimum.

Besides, as a corollary, we give conditions on $\Omega \subset \mathbb{R}^2$ and $f : \mathbb{R}^2 \rightarrow [0, \infty]$ that are sufficient to the existence of a minimizer of

$$\int_{\Omega} [f(\nabla u(x)) + u(x)] dx \quad u(x) \in W_0^{1,1}(\Omega).$$

1. Introduction

Cellina has recently proved an existence result for functionals of the type

$$\int_{\Omega} [h(\|\nabla u(x)\|) + u(x)] dx \quad u(x) \in W_0^{1,1}(\Omega)$$

with no convexity assumptions (see [4]) on the function h . The first paper dealing with functionals of this type is a paper by Kawohl, Stara and Wittum [16] on a problem of shape optimization. They consider the case in which Ω is a two dimensional square and they prove that the minimum problem has no solutions.

It is well known that, when the convexity is not assumed, the limit of a minimizing sequence is not always a solution of the minimum problem. Then, in many cases, to obtain existence results one has to provide a construction yielding the solution.

Several authors [2], [6], [7], [8], [18], used this approach to study functionals depending only on the gradient. The technique they developed is the following: they solve the problem locally and, then, using covering arguments, they *build* a solution of the minimum problem. Simple examples show that this technique is not useful when the function depends both on ∇u and on u .

The problem considered in [4] is the minimization problem stated above, where $h : [0, \infty[\rightarrow [0, \infty]$ is a lower semicontinuous function and Ω is any bounded open convex set of \mathbb{R}^2 with piecewise smooth boundary. The result presented in [4] states that if the set Ω is *not too large* with respect to a property of the function h , a solution to the problem does exist. In this case the solution is built *without* passing through a *covering argument*.

In this paper we make a first attempt to consider the more general functional

$$\int_{\Omega} [h(\gamma_K(\nabla u(x))) + u(x)] dx \quad u(x) \in W_0^{1,1}(\Omega)$$

where γ_K is the gauge function of a convex set K .

We obtain an existence result in the case $K \subset \mathbb{R}^2$ is a polytope and $\Omega \subset \mathbb{R}^2$ is *not too large* with respect to a property that involves both the function h and the set K . This property is of the same type of the property presented in [4]. We want to underline that, due to the hypothesis on K , *no regularity assumption* is required on the boundary of Ω .

Besides, as a Corollary, we present an analogous existence result for the functional

$$\int_{\Omega} [f(\nabla u(x)) + u(x)] dx \quad u(x) \in W_0^{1,1}(\Omega)$$

where $f : \mathbb{R}^2 \rightarrow [0, +\infty]$ is a lower semicontinuous function that vanishes on the boundary of a polytope K .

2. Preliminaries, notations and basic assumptions

Given a set \mathcal{A} we denote by $C(\mathcal{A})$ its complement, by $\text{int}(\mathcal{A})$ its interior, by $\overline{\mathcal{A}}$ its closure, and by $\partial\mathcal{A}$ its boundary. Given a convex set $C \subset \mathbb{R}^n$, we denote by C° the polar set of C , by $\text{extr } C$ the set of the extremal points of C , by $\text{ri}(C)$ the relative interior of C . The gauge function of C will be denoted by $\gamma_C(\cdot)$.

For every locally lipschitz convex function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, let $\partial f(x)$ be the subgradient of f at x .

Following [1] and [9], given a point $x \in \mathbb{R}^n$ we set $d_C(x) = \inf \{ |x - y| : y \in C \}$. We define the tangent cone to C at x as

$$T_C(x) = \{ v \in \mathbb{R}^n : \lim_{t \rightarrow 0^+} \frac{d_C(x + tv) - d_C(x)}{t} = 0 \} \quad (2.1)$$

and the normal cone to C at x as

$$N_C(x) = \{ y \in \mathbb{R}^n : \langle y, v \rangle \leq 0 \ \forall v \in T_C(x) \}. \quad (2.2)$$

The sets $T_C(x)$ and $N_C(x)$ are closed convex cones in \mathbb{R}^n and $T_C(x) \cap N_C(x) = \{0\}$. In addition, for C is convex, $N_C(x)$ coincides with the cone of normals to C at x in the sense of convex analysis, namely

$$N_C(x) = \{ \xi \in \mathbb{R}^n : \langle y - x, \xi \rangle \leq 0 \ \forall y \in C \} \quad (2.3)$$

(see [9, proposition 2.4.4]).

We consider the problem

$$\text{minimize} \quad \int_{\Omega} [h(\gamma_K(\nabla u(x))) + u(x)] dx \quad u(x) \in W_0^{1,1}(\Omega). \quad (\mathcal{P})$$

Let us suppose that Ω is any bounded, open convex set contained in \mathbb{R}^2 , K is a closed polytope of \mathbb{R}^2 such that $0 \in \text{int}(K)$ and, according to the notations introduced above, $\gamma_K : \mathbb{R}^2 \rightarrow \mathbb{R}$ is the gauge function associated to K .

As in [4] the map $h : [0, +\infty) \rightarrow [0, +\infty]$ is a non-negative lower semicontinuous extended valued function with minimum value 0. Moreover we suppose that $\sup\{r \geq 0 : h(r) = 0\}$ is finite and we denote it by ρ . Let A be the set of supporting linear functions at ρ , i.e. $A = \{a \in \mathbb{R} : h(s) \geq a(s - \rho), \text{ for every } s \geq 0\}$. We recall that $0 \in A$ and let $\Lambda = \sup A$.

We define

$$v(x) = \inf_{y \in \partial\Omega} \sup_{x^* \in -K} \langle x - y, x^* \rangle \quad (2.4)$$

and the width of Ω w.r.t. K to be $W_{(\Omega, K)} = \sup_{x \in \Omega} v(x)$.

By the hypothesis on K , the set $\text{extr } K$ contains finitely many vectors. We fix one of them and we denote it by k_1 ; we denote the others by k_i , assuming that the index i is increasing when we move counter-clockwise from k_1 . Then $\text{extr } K = \{k_1, \dots, k_n\}$. To simplify the notations, we define $k_{n+1} = k_1$. For $i \in \{1, \dots, n\}$ let l_i be the set $\{k \in \partial K : \exists \lambda \in [0, 1] \text{ such that } k = \lambda k_i + (1 - \lambda)k_{i+1}\}$.

The Corollary 19.2.2 [20] imply that $\text{extr } K^\circ$ contains exactly n vectors. Applying Corollary 23.5.3 [20] we can check that, for every x belonging to the interior of the convex cone generated by k_i and k_{i+1} , $\partial\gamma_K(x)$ contains exactly one vector, we denote it by ξ_i , and $\xi_i \in \text{extr } K^\circ$. With respect to the notations introduced we have that $\xi_n = \partial\gamma_K(x)$ for every x in the interior of the convex cone generated by k_n and k_1 . As before, we set $\xi_{n+1} = \xi_1$. For $i \in \{1, \dots, n\}$ let ζ_i be the set $\{\xi \in \partial K^\circ : \exists \lambda \in [0, 1] \text{ such that } \xi = \lambda \xi_i + (1 - \lambda) \xi_{i+1}\}$. Using again Corollary 23.5.3 [20] we have that for every $x = \mu k_i$, $\mu > 0$, $\partial\gamma_K(x) = \zeta_{i-1}$.

We list some properties that will be useful in the following.

- (a) $N_{K^\circ}(\xi_i)$ is the closed convex cone generated by k_i and k_{i+1} ;
- (b) $T_{K^\circ}(\xi_i)$ is the closed convex cone generated by $(\xi_{i-1} - \xi_i)$ and $(\xi_{i+1} - \xi_i)$;
- (c) for every $j \in \{1, \dots, n\}$, $(\xi_j - \xi_i) \in T_{K^\circ}(\xi_i)$;
- (d) for every $\xi \in \text{ri}(\zeta_j)$, $N_{K^\circ}(\xi) = \{\lambda k_{j+1} : \lambda \geq 0\}$;
- (e) for every $\xi \in \text{ri}(\zeta_j)$, $T_{K^\circ}(\xi) = \{x \in \mathbb{R}^2 : \langle k_{j+1}, x \rangle \leq 0\}$;
- (f) for every $\xi \in \text{ri}(\zeta_j)$, for every $i \in \{1, \dots, n\}$, $(\xi_i - \xi) \in T_{K^\circ}(\xi)$;
- (g) for every $i \in \{1, \dots, n\}$, $\langle k_i, \xi_{i-1} \rangle = \langle k_i, \xi_i \rangle > 0$.

3. Preliminary results

In this section we study the properties of the function $v(x)$ defined by (2.4). These properties will be useful to prove the existence theorem of the following section.

In [18] it has been proved that the function defined in (2.4) belongs to the Sobolev space $W_0^{1,\infty}(\Omega, \mathbb{R})$ and satisfies $\nabla v(x) \in \partial(-K)$ for almost every $x \in \Omega$.

Here we remark that, for every convex set C the function $\sup_{x^* \in C} \langle \cdot, x^* \rangle$, defined in \mathbb{R}^n , is the conjugate of the indicator function of C . This function is also said the support function of the set C . When C is a closed convex set containing the origin, Theorem 14.5 [20] says that this function is the gauge function of C° , then $\sup_{x^* \in C} \langle \cdot, x^* \rangle = \gamma_{C^\circ}(\cdot)$ and we have that $\{x \in \mathbb{R}^n : \gamma_{C^\circ}(x) \leq \rho\} = \rho C^\circ$.

From now on, we suppose that $K \subset \mathbb{R}^2$ is a closed polytope, $0 \in \text{int } K$, and that $\Omega \subset \mathbb{R}^2$ is an open bounded convex set.

Lemma 3.1. *Let x be a point in Ω such that $v(x) = c$. Then $x + cK^\circ \subset \overline{\Omega}$.*

Moreover there exist $y \in \partial\Omega$ and $\xi_i \in \text{extr } K^\circ$ such that $\gamma_{-K}(x - y) = v(x) = c$ and $x = y - c\xi_i$.

Proof. The boundedness assumption on K implies that $0 \in \text{int}(-K^\circ)$ (Corollary 14.5.1 [20]), and then $\gamma_{-K^\circ}(\cdot)$ is a convex function finite on \mathbb{R}^2 . For this reason we can say that $\gamma_{-K^\circ}(\cdot)$ is continuous and that there exists $y \in \partial\Omega$ such that $\gamma_{-K^\circ}(x - y) = \inf_{z \in \partial\Omega} \gamma_{-K^\circ}(x - z) = c$. It is equivalent to say that, for any $z \in \partial\Omega$, $x - z \in \mathcal{C}\{y \in \mathbb{R}^n : \gamma_{-K^\circ}(y) < c\}$ and there exists $y \in \partial\Omega$ such that $x - y \in \partial\{z \in \mathbb{R}^n : \gamma_{-K^\circ}(z) \leq c\}$, i.e. $y \in \partial(x + cK^\circ)$ and $x + cK^\circ \subset \overline{\Omega}$. Now, arguing by contradiction, let us suppose that for any $y \in \partial\Omega$ such that $\gamma_{-K^\circ}(x - y) = v(x) = c$ we have that $y \notin \text{extr}(x + cK^\circ)$. If this is the case we have that there exist $z_1, z_2 \in \text{extr}(x + cK^\circ) \subset \Omega$ and $\lambda \in (0, 1)$ such that $y = \lambda z_1 + (1 - \lambda)z_2$. By the convexity of Ω , we get $y \in \Omega$, that is a contradiction. \square

Lemma 3.2. *For every $c > 0$, we have that $\{v(x) \geq c\} = \Omega \cap (\cap_{i=1, \dots, n} (\overline{\Omega} - c\xi_i))$.*

Proof. When $x \in \Omega \cap (\cap_{i=1, \dots, n} (\overline{\Omega} - c\xi_i))$ we have that, for every $i \in \{1, \dots, n\}$, there exists $y_i \in \overline{\Omega}$ such that $x = y_i - c\xi_i$. Remarking that $\overline{\text{co}}\{x + c\xi_i; i = 1, \dots, n\} = x + cK^\circ$, we have that $x + cK^\circ \subset \overline{\Omega}$ and then $\min_{z \in \partial\Omega} \gamma_{-K^\circ}(x - z) = v(x) \geq c$.

On the other hand if we suppose that $v(x) \geq c$ we have that $\gamma_{-K^\circ}(x - z) \geq c$ for every $z \in \partial\Omega$ and then $x + cK^\circ \subset \overline{\Omega}$. If we choose $y_i = x + c\xi_i \in \text{extr}(x + cK^\circ)$ we get that $x \in \Omega \cap (\cap_{i=1, \dots, n} (\overline{\Omega} - c\xi_i))$. \square

Let us define the following subsets of $\partial\Omega$:

$$\begin{aligned} I_i &= \{y \in \partial\Omega : k_i \in N_\Omega(y)\} \\ J_i &= \{y \in \partial\Omega \setminus (\cup_{j=1, \dots, n} I_j) : \exists \lambda \in (0, 1) \text{ such that } \lambda k_i + (1 - \lambda)k_{i+1} \in N_\Omega(y)\} \end{aligned}$$

Definition 3.3. We fix y and z on $\partial\Omega$, $y \neq z$. $\partial\Omega$ is divided in two arcs. We say that $x \neq y, x \neq z$ is *between* y and z , and we write $y \prec x \prec z$, if x belongs to the arc that can be covered moving counter-clockwise from y to z .

Proposition 3.4. *The following properties hold true.*

- (i) *For every $k \in \partial K$ there exists $y \in \partial\Omega$ such that $k \in N_\Omega(y)$.*
- (ii) *$\cup_{i=1, \dots, n} (I_i \cup J_i) = \partial\Omega$.*
- (iii) *For every $i \in \{1, \dots, n\}$ the set I_i is nonempty; moreover either I_i contains exactly one point or it is a line segment.*
- (iv) *When $I_i \cap I_{i+1} \neq \emptyset$, then $J_i = \emptyset$.*
- (v) *When $I_i \cap I_{i+1} = \emptyset$, we have $J_i = \{x \in \partial\Omega : \forall y \in I_i, \forall z \in I_{i+1} \text{ it is } y \prec x \prec z\}$.*

Proof. (i) Ω is a bounded open set, then for any $k \in \partial K$ there exists a real number β such that $\langle k, x \rangle < \beta$ for every $x \in \Omega$. Let β^* be the infimum of the set $\{\beta \in \mathbb{R} : \langle k, x \rangle < \beta \text{ for every } x \in \Omega\}$. The halfspace $H_{\beta^*} = \{a \in \mathbb{R}^n : \langle k, a \rangle > \beta^*\}$ is a convex open set such that $H_{\beta^*} \cap \Omega = \emptyset$. Then the hyperplane $\partial H_{\beta^*} \{a \in \mathbb{R}^n : \langle k, a \rangle = \beta^*\}$ separates properly H_{β^*} and Ω . Moreover we have that there exists $y \in \partial\Omega$ such that $\langle k, y \rangle = \beta^*$, otherwise we can get a contradiction with the definition of β^* . Hence $k \in N_{\Omega}(y)$.

(ii) It is sufficient to remark that, by the assumption $0 \in \text{int } K$, for every $v \in \mathbb{R}^2 \setminus \{0\}$ there exist $\lambda_v > 0$ and $k \in \partial K$ such that $\lambda_v k = v$.

(iii) I_i is nonempty by virtue of (i). Let us suppose that x_1 and x_2 are two different points in I_i . For every $\lambda \in [0, 1]$ we have

$$\begin{aligned} \langle x - (\lambda x_1 + (1 - \lambda)x_2), k_i \rangle &= \lambda \langle x - x_1, k_i \rangle + (1 - \lambda) \langle x - x_2, k_i \rangle \\ &\leq \max\{\langle x - x_j, k_i \rangle, j = 1, 2\}. \end{aligned}$$

We remark that, by the definition of normal cone, the last term is less or equal to zero for every $x \in \Omega$, hence $k_i \in N_{\Omega}(\lambda x_1 + (1 - \lambda)x_2)$. Recalling that, for every $y \in \Omega$, $N_{\Omega}(y) = \{0\}$ we get that, for every $\lambda \in (0, 1)$, $\lambda x_1 + (1 - \lambda)x_2 \in \partial\Omega$.

(iv) As a trivial consequence of the part (iii) of this proposition we have that whenever $I_i \cap I_{i+1} \neq \emptyset$ there exists only one point $y \in I_i \cap I_{i+1}$. By the convexity of the cone $N_{\Omega}(y)$, for every $\lambda \in (0, 1)$, we have $\lambda k_i + (1 - \lambda)k_{i+1} \in N_{\Omega}(y)$. Let λ be in $(0, 1)$ and let us suppose that there exists a point $z \neq y$, $z \in \partial\Omega$, such that $\lambda k_i + (1 - \lambda)k_{i+1} \in N_{\Omega}(z)$. Arguing as above we get that the line segment joining y and z is contained in $\partial\Omega$. Moreover we have that

$$0 = \langle \lambda k_i + (1 - \lambda)k_{i+1}, z - y \rangle = \lambda \langle k_i, z - y \rangle + (1 - \lambda) \langle k_{i+1}, z - y \rangle. \quad (3.1)$$

The last term in (3.1) is less or equal to zero because both k_i and k_{i+1} are in $N_{\Omega}(y)$. For the same reason if we have $\lambda \langle k_i, z - y \rangle + (1 - \lambda) \langle k_{i+1}, z - y \rangle = 0$ we get $\langle k_i, z - y \rangle = \langle k_{i+1}, z - y \rangle = 0$ and then there exists $\mu \in \mathbb{R} \setminus \{0\}$ such that $k_i = \mu k_{i+1}$. This contradicts the fact that $0 \in \text{int } K$.

(v) We fix $y \in I_i$ and $z \in I_{i+1}$. As a first case, we suppose that $\{x \in \partial\Omega : \forall y \in I_i, \forall z \in I_{i+1} \text{ it is } y \prec x \prec z\} = \{\lambda y + (1 - \lambda)z; \lambda \in (0, 1)\}$. It is easy to see that there exists $k \in \partial K$ such that for every x in the set considered, $N_{\Omega}(x) = \{\lambda k; \lambda \geq 0\}$, $k \in N_{\Omega}(y)$, $k \in N_{\Omega}(z)$ and the cone $N_{\Omega}(y) \cup N_{\Omega}(z)$ contains the convex cone generated by k_i and k_{i+1} . Then $x \in J_i$. In the other case we can proceed as follows. The line joining y and z divides \mathbb{R}^2 in two halfplanes. Let H be the one that does not contain x . We define $C = \overline{\text{co}}((H \cap \Omega) \cup x)$. It is $C \subset \Omega$ and $x \in C \cap \overline{\Omega}$. It follows immediately by (2.3) that $N_{\Omega}(x) \subset N_C(x)$. Moreover, if μ, ν are the vectors in ∂K that generate $N_C(x)$, it is not difficult to check that $\mu \in N_C(y)$ and $\nu \in N_C(z)$, and that μ and ν are contained in the convex cone generated by k_i and k_{i+1} . It remains only to prove that every $x \in J_i$ is between y and z for every $y \in I_i$ and $z \in I_{i+1}$. Repeating the same arguments used above, we see that it can not happen that there exists $j \in \{1, \dots, n\}$, $j \neq i$, such that $y \prec x \prec z$ for $y \in I_j$ and $z \in I_{j+1}$. \square

Definition 3.5. For every $x \in \Omega$ we define the following set:

$$\Pi(x) = \{y \in \partial\Omega : \text{if } v(x) = c \text{ it is } y \in \text{extr}(x + cK^\circ)\}.$$

Remark 3.6. Thanks to Lemma 3.1 and to the definition of the function $v(\cdot)$, $\Pi(x)$ is well defined for every $x \in \Omega$.

Lemma 3.7. *Let $x \in \Omega$ be such that $v(x) = c$ and let $y \in \partial\Omega$ be such that $y \in \Pi(x)$ and $y = x - c\xi_i$. Then there exists $\lambda \in [0, 1]$ such that $\lambda k_i + (1 - \lambda)k_{i+1} \in N_\Omega(y)$.*

Proof. By Lemma 3.1 we have that $x + cK^\circ \subset \overline{\Omega}$ and that $y = x + c\xi_i \in (x + cK^\circ) \cap \overline{\Omega}$. Then $N_\Omega(y) \subset N_{x+cK^\circ}(x + c\xi_i) = N_{K^\circ}(\xi_i)$ and, by (a) of Section 2, we get the proof. \square

Proposition 3.8. *The following properties hold for every $i \in \{1, \dots, n\}$ such that J_i is nonempty and for every $j \in \{1, \dots, n\}$ for which I_j has nonempty relative interior.*

- (i) *Let $x \in \Omega$ and $y \in J_i$ be such that $v(x) = c$, $y \in \Pi(x)$ and $x = y - c\xi_i$. Then, for every $b \in (0, c)$, $z = y - b\xi_i$ is such that $\Pi(z) = y$.*
- (ii) *Let ξ be an arbitrarily fixed vector in ζ_{j-1} , let $x \in \Omega$ and $y \in \text{ri}(I_j)$ be such that $v(x) = c$, $x = y - c\xi$ and $\{y - c(\xi - \xi_{j-1}), y - c(\xi - \xi_j)\} \subset \Pi(x)$. Then, for every $b \in (0, c)$, $z = y - b\xi$ is such that $\Pi(z) = \{y - b(\xi - \xi_{j-1}), y - b(\xi - \xi_j)\}$.*
- (iii) *For every $y \in J_i$ there exists $c > 0$ such that $\Pi(y - c\xi_i) = y$.*
- (iv) *For every $y \in \text{ri}(I_j)$ and for every $\xi \in \zeta_{j-1}$ there exists $c > 0$ such that $\Pi(y - c\xi) = \{y - c(\xi - \xi_{j-1}), y - c(\xi - \xi_j)\}$.*

Moreover, for every $i \in \{1, \dots, n\}$ and for every $y \in I_i \setminus \text{ri}(I_i)$,

- (v) *there exists $x \in \Omega$, such that $y \in \Pi(x)$ if and only if $v(x) = c$ and there exist $z \in I_i$ and $\xi \in \zeta_{i-1}$ such that $z \neq y$, $x = z - c\xi$ and either $y = z + c(\xi_{i-1} - \xi)$ or $y = z + c(\xi_i - \xi)$.*

Proof. (i) We recall that by the hypotheses on x we have that $x + cK^\circ \subset \overline{\Omega}$. Remarking that $\text{extr}(x + cK^\circ) = \{y - c(\xi_i - \xi_j); j = 1, \dots, n\}$ we have that, for every $j \in \{1, \dots, n\}$, $y - c(\xi_i - \xi_j) \in \overline{\Omega}$. By (v) of Proposition 3.4, we have that $N_\Omega(y)$ is contained in $\text{int}(N_{K^\circ}(\xi_i))$ and then $\text{int}(T_\Omega(y))$ contains $T_{K^\circ}(\xi_i)$. For this reason and also by property (c) stated in Section 2, we can say that, for every $\lambda \in (0, 1)$ and for every $j \neq i$, $\lambda y + (1 - \lambda)(y - c(\xi_i - \xi_j)) \in \Omega$. Now, choosing $\lambda \in (0, 1)$ such that $b = (1 - \lambda)c$, we have

$$y - b\xi_i = \lambda y + (1 - \lambda)(y - c\xi_i),$$

$$\text{extr}(y - b\xi_i + bK^\circ) = \{y - b(\xi_i - \xi_j); j = 1, \dots, n\},$$

$$y - b(\xi_i - \xi_j) = \lambda y + (1 - \lambda)(y - c(\xi_i - \xi_j)) \in \Omega \text{ for every } j \neq i,$$

and this concludes the proof.

- (ii) In this case we observe that

$$\text{extr}(y - c\xi + cK^\circ) = \{y - c(\xi - \xi_i); i = 1, \dots, n\},$$

$y - c(\xi - \xi_j)$ and $y - c(\xi - \xi_{j+1})$ belong to I_j ;

$$y - c(\xi - \xi_i) \in \overline{\Omega} \setminus I_i \text{ for } i \notin \{j, j+1\};$$

Then, arguing as above, keeping in mind the property (e) of Section 2, for every $b \in (0, c)$, we have that $y - b(\xi - \xi_i) \in \Omega$ for $i \notin \{j, j+1\}$ and $y - b(\xi - \xi_i) \in I_i$, for $i \in \{j, j+1\}$.

- (iii) As observed in (i), for every $y \in J_i$, $\text{int}(T_\Omega(y))$ contains $T_{K^\circ}(\xi_i)$. Then, by (c) of Section 2, by the convexity and the boundedness of Ω we can define, for every $j \in \{1, \dots, n\}$, $\lambda_j = \frac{1}{2} \sup\{\lambda \geq 0 : y - \lambda(\xi_i - \xi_j) \in \overline{\Omega}\}$. Now, choosing $c = \min\{\lambda_j; j = 1, \dots, n\}$ we have

$$\text{extr}(y - c\xi_i + cK^\circ) \setminus \{y\} = \{y - c(\xi_i - \xi_j); j \neq i\} \subset \Omega.$$

(iv) Let us consider first the case in which $\xi \in \text{ri}(\zeta_j)$. By Lemma 3.1, we have $N_\Omega(y) = N_{K^\circ}(\xi)$ and $T_\Omega(y) = T_{K^\circ}(\xi)$. Now, we define, for every $i \in \{1, \dots, n\}$, $\lambda_i = \frac{1}{2} \sup\{\lambda \geq 0 : y - \lambda(\xi - \xi_i) \in \overline{\Omega}\}$ and $c = \min\{\lambda_i; i = 1, \dots, n\}$. Hence we get $\text{extr}(y - c\xi + cK^\circ) \setminus \{y - c(\xi - \xi_j), y - c(\xi - \xi_{j+1})\} = \{y - c(\xi - \xi_i); i \neq j, i \neq j+1\} \subset \Omega$ and $\{y - c(\xi - \xi_j), y - c(\xi - \xi_{j+1})\} \subset I_j$. If $\xi = \xi_j$, recalling that $N_\Omega(y) = k_{j+1} \subset N_{K^\circ}(\xi)$ we can proceed exactly as in the case studied above substituting ξ_j to ξ . The last case $\xi = \xi_{j+1}$ can be treated analogously.

(v) First of all we notice that one of the two implications is obviously true. For the other one we remark that, by Lemma 3.7, if $y \in I_i$ and $y \in \Pi(x)$ it is that either $x = y - c\xi_{i-1}$ or $x = y - c\xi_i$. Without loss of generality we can assume that $x = y - c\xi_{i-1}$. We have that $x + cK^\circ \subset \overline{\Omega}$ and let us suppose that $x + c\xi_i \in \Omega$. Then, there exists $\tilde{c} > c$ such that $x + \tilde{c}\xi_i \in \Omega$ and, by (g) of Section 2, we get

$$\langle k_i, (x + \tilde{c}\xi_i) - (x + c\xi_{i+1}) \rangle = \langle k_i, (\tilde{c} - c)\xi_i - c(\xi_i - \xi_{i+1}) \rangle = (\tilde{c} - c)\langle k_i, \xi_i \rangle > 0.$$

This contradicts the fact that $k_i \in N_\Omega(y)$. Then we can conclude that $x + c\xi_i \in \partial\Omega$. With the same argument we can prove that, for every $\xi \in \zeta_{i-1}$, $x + c\xi \in \partial\Omega$. Then the line segment joining y and $x + c\xi_i$ is contained in I_i . To conclude the proof it is sufficient to fix $\xi \in \zeta_{i-1}$ and $z = x + c\xi$. \square

Definition 3.9. For every $y \in J_i$ we define

$$c(y) = \sup\{c > 0 : \Pi(y - c\xi_i) = y\}.$$

For every $i \in \{1, \dots, n\}$ such that I_i is a line segment, we fix a $\xi \in \zeta_{i-1}$ and for every $y \in \text{ri}(I_i)$ we define

$$c(y) = \sup\{c > 0 : \Pi(y - c\xi) = \{y - c(\xi - \xi_{i-1}), y - c(\xi - \xi_i)\}\}.$$

Lemma 3.10. For every $y \in J_i$ it is

$$c(y) = \min_{j \in \{1, \dots, n\}} \sup\{\lambda \geq 0 : y - \lambda(\xi_i - \xi_j) \in \overline{\Omega}\}$$

and for every $y \in \text{ri}(I_i)$ and for every $\xi \in \zeta_{i-1}$, it is

$$c(y) = \min_{j \in \{1, \dots, n\}} \sup\{\lambda \geq 0 : y - \lambda(\xi - \xi_j) \in \overline{\Omega}\}.$$

Proof. Let us consider the case $y \in J_i$. Let us define $\tilde{c} = \min_{j \in \{1, \dots, n\}} \sup\{\lambda > 0 : y - \lambda(\xi_i - \xi_j) \in \Omega\}$. If $\tilde{c} < c(y)$ there exists $j \neq i$ such that $y - \tilde{c}(\xi_i - \xi_j) \in \partial\Omega$. Then $\{y, y - \tilde{c}(\xi_i - \xi_j)\} \subset \Pi(y)$ a contradiction with the definition of $c(y)$. On the other hand if $\tilde{c} > c(y)$, recalling that $(\xi_i - \xi_j)$ are in the interior of $T_\Omega(y)$, we get the contradiction $y - c(\xi_i - \xi_j) \in \Omega$ for every $j \neq i$ and for every $c \in (c(y), \tilde{c})$, i.e. $y = \Pi(y - c\xi_i)$. In the case $y \in \text{ri}(I_i)$, if $\tilde{c} < c(y)$ for every $c \in (\tilde{c}, c(y))$ there exists j such that $y - c(\xi - \xi_j) \notin \overline{\Omega}$ and then $v(y - c\xi) \neq c$. If $\tilde{c} > c(y)$, for every $c \in (c(y), \tilde{c})$, we have $y - c(\xi - \xi_j) \in \Omega$ for every $j \notin \{i, i+1\}$ and $y - c(\xi - \xi_j) \in \text{ri}(I_i)$ for $j \in \{i, i+1\}$. Hence $\{y - c(\xi - \xi_i), y - c(\xi - \xi_{i+1})\} = \Pi(y - c\xi)$, a contradiction. \square

Remark 3.11. As immediate consequences of Lemma 3.10 and Proposition 3.8 we have the following properties.

- (1) $0 < c(y) \leq W_{(\Omega, K)}$ for every $y \in J_i$ and for every $y \in \text{ri}(I_i)$.
- (2) $y \in \Pi(y - c(y)\xi_i)$ for every $y \in J_i$; for every $y \in \text{ri}(I_i)$ and for every $\xi \in \zeta_{i-1}$ we have $\{y - c(y)(\xi - \xi_{i-1}), y - c(y)(\xi - \xi_i)\} \in \Pi(y - c(y)\xi)$.
- (3) For every $y \in J_i$ there exist $z \in \partial\Omega$, $z \neq y$, and $j \neq i$ such that $z \in \Pi(y - c(y)\xi_i)$ and $z = y - c(y)(\xi_i - \xi_j)$. Moreover $c(z) = c(y)$. Analogously, for every $y \in \text{ri}(I_i)$, for every $\xi \in \zeta_{i-1}$, there exist $z \in \partial\Omega$, $z \notin \text{ri}(I_i)$, and $j \in \{1, \dots, n\}$ such that $z \in \Pi(y - c(y)\xi)$, $z = y - c(y)(\xi - \xi_j)$ and $c(z) = c(y)$.

Lemma 3.12. *The function $c(\cdot)$ is continuous.*

Proof. For every $y \in \partial\Omega$ and $a \in \mathbb{R}^2$, $a \neq 0$ we can define the width of Ω in y in the direction a to be $w(y, a) = \sup\{\lambda > 0 : y - \lambda a \in \overline{\Omega}\}$. By the continuity of $\partial\Omega$ it is straightforward that $w(y, a)$ is continuous in the natural topology induced on $\partial\Omega$ by \mathbb{R}^2 . Recalling the characterization of $c(y)$ we get the proof. \square

To conclude this section we remark that, thanks to the properties proved above, we can say that the set Ω can be regarded as the union of a certain number of sets in which the function $v(\cdot)$ can be computed in a more convenient way.

In fact, for every $i \in \{1, \dots, n\}$ such that $J_i \neq \emptyset$ and for every $j \in \{1, \dots, n\}$ such that $\text{ri}(I_j) \neq \emptyset$, we can define, respectively

$$\begin{aligned}\Omega_i &= \{x \in \Omega : \exists y \in J_i \text{ and } 0 < c \leq c(y) \text{ such that } x = y - c\xi_i\} \\ \mathcal{O}_j &= \{x \in \Omega : \forall \xi \in \zeta_{j-1} \exists y \in I_j \text{ and } 0 < c \leq c(y) \text{ such that } x = y - c\xi\}\end{aligned}$$

and then we get

$$\Omega = (\cup_i \Omega_i) \cup (\cup_j \mathcal{O}_j).$$

Now, if $y \in J_i$ and y is a point of differentiability for $\partial\Omega$, by the definition of J_i , there exists $\lambda \in]0, 1[$ such that $\lambda k_i + (1 - \lambda)k_{i+1} \in N_\Omega(y)$ and, by the results proved in this section, for every $0 < c < c(y)$ we have that $\nabla v(x) = -(\lambda k_i + (1 - \lambda)k_{i+1})$. Analogously, for every $y \in I_j$ and for every $0 < c < c(y)$, we get $\nabla v(x) = -k_i$.

4. Existence theorem

We have the following existence theorem:

Theorem 4.1. *Let Ω be an open bounded convex set contained in \mathbb{R}^2 . Let $K \subset \mathbb{R}^2$ be a closed polytope such that $0 \in \mathbb{R}^2$. Let h satisfy the hypothesis stated in Section 2. Let ρ , Λ and $W_{(\Omega, K)}$ be defined as before. If $W_{(\Omega, K)} \leq \Lambda$, the function*

$$u(x) = -\rho \inf_{y \in \partial\Omega} \sup_{x^* \in -K} \langle x - y, x^* \rangle$$

is a solution to the problem (\mathcal{P}) .

Proof. (a) First of all we remark that, for every $k \in \partial\rho K$, for every vector $v \in \mathbb{R}^2$ and for every $p \in \partial\gamma_K(k)$ we have

$$\begin{aligned}h(\gamma_K(k + v)) &= h(\gamma_K(k) + \gamma_K(k + v) - \gamma_K(k)) \\ &\geq h(\gamma_K(k)) + \alpha(\gamma_K(k + v) - \gamma_K(k)) \\ &\geq h(\gamma_K(k)) + \alpha \langle p, v \rangle\end{aligned}$$

where $\alpha \in [0, \Lambda]$. Now, recalling the properties of $\partial\gamma_K(\cdot)$ stated in Section 2, we can consider the restriction of $\partial\gamma_K(\cdot)$ to ∂K and we fix an arbitrary selection $p(\cdot)$ of this multifunction. By the very definition of the function $u(\cdot)$, for every $\rho \geq 0$, and for almost every $x \in \Omega$, we have $\nabla u(x) = -\rho \nabla v(x)$ and $\nabla u(x) \in \partial\rho K$. Then we can define $p(\nabla u(x)) = p(-\nabla v(x))$. For every function $\eta(\cdot) \in W_0^{1,1}(\Omega)$ and for every function $\alpha(x) \in L^\infty(\Omega)$, $0 \leq \alpha \leq \Lambda$, we have

$$\begin{aligned} & \int_{\Omega} [h(\gamma_K(\nabla u(x) + \nabla \eta(x))) + u(x) + \eta(x)] dx \\ & \geq \int_{\Omega} [h(\gamma_K(\nabla u(x))) + u(x)] dx + \int_{\Omega} [\alpha(x) \langle p(\nabla u(x)), \nabla \eta(x) \rangle + \eta(x)] dx. \end{aligned}$$

If we prove that for every selection $p(\cdot)$ and for every function $\eta(\cdot) \in W_0^{1,1}(\Omega)$ there exists a function $\alpha(x) \in L^\infty(\Omega)$, $0 \leq \alpha \leq \Lambda$, such that

$$\int_{\Omega} [\alpha(x) \langle p(\nabla u(x)), \nabla \eta(x) \rangle + \eta(x)] dx = 0 \quad (4.1)$$

we have proved that the function $u(x)$ is a minimum of the functional considered. Using standard arguments on mollifiers, it is sufficient to show that (4.1) holds true for every $\eta(\cdot) \in \mathcal{C}_0^\infty$.

(b) For every $i \in \{1, \dots, n\}$ such that J_i is nonempty there exists a point $O_i \in J_i$ such that ξ_i belongs to $N_\Omega(O_i)$. Let ν_i be a vector normal to ξ_i , with norm equal to 1, and we consider the pair of coordinate axis with origin in O_i and directions defined by (ν_i) and $(-\xi_i)$. There exist an open interval $]a_i, b_i[$ and a non-negative lipschitzian convex function $\Phi_i :]a_i, b_i[\rightarrow \mathbb{R}^2$ such that $\{(s, \Phi_i(s)) : s \in]a_i, b_i[\} = J_i$. We will use the notation $c(s) = c((s, \Phi_i(s)))$ and we recall that the function $c(s)$ is continuous on $]a_i, b_i[$ and admits finite limits both for $s \rightarrow a_i$ and for $s \rightarrow b_i$. We define $S_i = \{(s, c) : s \in]a_i, b_i[$ and $0 < c \leq c(s)\}$ and, for every $\epsilon \geq 0$, $S_i^\epsilon = \{(s, c) : s \in]a_i, b_i[$ and $0 < c < c(s) - \epsilon\}$. We will denote by $g_i : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ the function that describes this change of variables. We have that $g_i(\Omega_i) = S_i$ and denote by Ω_i^ϵ the set such that $g_i(\Omega_i^\epsilon) = S_i^\epsilon$.

Now, for every $i \in \{1, \dots, n\}$ such that $\text{ri}(I_i)$ is non empty and for every $\xi \in \zeta_{i-1}$, we can fix a point $P_i \in I_i$ and consider a pair of coordinate axis with origin in P_i and directions defined by (ν) and $(-\xi)$, where ν is a vector, normal to ξ , with norm equal to 1. By (ii) of Proposition 3.4, there exist a closed interval $[c_i, d_i]$ and a linear function $\Psi_i : [c_i, d_i] \rightarrow \mathbb{R}^2$ such that $\{(s, \Psi_i(s)) : s \in [c_i, d_i]\} = I_i$. As before we will use the notation $c(s) = c(s, \Psi_i(s))$ and we remark that the function $c(s)$ is continuous on $[c_i, d_i]$. We define $R_i = \{(s, c) : s \in [c_i, d_i]$ and $0 < c \leq c(s)\}$ and, for every $\epsilon \geq 0$, $R_i^\epsilon = \{(s, c) : s \in [c_i, d_i]$ and $0 < c < c(s) - \epsilon\}$. We will denote by $h_i : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ the function that describes this change of variables. In this case we have that $h_i(\mathcal{O}_i) = R_i$ and we denote by \mathcal{O}_i^ϵ the set such that $h_i(\mathcal{O}_i^\epsilon) = R_i^\epsilon$.

The definition of $c(y)$, the properties (i) and (ii) in Proposition 3.8 and the Remarks 3.11 imply for every $\epsilon > 0$, the sets \mathcal{O}_i^ϵ , Ω_i^ϵ satisfy the following properties

$$\mathcal{O}_i^\epsilon \cap \mathcal{O}_j^\epsilon = \emptyset \quad \forall i \neq j, \quad \Omega_i^\epsilon \cap \Omega_j^\epsilon = \emptyset \quad \forall i \neq j, \quad \mathcal{O}_i^\epsilon \cap \Omega_j^\epsilon = \emptyset \quad \forall i \forall j.$$

Moreover we have that $S_i \setminus S_i^\epsilon = \{(s, c) : s \in]a_i, b_i[\text{ and } c(y) - \epsilon \leq c \leq c(y)\}$, then $\mu(S_i \setminus S_i^\epsilon) = (b_i - a_i)\|\xi_i\|\epsilon$ and

$$\lim_{\epsilon \rightarrow 0} \mu(\Omega \setminus (\cup_{i=1, \dots, n} (\mathcal{O}_i^\epsilon \cup \Omega_j^\epsilon))) = 0. \quad (4.2)$$

By the properties proved for the function $v(x)$ we have that, on S_i , $v(g_i(s, c)) = c - \Phi_i(s)$. By the convexity of the function Φ_i there exists at most a countable collection of points $(s_n)_{n \in \mathbb{N}} \subset]a_i, b_i[$ in which the function Φ_i is not differentiable. It is $\mu(\{(s, c) : s = s_n \text{ and } 0 < c \leq c(y)\}) = 0$, and then for every $(s, c) \in S_i$ such that $v(g_i(\cdot, \cdot))$ is differentiable in (s, c) and $(s, c) \notin \{(s, c) : s = s_n \text{ and } 0 < c < c(y)\}$ we have

$$\nabla v(g_i^{-1}(s, c)) = (-\Phi_i'(s), 1) \in -N_\Omega((s, \Phi_i(s))). \quad (4.3)$$

On R_i we have $v(h_i(s, c)) = c - \Psi_i(s)$ and then, for every point of differentiability of $v(h_i(\cdot, \cdot))$,

$$\nabla v(h_i^{-1}(s, c)) = (-\Psi_i'(s), 1) \in -N_\Omega(s, \Psi_i(s)). \quad (4.4)$$

(c) We define the following functions

$$\begin{aligned} \beta_i(s, c) &= \begin{cases} \Phi_i(s) + c(s) - c & \text{for } (s, c) \in S_i \\ 0 & \text{otherwise} \end{cases} \\ \delta_i(s, c) &= \begin{cases} \Psi_i(s) + c(s) - c & \text{for } (s, c) \in R_i \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

We claim that the function

$$\alpha(x) = \sum_{i=1, \dots, n} \beta_i(g_i(x))\chi_{\Omega_i}(x) + \delta_i(h_i(x))\chi_{\mathcal{O}_i}(x)$$

satisfies (4.1). We remark that $\alpha(\cdot)$ is measurable and, for almost every $x \in \Omega$, $0 \leq \alpha(x) \leq W_{\Omega, K}$. By (4.2) we have

$$\begin{aligned} &\int_{\Omega} [\alpha(x)\langle p(\nabla u(x)), \nabla \eta(x) \rangle + \eta(x)] dx \\ &= \lim_{\epsilon \rightarrow 0} \sum_{i=1, \dots, n} \int_{\Omega_i^\epsilon} [\alpha(x)\langle p(\nabla u(x)), \nabla \eta(x) \rangle + \eta(x)] dx \\ &\quad + \lim_{\epsilon \rightarrow 0} \sum_{i=1, \dots, n} \int_{\mathcal{O}_i^\epsilon} [\alpha(x)\langle p(\nabla u(x)), \nabla \eta(x) \rangle + \eta(x)] dx. \end{aligned} \quad (4.5)$$

Let us compute

$$\int_{\Omega_i^\epsilon} \eta(x) dx = \int_{a_i}^{b_i} \int_{\Phi(s)}^{\Phi(s) + c(s) - \epsilon} \eta(g_i^{-1}(s, c))\|\xi_i\| ds dc.$$

Integrating by parts and recalling that $\eta(g_i^{-1}(s, \Phi(s))) = 0$, we obtain that the last term is equal to

$$\begin{aligned} \|\xi_i\| \int_{a_i}^{b_i} & \left[\epsilon \eta(g_i^{-1}(s, \Phi(s) + c(s) - \epsilon)) \right. \\ & \left. - \int_{\Phi(s)}^{\Phi(s) + c(s) - \epsilon} (\Phi(s) + c(s) - c) \langle \xi_i, \nabla \eta(g_i^{-1}(s, c)) \rangle dc \right] ds. \end{aligned}$$

Hence

$$\begin{aligned} & \int_{\Omega_i^\epsilon} [\alpha_i(x) \langle p(\nabla u(x)), \nabla \eta(x) \rangle + \eta(x) dx] \\ = & \|\xi_i\| \int_{a_i}^{b_i} \int_{\Phi(s)}^{\Phi(s) + c(s) - \epsilon} \beta_i(s, c) \langle p(\nabla u(g_i^{-1}(s, c))), \nabla \eta(g_i^{-1}(s, c)) \rangle dc ds \\ & - \|\xi_i\| \int_{a_i}^{b_i} \int_{\Phi(s)}^{\Phi(s) + c(s) - \epsilon} (\Phi(s) + c(s) - c) \langle \xi_i, \nabla \eta(g_i^{-1}(s, c)) \rangle dc ds \\ & + \|\xi_i\| \int_{a_i}^{b_i} \epsilon \eta(g_i^{-1}(s, \Phi(s) + c(s) - \epsilon)) dc ds. \end{aligned} \quad (4.6)$$

By (4.3), recalling that $N_\Omega(s, \Phi(s))$ is strictly contained in the convex cone generated by k_i and k_{i+1} , there exists $\lambda \in (0, 1)$ such that $\nabla v(g_i^{-1}(s, c)) = -(\lambda k_i + (1 - \lambda)k_{i+1})$ and then for every selection $p(\cdot)$ we have $p(\nabla u(s, c)) = \xi_i$. Hence (4.6) is equal to

$$\begin{aligned} & \|\xi_i\| \int_{a_i}^{b_i} \epsilon \eta(g_i^{-1}(s, \Phi(s) + c(s) - \epsilon)) ds \\ & + \|\xi_i\| \int_{a_i}^{b_i} \int_{\Phi(s)}^{\Phi(s) + c(s) - \epsilon} [\beta_i(s, c) - (\Phi(s) + c(s) - c)] \langle \xi_i, \nabla \eta(g_i^{-1}(s, c)) \rangle dc ds \end{aligned}$$

and, by the definition of $\beta_i(s, c)$, it is equal to

$$\|\xi_i\| \int_{a_i}^{b_i} \epsilon \eta(g_i^{-1}(s, \Phi(s) + c(s) - \epsilon)) ds.$$

If we want to compute the integral on \mathcal{O}_i^ϵ , first of all we have to notice that $\nabla v(x) = -k_i$ for almost every $x \in \mathcal{O}_i^\epsilon$ and then $\partial \gamma_K(\nabla u(x)) = \overline{\text{co}}(k_i, k_{i+1})$. For every selection $p(\cdot)$, it is $p(\nabla u(x)) = \xi \in \overline{\text{co}}(k_i, k_{i+1})$. We can consider the coordinates introduced in (b) and, proceeding exactly as above, we get

$$\int_{\mathcal{O}_i^\epsilon} [\alpha(x) \langle p(\nabla u(x)), \nabla \eta(x) \rangle + \eta(x)] dx = \|\xi\| \int_{c_i}^{d_i} \epsilon \eta(h_i^{-1}(s, \Psi(s) + c(s) - \epsilon)) ds.$$

Hence, by the hypothesis $\eta(\cdot) \in C_0^\infty(\Omega)$, by (4.5) and by the assumption on Ω , the conclusion follows. \square

The following example is in the same spirit of the Example 2 in [4]. It shows that the condition $W_{\Omega, K} \leq \Lambda$ can not be improved in the sense that if it is not fulfilled it may happen that the function $u(x) = -\rho v(x)$ is not a solution of the problem (\mathcal{P}) .

Example 4.2. Let us consider the function

$$h(r) = \begin{cases} r & \text{if } 0 \leq r \leq 1 \\ +\infty & \text{if } r > 1. \end{cases}$$

In this case we have $\rho = 0$ and $\Lambda = 1$. Let $K \subset \mathbb{R}^2$ be the square $\{x = (x_1, x_2) : \max_{i=1,2} |x_i| \leq 1\}$. The functional defined in such a way is weakly lower semicontinuous and has superlinear growth, then it always admits a solution.

Applying Theorem 4.1 we have that, for every Ω such that $W_{\Omega, K} \leq 1$, the function $u(x) \equiv 0$ is a solution of the problem (\mathcal{P}) . We show, now, that for every $\epsilon > 0$ there exists a set Ω , with $W_{\Omega, K} = 1 + \epsilon$, such that the function $u(x) \equiv 0$ is not a minimum.

We choose $\Omega = \{x = (x_1, x_2) : |x_1| \leq a + \epsilon \text{ and } |x_2| \leq 1 + \epsilon\}$ and $\Omega_0 = \{x = (x_1, x_2) : |x_1| \leq a \text{ and } |x_2| \leq 1\}$. Let us consider the negative function $w(x)$ that has gradient in norm equal to one and orthogonal to the sides of Ω on the strip $\Omega \setminus \Omega_0$ and gradient 0 on Ω_0 . The values of the functional computed along the maps u and w are, respectively, 0 and $4(\epsilon + \frac{\epsilon^2}{2}(1-a) + \frac{\epsilon^3}{3})$. It is easy to see that if a is sufficiently large with respect to ϵ the last value is strictly less than zero.

Now, let us consider the following problem

$$\int_{\Omega} [f(\nabla u(x)) + u(x)] dx \quad u(\cdot) \in W_0^{1,1}(\Omega) \quad (\mathcal{P}')$$

where $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a non-negative lower semicontinuous function with minimum value 0. Let $K \subset \mathbb{R}^2$ be a closed polytope with $0 \in \text{int}(K)$. We suppose that $f(k) = 0$ for every $k \in \partial K$ and $f(k) > 0$ for every $k \in C(K)$.

We can consider the family

$$\mathcal{H} = \{h : [0, +\infty) \rightarrow [0, +\infty] : h(\cdot) \text{ lower semicontinuous and } h(\gamma_K(k)) \leq f(k) \ \forall k \in \mathbb{R}^2\},$$

and we can define

$$\tilde{h}(x) = \sup_{h \in \mathcal{H}} h(x).$$

We have that $\tilde{h}(\cdot) \in \mathcal{H}$ and $\tilde{h}(1) = 0$. We define $\tilde{\Lambda} = \sup\{a \in \mathbb{R} : \tilde{h}(s) \geq a(s-1) \text{ for every } s \geq 0\}$ and $W_{(\Omega, K)} = \sup_{x \in \Omega} v(x)$, where $v(\cdot)$ is defined by (2.4). Then we have

Corollary 4.3. *Let Ω, K, f be defined as above. If $W_{(\Omega, K)} \leq \tilde{\Lambda}$ the function*

$$u(x) = - \inf_{y \in \partial \Omega} \sup_{x^* \in -K} \langle x, x^* \rangle$$

is a solution of the problem (\mathcal{P}') .

Proof. It is sufficient to remark that for every $\eta(\cdot) \in W_0^{1,1}(\Omega)$, for every selection $p(\cdot)$ of the multifunction $\partial \gamma_k$ restricted to ∂K and for $\alpha(\cdot) \in L^\infty(\Omega)$, with $0 \leq \alpha(x) \leq \tilde{\Lambda}$, we

have

$$\begin{aligned}
& \int_{\Omega} [f(\nabla u(x) + \nabla \eta(x)) + u(x) + \eta(x)] dx \\
& \geq \int_{\Omega} [\tilde{h}(\gamma_K(\nabla u(x) + \nabla \eta(x))) + u(x) + \eta(x)] dx \\
& \geq \int_{\Omega} [\tilde{h}(\gamma_K(\nabla u(x))) + u(x)] dx + \int_{\Omega} [\alpha(x) \langle p(\nabla u(x)), \nabla \eta(x) \rangle + \eta(x)] dx \\
& = \int_{\Omega} [f(\nabla u(x)) + u(x)] dx + \int_{\Omega} [\alpha(x) \langle p(\nabla u(x)), \nabla \eta(x) \rangle + \eta(x)] dx.
\end{aligned}$$

The construction of the function $\alpha(\cdot)$ given in the proof of Theorem 4.1 completes the proof. \square

Acknowledgements. The author would like to thank Prof. Arrigo Cellina for having introduced her to this subject and for the stimulating discussions during the preparation of this paper.

References

- [1] J. P. Aubin, A. Cellina: Differential Inclusions, Springer-Verlag, Berlin et al., 1989.
- [2] A. Cellina: On minima of a functional of the gradient: sufficient conditions, Nonlinear Analysis TMA 20 (1993) 343–347.
- [3] A. Cellina: On minima of a functional of the gradient: necessary conditions, Nonlinear Analysis TMA 20 (1993) 337–341.
- [4] A. Cellina: Minimizing a functional depending on ∇u and on u , preprint S.I.S.S.A. (1995), to appear in Ann. Inst. Henri Poincaré, Analyse Non Linéaire.
- [5] A. Cellina, S. Perrotta: On minima of radially symmetric functionals of the gradient, Nonlinear Analysis TMA 23 (1994) 239–249.
- [6] A. Cellina, S. Perrotta: On a problem of potential wells, preprint S.I.S.S.A. (1994), to appear in Journal of Convex Analysis.
- [7] A. Cellina, S. Zagatti: A version of Olech's lemma in a problem of the calculus of variations, SIAM J. Control Optimization 32 (1994) 1114–1127.
- [8] A. Cellina, S. Zagatti: An existence result in a problem of the vectorial case of the calculus of variations, SIAM J. Control Optimization 33 (1995).
- [9] F. H. Clarke: Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
- [10] B. Dacorogna: Direct methods in the Calculus of Variations, Springer-Verlag, Berlin et al., 1989.
- [11] B. Dacorogna, P. Marcellini: Existence of minimizers for non quasiconvex integrals, Arch. Rat. Mech. Anal. 131 (1995) 359–399.
- [12] L. C. Evans, R. F. Gariepy: Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
- [13] G. Friesecke: A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Royal Soc. Edinburgh 124 (1994) 437–471.

- [14] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin et al., 1977.
- [15] J. Goodman, V. R. Kohn, L. Reyna: Numerical study of a relaxed variational problem from optimal design, *Computer Methods Appl. Math. Eng.* 57 (1986) 107–127.
- [16] B. Kawohl, J. Stará, G. Wittum: Analysis and numerical studies of a problem of shape design, *Arch. Rat. Mech. Anal.* 114 (1991) 349–363.
- [17] R. V. Kohn, G. Strang: Optimal design and relaxation of variational problems I, *Comm. Pures Appl. Math.* 39 (1986) 113–137.
- [18] E. Mascolo, R. Schianchi: Existence theorems for nonconvex problems, *J. Math. Pures Appl.* 62 (1983) 349–359.
- [19] F. Murat, L. Tartar: Calcul des variations et homogenization, in: *Les Methodes de l'homogenization*, Eds: D. Bergman et al., *Collection des Etudes et recherche de l'Electricité de France* 57 (1985) 319–369.
- [20] R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton, 1972.
- [21] R. Tahraoui: Sur une classe de fonctionnelles non convexes et applications, *SIAM J. Math. Anal.* 21 (1990) 37–52.
- [22] R. Tahraoui: Théoremes d'existence en calcul des variations et applications a l'elasticité non linéaire, *Proc. Royal Soc. Edinburgh* 109 (1988) 51–78.