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A numerical procedure for an inverse problem of identification of an unknown source in a heat equation is
presented. Approach of proposed method is to approximate unknown function by polygons linear pieces
which are determined consecutively from the solution of minimization problem based on the overspecified
data. Numerical examples are presented.
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1 INTRODUCTION

In this paper we solve the problem of structural identification of an unknown source term in a
heat equation subject to the specification of the solution at the boundary. This problem is
described by the following inverse problem:

Find u = u(x, f) and F = F(u) which satisfy

u(x, 1) = (¥, ) + F(u(x, 1), (x,6) € Qr =(0,1) x (0, T), M
u(x,0)=0, xe(0,1), )

u(0,7) = g(®, t€(0,7), ©)

u(1,0=0, te(0,7), @)
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subject to the overspecification

u0,)=7@®, te(©,7) ®)

where f(f) and g(#) are known functions.

In the context of heat conduction and diffusion when u represents temperature and con-
centration, the unknown function F'(u) is interpreted as a heat and material source, respec-
tively, while in a chemical or biochemical application F may be interpreted as a reaction
term. Although the results in this paper apply to each of these interpretations, the unknown
function F(u) will be referred to here as a source term.

The problem above in such formulation have been studied by authors [1] recently.

One approach to solve this problem referred to in the literature as the method of output
least squares is to assume that the unknown function is a specific functional form depending
on some parameters and then seek to determine optimal parameter values so as to minimize
an error functional based on the overspecified data. However, this approach has some
drawbacks. For example, it is usually not evident that the solution to the optimization
problem solves the original inverse problem and the error functional may be based on data
which do not uniquely determine the unknown function. Another methods to solve this
problem are residual update methods such as Newton, Homotopy and FPP (Fixed Point
Projection) methods [4]. The main difficulty with these methods is the form of the non-
linearity. The approach of method presented in this paper is not of these types.

The strategy used here is to approximate unknown function by polygons linear pieces
which are determined consecutively from the solution of minimization problem associated
with finding minimum of function based on the additional condition. This paper is organized
as follows. In section 2 we give the formulation of the direct and inverse problems and the
properties of solution of the direct problem. In section 3 we describe a numerical procedure
for the solution of the formulated inverse problem. Numerical examples are presented in
section 4.

2 DIRECT AND INVERSE PROBLEMS

Let F is continuous and piecewise differentiable on R and g € C(0, o0) with g(0) =0
functions. Then initial boundary value problem (1)—(4) has a unique classical solution in O/
for sufficiently small T’ (local existence of a solution) [3]. It is known that if the local so-
lution is known to satisfy an a priori estimate then the local solution may be extended to a
global solution. In particular, if it is known a priori that the solution of (1)—(4) satisfies

lu@x, )] <C; for 0<x<1 and 0<¢t<T (6)

for someT > 0, then it can be concluded that T’ = T. One refers to (1)~(4) as a direct
problem.

Let u = u(x, t; F,g) denote the solution of (1)~(4) for boundary input g = g(#) and
source term F = F(u). Assume that this solution is known to satisfy (6) for a fixed 7 > 0
so that u(x, f) is then a solution in Q7. Then u(x, ) will be said to be a solution of the
direct problem. The function f(¢) = u(0, t; F, g) will be viewed as an output corresponding
to the input g(#) in the presence of the source term F. In [1] the following properties were
deduced for the direct problem solution:
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Suppose that g(f) < 0 for 0 < ¢ < T. Then

a) for each 1,0 <t < T, f(t) =u(0,£) > u(x,t) > u(l,£) for 0 < x < 1. If, in addition,
F(0) > 0 with F(u) > 0 for 0 < u < Uj for some U > 0, then exists T; > 0 such that
f'(t)>0for0<¢t< T and

b) f(t) =u(0,?) > u(x,t) >u(l,t) >0for0 <x< 1,0 <t < Ty.

We shall use these properties to construct numerical procedure for the solution of con-
sidered problem.

Now the inverse problem <can be defined as follows:  suppose
geC[0,T], g(0)=0,g(/) <0 and f € C'[0,T], f/(0)=0,f'(1) >0 for 0 <t < T. Then
the problem of determining F(x) on an interval [0, £(T)] from the data f(f) and g(f) whose
values are known on
the interval [0, T] will be said the inverse problem. The uniqueness
of formulated and similar inverse problem has been established
in [1,5].

3 PROCEDURE OF NUMERICAL SOLUTION

Let t=At>0 and A=Ax>0 be step length on time and space coordinate,
0=fh<ti<---<tyy=T}and {0 =xp <x; <---< xy = 1} denote partitions of the
[0, 77 and [0, 1] respectively. It follows from the properties of direct problem solution that
{uo < uy <--- <uy}, where u; = f(¢;), defines a corresponding partition of the interval
[0, f(T)], where uy = inf(y e, u(x, t) and f(T) = sup, ycq, U(x, t). We replace the region
QOr by a set of grid points (x;, ¢,) denoted by (i, n).

We may write the problem (1)—(5) at the grid points (i, ») as

Outj 62Mi,n .
= a2 +F(u,), 1<i<N-1,1<n<M, @)
u0=0, 0<i<N ®
Con _ o), 1<n<M ©)
ax ‘_g nls — —
9’%}:0, l<n<M, (10)

and

un=f(t), 1<n<M (11
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The implicit finite difference approximation of this system may be written in the form

(]i,n - (]i,n—l — (]i+l,n - 2(]i,n + (Ji—l,n

- 7 + F(Uin),
1<i<N-1, l<n<M, 12)
Upop=u, 0<i=<N, (13)
Do or_ g4), 1<nsM, (14)
U —hU”"'" =0, l<n<M, (15)
Unvn=f(ts), 1=n=<M, (16)

where U;, is the approximate value of u; ,. The difference scheme (12)—(16) has a second
order approximation on x on the interior nodal points and first order approximation in ¢.
Define P,(#) a polygonal (i.e., continuous and piecewise linear) approximation of

F(u) [uo, u,] as follows. For each m =1, 2,..., n, let P,(u) given for u,_; < u < u, by
Po(u) = Fpoy —2— 2 4 F,, ——2n-] 17
Uy — Um—1 Uy — Um—1

where F,, = F(uy,). Po(u) = Fy = const. Assume that F(u(x, 0)) = Fy is known. This value
can be found from the solution of (7)—(11) by using finite difference approximation (12)—(16)
with n = 1 if we assume that F(u) is constant on the initial time segment (0, #,), i.e., F(u) =
Fy = const. on [up, u;]. We shall determine graph of unknown function F(x) on the con-
secutive segments [u;, up), [z, u3), ..., [Upr—1, up] in the following manner.

First it will be shown how F, = F(u;) is determined and then the procedure will be
generalized to the case of subsequent /’s.

Let B < F'(u) <y for any u and let u(x, t; o), where o € (tan™! B, tan~!y), denote the
solution of (1)-(4) for

)= {F(u; o) = Fy +tgol(u — uy), if u> u, s

Fy, if € [ug, uy),

on the time segment [0, #,]. Let oy = arg min, I(«), where I(x) = |u(0, t,; &) — f(#2)|. Then
we can define F, = F + tgop(uy — 1) and on [u;, u;] unknown F(u) will be approximated
by P,(u).

To find F; one the first / constants Fy, Fy, ..., F;_; are known, let u(x, t; o) denote the
solution of (1)-(4) for

F(u; ) = Fioy +1golu —up—y),  if u > uy-y,
Flu) = l : : : (19)

Pi_1(u), if u € [ug, u—1),
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on the interval [0, #], and oy = arg min, /(c), where
I(®) = [u(0, t; ) — f(#) (20)

Then F; = F;_y + tgoiy (w; — u;—1) and P;(u) approximate the unknown F(u) on [ug, u;).
Executing this procedure for / = 1 to / = M generates a polygonal approximation Py, (u)
for F(u) on the partition [ug, uy, .. ., ).
Numerical experiments to test the effectiveness of this algorithm which will be discussed
in the following section.

4 NUMERICAL EXAMPLES

In this section we report some results of our numerical calculations using the numerical
algorithm proposed in the previous section.
The data function g(#), the source F(u), uy and T were given by

g)=—3t, Fu)=5—-4u+1), T=1, u=0.

By solving the direct problem with these data by using implicit finite-difference approx-
imation (12)-(16), the solution values of f(f) were recorded. Then the inverse problem was
solved with this overspecification to determine the unknown source F(x). For minimization
of (20) here the method of golden section search is used. Results of determination of F(u) by
the presented numerical procedure, are illustrated in Figures 1-3, corresponds to results with
grids N x M =50 x 5,50 x 10, 50 x 30, respectively, where the symbols correspond to
approximate results and the ones without symbols correspond to exact F(u). It is seen that
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approximation of F(u) is improved by increasing the number of nodes and that for suffi-
ciently large number of nodes the agreement between numerical and exact solution becomes
uniformly good.

FIGURE 3
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In the next example input data were used from the previous example. Artificial errors were
introduced into the overspecified data by defining function

) =ft)A+dt,q), n=12,...,M.

Here d(t,, q) represents the level of relative error in the corresponding piece of data. Cal-
culation results with grid N x M = 50 x 20 are presented in Figure 4 according to cases
with d(¢, 0.02), and d(¢, 0.04). As seen from the figure that in this case results are worsening
and there are approximations in some integral norm. It is also seen that Py, (u) appears to be a
relative good approximation for small values of artificial errors.

5 CONCLUSION AND FUTURE DIRECTIONS

Considered problem in this paper has such properties that presented method is readily
available. Numerical experiments show effectiveness of the presented method in determining
close estimates of unknown source term in a heat equation. In considered problem additional
condition is given on boundary, but the proposed procedure may be used for the solution of
problems where additional conditions are given on the interior points. The presented method
can be applied for the solution of class of inverse problem associated with parabolic equation

= F(x, t, u, tyy, p(u))
with appropriate initial, boundary and additional conditions, where u(x, f) and p(u) are to be

determined. This method can be extended also for the solution of multidimensional and
multiple coefficient inverse problems.
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