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In this paper, absolute stability of nonlinear systems with time delays is investigated.
Sufficient conditions on absolute stability are derived by using the comparison
principle and differential inequalities. These conditions are simple and easy to check.
In addition, exponential stability conditions for some special cases of nonlinear delay
systems are discussed. Applications of those results to cellular neural networks are
presented.
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1 INTRODUCTION

Since its inception in the 1940s, the concept of absolute stability has
attracted the attention of many researchers including mathematicians
and engineers, and numerous results have been published in the lit-
erature, [1-5]. The significance of this concept is that it does not re-
quire very precise information on certain nonlinear portion of a
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control system. However, most of the results are with respect to linear
control systems or systems described by ordinary differential equations
(ODEs), while the real control systems in general are nonlinear sys-
tems with time delays. In this paper, absolute stability of nonlinear
system with time delays is studied. By constructing suitable Lyapunov
functions, sufficient conditions to guarantee absolute stability of the
systems are derived. These conditions are simple and easy to check. In
addition, existence of a unique equilibrium point and its exponential
stability for some special cases of the system are discussed.

The remainder of this paper is organized as follows. Section 2 gives
the definitions of absolute stability and equilibrium points. In section
3, suflicient conditions on absolute stability as well as those on ex-
ponential stability for some special cases are derived in detail. Appli-
cations of those conditions to cellular neural networks are presented in
section 4. Conclusions are given in section 5.

2 PRELIMINARIES

Consider a nonlinear system with time delays given as follows
Wi = a3 fil) + 20 gi(Wi(t = Ti(1) + didp
¢ =h(d), S=X pWi—rd, i=1,...n,

where a;,di,p; and r are constants, fj,g;,1; € C'(R,R), f;0)=
gi(0) =0and 0 < 74(¢) < 1,7 > 0.
Let
U= {h:|he C(R,R), h(0)=0,h(6)d >0, +#0}.

Definition 2.1 The trivial solution of (2.1) is called globally asymp-
totically stable if it is stable and all solutions of (2.1) satisfy

lim () =0, lim=0, i=12...,n
—00 1—00

Definition 2.2 System (2.1) is called absolutely stable if for any h € U
and any 7 > 0, it is globally asymptotically stable.

When h(5) =0, ¢ becomes a constant. Let [;=di¢p and
xi=1;, i=12,...,n(2.1) becomes
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Xp=—axi+ Y filx)+ gyl —ty(0) + L (2.2)
=1 =

Definition 2.3 A point x* = (x},...,x5)" € R" is called an equili-
brium point of (2.2) if

n n
aix; = qu(x,*) + Zgu(x;‘) +1, i=12,....n
= =

Definition 2.4 The equilibrium point x* = (x7,... ,x,’;)T € R of sys-
tem (2.2) is called exponentially stable if there exists a 4 > 0 such that

n

|x,-—x7|SM<Z sup |xj—x;|)e"l(’“’°), i=1,2,...,n

=1 -ttty

Definition 2.5 [8] A real nx n matrix A with nonnegative diagonal
and nonpositive off-diagonal elements is called M-matrix if all its ei-
genvalues have a nonnegative real parts or its principal minors are
positive. If A has all eigenvalues with positive real parts, then it is
called a nonsingular M-matrix. Usually, X is used to denote the class of
all nonsingular M-matrices.

LEMMA 2.1 [8] If A = (a;) € X, then there exists a positive diagonal
matrix P such that ATP is strictly diagonally dominant, i.e.,

aiipi + Z piai >0, i=12,...,n
=Lt

LEMMA 2.2 [7] Let g € C(R* X R, R), g(¢,0) =0 and r(t) = r(¢,to,
uy) be the maximal solution of

u = g(t,u), u(ty) =uy >0,
existing on J = [to, tg + &), 0 < a < 00. if m € C(R*,R") and
Dm(t) < g(t,m(t)), teJ,
where D is any fixed Dini derivative, then m(ty) < uy implies
m(t) <r(t), tel.

LEMMA 2.3 Let E be a complete matric space and T : E — E be a
contraction mapping, i.e. |T(x) - T(y)| <olx —y|,x € [0,1),x,y € E,
then T has unique fixed point.
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3 MAIN RESULTS

This section establishes some sufficient conditions on absolute stability
for system (2.1), and on exponential stability for some special case of
(2.1). Two examples are given to illustrate the derived conditions.

THEOREM 3.1 The system (2.1) is absolutely stable if the following
two conditions are satisfied.

(A 159 < my, |gii(s)] < My, [7;(s)] < 1

(Az): —QeN,
where
Q= ((1)[,‘)

—day +my + My myy+ Mp» my, + M, |d||
nmyy + Mo —ay+my+My ... iy, + Mo, Idz‘
ny 4+ My, My + M cee = Ay 1y + My, |(In’

1] 2] e |Pal -r

Proof Let

=g+ S+ D &t = (1)) + digp

” (3.3)
0= Zi:l pi—rd, i=1,...,n,

then system (2.1) becomes

= —a;X; —|—Z, W /,,(s
+2”,&mxrmmm—mm+mm 34
d = Zm pixi—rh(d), i=1,2,...,n.

Since —Q e X, by Lemma 2.1, there exist positive real numbers
/31 3 /327 ce ’BIH-I such that
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n+1

D Bwi<0, i=12,...,n+1 (3.5)
=1

Define a Lyapunov functional v(x, x,,d) by

t

U(x’ xh Zﬁ' |:|-Xl| + Z Mlj / ,xj(s ,dS} + ﬁn+l !5| (36)

t—;(1)

It is clear that

U(X, xl’é) > Zﬁi‘xil + ﬁn+1 |5|
i=1
The generalized derivative D*v along with system (3.4) is

D+Vfiﬁi{ a;
i=1

f,(s

(£ = 75(0)| (1 = (1)) + |dih(3)]

" ;My[lle ~ byl = w()I(1 - r’(rm}
¥ Z: Brolpex] — Broarlh(6)
< ; /3,-{ — x| + Z::m,jlxj]
+ Z Mylgi(t = 1(0)|(1 = 5(1)) + |dih ()|
¥ Z;Mv[lx;l ~ Il = )1 - r’(r))]}

+ Zﬁnﬂ pixil — Busrr|h(5)|
p
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n n
<D OB = ailxil+ > (my+ M)l
i =

+ Id,-h(&)]} + Zﬁuﬂ pixil = Buirh(5)]
=

=

< { — Bidi + st Ipil + D Bimji + M) } |xi|

+ (iﬂrldll - ﬁn-{-l’.) Ih(é)l <0.
i=l

With (3.5), we conclude that

lim x;(¢1) =0, lim d(¢) = 0. (3.7)

(—oc ()

On the other hand, from (3.3), we have
n ]?i (5
$= -, (3.8)
i=1

where 0 satisfy the condition lim,_. 6(¢) = 0.
Next, we show that

lim ¢,(1) =0, and Ignol o(1) =0. (3.9)

[—00

Let the auxiliary function

w= Z lgiw/ilv
i=1

then along with system (2.1), we get
prw<y /f,{— ailil + 3 1fi)
i=1 =1

+ Z lgii (W, (1 — T(1))] + I‘Iid’l}
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n n
< Zﬁi{ — aily;| + ZmijW/ﬂ
i=1 =

+ i Mly;(t — ()] + |di¢|}
=

n

= Z/},{ —alyil + > myly]
i=1 Jj=1
+ iMij
j=1

(1) - / V(s)ds| + |dig|

t=1(0)

n

< Zﬁi{ - aily,| + Z{mij + M}y,
=

=1
t
n n pJ 6
+ZM,-,~ |xjlds + |d; Z_‘L_—l//j_;
. =1

-1
1]
r

U

< Z{ “ﬁiaj+Zﬁi[mij+Mij]+ Zﬁ:|d:|}|%|
= =1 =1
n n ! n 5
+3-(Soman) [ istars 3ol
=1 \ =1 2 =T

< “Czl:ﬂjl'ﬁﬂ + F(1)
=

= —ew + F(¢)
where
n |
—= lI‘I;JdS)’(I {ﬂjaj + ;ﬂi[mfj + M| + 7’ ;ﬁildi’}/ﬁj
1 | [t
< ln;;dg); { ;ﬁ,ﬂ)ij + 7‘{ ;ﬁiwi(rﬁl)}}/ﬂj <0,
and

n

o) =3 ( 2 ﬁ,-My-) / Ileds+z; Bildi|l§l.
i= j=

=1 -7
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By Lemma 2.2, w(¢) < r(¢), where r(¢) is the maximal solution of
u' = —cu+ F(t), u(to) = w(t).

It can be seen that, for any 7,lim, . F(¢) = 0 since lim,_|x;| =0
and lim,_|0(¢)] = 0. This implies that lim,_|r(f)] =0 and hence
im0 |w(f)] = 0. Thus (3.9) is true in view of (3.8). The proof is
complete.

In the following, we study two special cases of system (2.1).

Case 1 1f fi(;) = aiyp;, gii(¥;) = bip;, the system becomes a linear
system of the form

V= a0 a0 b= Ty(0) + i,
¢ =h(), o= ZLI pyi —ro,

where a;, d;, pi, r, I; are constants and 0 < 7;(t) < 7 = const.

(3.10)

COROLLARY 3.1 If =Q € W, then system (3.10) is absolutely stable,
where

Q= (wy)
—ay+lan|+bnl  a|+1bil o awl+Fbwl |di]
laoy |+ 1bo|  —ax+-lan|+1bnl - la|+ b2l |da]
Iaul '+Ibnl| IC’/12I+V7112‘ _(’lz+‘(11111|+lb1111| |dnl
p1] p2] s Pl -r

Example 3.1 Consider the following system

W\ = =3 + s+ (t —cost) — (¢ —sint)
Wy =, — 6y + 2 (1 — cos(2/2)) + Yo (t —sin(2/2)) +2¢  (3.11)
¢ =h(), d=y, —y,—5¢

-3 2 0
Q= ((!)(',‘) = 3 -5 2 .
1 I =5

In this system,
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It can be seen that —Q € R, and hence system (3.11) is absolutely stable.

Case 2 If n =1, system (2.1) reduces to

{ Vo= —ay + (W) + g (Y(t - 1(1)) + do

, (3.12)
¢ =f6), 0=py—r¢

COROLLARY 3.2 If |fi| <my, |g)| < My, |7'(1)] < 1, and there exist
B, By > 0, such that

Bi(—=a+my+ M)+ Bylpl < 0;  Byld] < fyr,
then system (3.12) is absolutely stable.
Example 3.2 Consider the following system

{ ¥ (1) = =59(f) + sin (1) + Y (¢ — cos 1) + 2¢,
¢'(1) =f(6), 8(r) = 2y(e) — 3¢(1).
Here, a=5m =1,M; =1,|d =2,|p|=2,r=3,|'(¢)] < 1. Since

—a+m +M;+|p|=-1<0and |d —r=—1<0, by Theorem 2.2,
system (3.13) is absolutely stable.

(3.13)

On the other hand, system (2.1) can be generalized to a highly
nonlinear system of the following form

Ci=—aii+gi(&h,. . En&i(t—Ta(0), ..., &t — tn(2))) + bin
n=fo), o=, pi&—ro, i=12...,n,
(3.14)

where g;,1; € C',g;(0,...,0) =0, and fe U (i,j=1,2,...,n).
The next result establishes absolute stability for system (3.14) under
suitable conditions on the function g;.

THEOREM 3.2 If

0gi
_g(él""aén,Cl’-"’CM)i ..<_.n1ij7

(A3)1 86,

Ogi
ﬁ( l?""éll?Cl?"'?CH) SMlja |‘L':J(t)|$ 17
a;




422 X. L1U et al.

then —Q € X implies absolute stability of system (3.14), where Q is the
same of Theorem 3.1.

Proof Let

Xi = —'aiéi +gi(él, vy él?) él(t - ‘l','](f)), e 7éll(t - Tin(t))) + bi"
o= 1 péi—ro, i=12,....n

then the system (3.14) become

':_"’\'—}—Z/ I:f: ""75!1,2:,[7'” _)-.
Z;’—— 32' (5]7 e )6/17CI 9 ,C,,)(,\'j(f - T,,(I‘)))(l - T:j(f)) + (lif‘(()')
o =31 pixi—ifle), i=1,2,...,n.

(3.15)
Since —Q € N, then there exist 5, 5, ..., f,4 such that
n+1
> B <0, i=1,2,...,n41, (3.16)
=1

Define a Lyapunov functional v by

t

o, x1,6) = Z/f I\,I+ZMU [ bl +Baldl (17)

t— ;:,,(r)

Using the similar proof of Theorem 3.1, we can obtain

lim || =0 and limnp=0.
=00

=00

The proof is complete.
Example 3.3 Consider the following system
& =4+ a1 &, G(t—n(n), &Glr—12(n)) +n

& ==56 4888, E(t—1(0), &t—1n(r)+2n  (3.18)
N =flo), o=-¢ +2¢ 060,
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where g1 =1 —cos(&; + & (7 — t12(?)) +sin(&s + &1 (F — 11 (2)), 82 =
ln(l + é% + ﬁg(t - tZZ(I)));TllaTIZaIZZ € Cl’fe U and IT.'I“(t)I S 1, ITI]2
(1) < 1,|t5(2)| < 1. It can be shown that

'(Zgét (élaﬁZaCl’CZ) < 1 = My, lacl (61,52,4’1752) <l= Mln i= 1,2,
382 o
28, 75 (61,82, 0,0)| < 1=my, (51,52,51 8)| =0=mp
ng(fl’éz’C"{Z) =0= My, 0g2(fh52»§h€2) <1=My

and

-2 2 1
Q=11 -4 2
1 2 -6

Since —Q € R, by Theorem 3.2, system (3.18) is absolutely stable.

In system (2.2), assume there exist m; > 0, M; > 0 and t > 0 such
that

|fi(x) = fsD)] < mylx = yl,  [gi(x) — gy(0)| < Mlx — yl,
0<t(t)<t<o00, ij=12,...,n

For any x = (xy,... ,x,,)r € R", we define the norm of x as

n
Ixll = Il
i=1

THEOREM 3.3 If

(A4) Y [y + Myl/ar < 1, ij=1,2,...,n,

i=1
then system (2.2) has a unique equilibrium.

Proof For x € R", we define a mapping T: R" — R" by

n n
Tx; = Zfif(xj) +Zg;,<(x,-) +1,] /ai, i=12,...,n
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It is obvious that T is continuous for any x:(xl,...,xn)r’
r
:(,Vlﬁ"‘?.yll) eRna

n

ITx =Tyl =

;= Tyil
P

< Z { Z |fll \/) fl/()l)!) + Ig,,(x,) gij y, H/al}
<i{2[m,j+Mu) ) ]/a,}
i=1 -
” { [i(m'l + MII)/([I:| (| i — l/l)}
=

i=1

n
<Yy -l =l -,
=1

IN

where

1<j<n

n
0 = max [Z(rn,;,- + MU)/CI,] <1
i1
This indicates that 7 is a contraction mapping and hence, by Lemma

2.3, T has a unique fixed point, that is, there exists
X" = (x},x3,...,x)) € R" such that

\ = {Z/I} +Zgu )+ 1

The proof is complete.

Jai, i=1,2,...,n

THEOREM 3.4 If condition (Ay4) is satisfied, then the equilibrium point
of system (2.2) is exponentially stable.

Proof Assume that x* = (x],...,x)) € R" is the unique equilibrium
of system (2.2). Take ¢ > 0 such that

0(c) = max { Z[m,;,- + Mye | /(ai — ¢) < l}.

1<j<n -
S5 i=1
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Let
P,'(t,.x,') = |X,' - x;‘]ee('_"’).

then

D*Pi(t,x;) < e |x; — x}| 4 &(10) [ — afx - x
n
+ Y i) = i)
J=1
n
+ Z 1gy(-xj(t — T,j(l))) — gu(xj*)I:l
J=1

n
< (—a,» + E)P,' + Zl’ll,’jl)j

J=1
n
+ D Mye Pyt — (), xi(t = 15(1)))-
j=1
For any M > 1, we claim that
Pi(t,x;) < MK = M max { sup Pi(t, x,-)}
I<isn tp~1<1<ty

fort>ty—tandi=1,2,...,n

425

In fact, if it were not true, then there would exist i and #; > f( such

that

< MKit<t
Pi(t,Xi){ — MKt = t:

Pj(t,Xj)SMK, tstlaj#iﬂ
i.e., D*Pi(t1,x;) > 0. However,

DT Pi(t1,xi(t1)) < (—a;i + ) Pi(t1,xi(t1)) + Z":m;ij(tl,xj(tl))

n
+ > MyePi(t — (1), xi(t — (1))

J=1

(—(li + E)MK—I— ZmijMK+ ZMije“MK
J=1 J=1

IN

IN

n
(—ai+¢)+ Z(m,-,- + M) | MK < 0.
J=1
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This contracdict with Dt P;(¢/, x;(¢;)) > 0 and hence
Pi(t,x)) <MK, (i=1,2,...,n)
for all 1 > 1. Since Pi(t,x;) = |xi(t) — xﬂe‘“"’”), we have
lxi(0) = x¥| = Pi(t, x;)e™ =) < MEKe=(=h),

The proof is completed.

4 APPLICATIONS TO CELLULAR NEURAL NETWORKS

In this section, applications of the obtained stability conditions in
Section 3 to cellular neural networks (CNNs) are presented. CNNs
represent a new paradigm for nonlinear analog signal processing and
its applications for various practical problems have been demonstrated
[10, 11]. The basic circuit unit of cellular ncural networks is called a
cell. Tt contains linear and nonlinear circuit elements, which typically
are linear capacitors, linear resistors, linear and nonlinear controlled
sources, and independent sources .Any cell in a cellular neural network
is connected only to its neighbor cells. The adjacent cells can interact
directly with each other. Cells not directly connected together may
affect each other indirectly because of the propagation effects of the
comtinuous-time dynamics of cellular neural networks. Nonlinear and
delay-type CNNs (DCNNs) were introduced recently in [6] and have
found applications in the areas of classification of patterns and re-
construction of moving images. In general, the dynamic behavior of a
DCNN can be described by the following system [6, 9]

xi(t) = —xi(1) + Za[,-f(.\j,-(f)) + Zb,;,;/(,\j,-(t — 1))+, i=1,2,...,n,
= =

(4.19)

where  x(.) ={x(.),...,x,()} is the input state vector,

AX) = {1y flxa()] i the output veetor, f(x) ~ [|x + 1]
lx —1]]/2;0 < 7;; < 7 < oo is a delay of the interaction from cell j onto
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the cell i. 4 = {a;} is the feedback matrix, B = {b;} is the delayed
feedback matrix, u = (uy,..., u,,)T is an external input. When used as a
pattern classifier, the DCNN is required to possess a unique and
globally asymptotically stable equilibrium point independently of the
initial conditions [13]. Note that (4.19) is a special case of (2.2) where
aj = 17f;'j(s) =g,.',‘(S) If(S) ~ “S+ ll + IS - 1”/2a17J: 1,2,...,n
Since
U ={f1f€ CR,R),|fx) = fy)| < |x =y,
(f1x) = f))(x = y) 2 0},

it can be seen that if f{x) = [|x + 1| — [x — 1]]/2, f € U*. By Theorems
3.3 and 3.4, the following results can be obtained.

THEOREM 4.1 Iff€ U and

n

> (ail + 1Bil) <1, i=1,2,...,n,

J=1

then network (4.19) has an equilibrium point which is globally ex-
ponentially stable.

Remark

(i) In Theorem 4.1, f(x) is not required to be exactly equal to
(|x+ 1] — |x — 1])/2 and hence, Theorem 4.1 is more general
and has some robustness;

(ii) Since one function f € U* of networks (4.19) is used only for the
equilibrium point in Theorem 4.1, more useful results can be
obtained as follows.

THEOREM 4.2 [f f€ U* and

~1+Z 5+ Ibyl) <

where

g = 4 G i=j
Y lay|, i#J,
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then network (4.19) has a unique equilibrium point which is globally
exponentially stable.

Proof Let x* = (.\'T,...,x;)r be an equilibrium of (4.19). Rewrite
(4.19) as

(xi(1) = X)) = = (xi(t) = x}) + Z ai(fxi(1) = f(x7))
+Z/],, (1 —17) = X)), i=1,2,...,n (4.20)

Define a Lyapunov functional V; by

,-—|\,——w|_|.Z|b,,| / |f(x;(s)) = A(x])|ds,

=1

then along with system (4.20), we have
D'V < —|x;i— xi| + le agl (x;) = fx))]
, 2 Byl At = ) — )
+ Z 163l [1/x) =106 = |A0xi(e = 1)) = )]
= |y — x| + ;[a;; + 1Bl A0) = fx),

where f'€ U Let V' =377 | Vj, then ¥V > 3" | |x; — x!| and

n n

DTV <~ Z|\1_‘CI+ZZ[“U+IbU||f (x) = flx;)l

SDILEEAEDY [Z(fl}} + 1bil) | 1) = Ax)]
P = =
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n
< =Y Ay = %1 = 1) A=
Jj=1

DY
=

<- i:{lxj = xj| = [flx) =X} - 4 i‘ IAx;) =X
= i=1

-1+ i(a}} + |b,-,~|)J A0x) = f(x)]
i=1

< =AYl - x| < -av,

=

where

1<j<n

—A = max [— 1+ Z(a;} + |by|)
=1

By Lemma 2.2, we have V < r(t, ty, ro), here r(t, tg, ro) = roe (=1 is
the maximal solution of

= —Au, U(to) =

Letro= sup > i, |xi—x}|, we have
to—1<5<1y

le, () =xi|< V< sup Z|x,—A e~ A1=10),

to—1<s<fp i=

The proof is completed.

Example 4.1 Consider the following system

Xy = —x3 + f(x1(2)) — 4f(x2()) + 2f (2 (t — 122)) + 3f(x3(t — 733)) + 142

{ Xy ==x1 =3f(x1(1)) = 2f(x2(2)) —flx1 (¢ —tn)) +fx3(t = 113)) g
>
vy = —x3+f(x1(t)) — 6f(x3(1)) + 2f(x3(r — 733)) + u3,

(4.21)
where f € U*. Compare with (4.19), we have
aT] :—'37 aT2=_2a aT3=07 b|1=—1, b12=oy bl3:1
a =1, ap=-4, a53=0, by =0, bp=2 by=3
ay =1, a3 =0, a33=-6, b33 =0, bp=0, byz=2
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It can be seen that all conditions of Theorem 4.2 are satisfied. Hence,
the unique equilibrium point of (4.21) is globally exponentially stable.

It is worth to mention that the property of exponential stability of
this example can not be obtained by [9-12].

Next, we consider a model of bidirectional associative memory
neural network with delays

Xj(1) = —aixi(t) + L, ag(vi(r =t () + I, i=1,2,...,p

Vi(t) = =hy;(0) + 0 bygi(xi(t = T (0) + i J=1,2,....9q
(4.22)
where x = (x JXp) ER y=(vi,...,¥¢) €ER, ai,hj >0, g g

€ " and |gi(. )| < my, |si(s)] < myy 0 < r”(t) <1, 0< ‘Cz(t) < 1. Note
that

—a 0 0 lavi|my - larglmgy |1

Q = 0 0 —ay laplmy - lapglm, |1,
lbll|/”l lbll’l’nﬂ _/71 0o -.. 0 |J||

|bgt]m o bgplm, 0 0 —b, ]

Using Theorems 3.3 and 3.4, we can conclude that if —Q; € X, system
(4.22) has an equilibrium point which is globally exponentially stable.

5 CONCLUSIONS

In this paper, we have studied the problem of absolute stability for
nonlinear systems described by differential equations with time delays.
In addition, we have investigated the existence of unique equilibrium
point and its global exponential stability for some special cases. Our
approaches have utilized the method of Lyapunov functions, fixed
point theorem, the comparison principle and the techniques of dif-
ferential incqualities. The stability results may be generalized to other
systems and may be more applicable in real world applications.
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