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In this paper, we investigate the problems of robust stability and H-estimation for a
class of linear discrete-time systems with time-varying norm-bounded parameter
uncertainty and unknown state-delay. We provide complete results for robust stability
with prescribed performance measure and establish a version of the discrete Bounded
Real Lemma. Then, we design a linear estimator such that the estimation error
dynamics is robustly stable with a guaranteed H-performance irrespective of the
parameteric uncertainties and unknown state delays. A numerical example is worked
out to illustrate the developed theory.
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1 INTRODUCTION

State estimation (filtering) is perhaps one of the oldest problems studied
in systems theory [1]. In recent years, robust state estimation arose out
of the desire to determine estimates of unmeasurable state variables for
dynamical systems with uncertain parameters. From this prespective,
robust state estimation can be viewed as an extension of the celebrated
Kalman filter [1] to uncertain dynamical systems. The past decade has
witnessed major developments in robust state estimation problem using
various approaches [2—-11]. Of particular interest to our work is the Ho,
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filtering in which the design is based on minimizing the H,,-norm of the
system. This design reflects a worst-case gain of the transfer function
from the disturbance inputs to the estimation error output. In addition,
Ho filtering is superior to standard H,, filtering since no statistical
assumption is made on the input signals.

On another front of research, the class of dynamical systems with
time-delay has attracted the attention of numerous investigators in the
last two decades. Design of robust state estimators to different classes
of continuous-time systems with parametric uncertainties and state-
delay have been pursued in [12-15]. Despite the significant role of
time-delays in discrete-time systems, a little attention has been paid to
the class of uncertain discrete-time systems with delays. A preliminary
result to bridge this gap is reported in [16] by developing a robust
Kalman filter for a class of discrete uncertain systems with state-delay.
A comprehensive coverages of the available results on time-delay
systems can be found in [17].

This paper contributes to the further developement of robust state
estimation techniques of classes of uncertain time-delay systems. The
objective is to build upon the results of [12-15] for continuous-time
systems. Specifically, the work reported here extends [12—15] to another
dimension by considering the H..-estimation of a class of discrete-time
systems with real time-varying norm-bounded parameteric un-
certainties and unknown state-delay. On the other hand, our approach
in this paper casts the results of [2,3,6] about H,, filtering for delay-free
systems into the context of linear uncertian discrete-time systems with
unknown-but-bounded state-delay. In addition, it generalizes the
techniques of [4,9] by including another source of uncertainties due to
bounded state-delays. Towards our objective in this paper, we address
the important problem of robust stability of the class of linear un-
certian discrete-time systems with unknown-but-bounded state-delay
and construct appropriate stability measures. Basically, we provide a
version of the discrete Bounded Real Lemma which generalizes the
available results in [8]. Then, we design a lincar filter which provides
both robust stability and a guaranteced H.,,-performance for the esti-
mation error irrespective of the parameteric uncertainties and un-
known delays. Our results come in line with most robust results of time-
delay systems that yicld only sufficient conditions [17] due to the pre-
sence of the delay term as an additional uncertainties.
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The main results of this paper are summarized by: Theorem 1 on
necessary and sufficient conditions for robust stability and Lemma 1
on sufficient conditions for robust stability with prescribed perfor-
mance level, Lemma 2 as a version of the discrete Bounded Real
Lemma, Theorem 2 which establishes the solvability conditions for a
robust H-estimator in the form of algebraic matrix inequalities
(AMIs) and finally Theorem 3 which provides expressions for the filter
gain matrices. Several corollaries are given to link our results with
those published before.

NOTATIONS AND FACTS In the sequel, we denote by W' and W= the
transpose and the inverse of any square matrix W. We use
W > 0 (W < 0) to denote a positive- (negative-) definite matrix W; and
1 is used to denote the identity matrix of appropriate order. Sometimes,
the arguments of a function will be omitted in the analysis when no
confusion can arise.

Fact 1 (Schur Complement) Given constant matrices Q, <, Q3
where Q; = Qf and 0 < Q, = Q) then Q; + Q4Q;'Q; < 0 if and only if

Q Q’3 - Q
[Qs _QZ]<O or [Qg Q <0

Fact 2 (Matrix Inversion Lemma) For any real nonsingular matrices
21, Z3 and real matrices X, X4 with appropriate dimensions, it follows
that

- - - - - -1 -
(Z1+253%) = 2 - 0I5 (27 4 22T T B!

Fact 3 Let Z;,X;,Z; be real constant matrices of compatible di-
mensions and H(¢) be a real matrix function satisfying H'(f)H(¢) < I.
Then V p > 0 and any matrix 0 < R = R’ such that pZ{3; < R

(3 +Z HOZ) R (ZS+ S H (NE]) < p7 ' 2124 + 25 [R—ngzz]"zg

2 PROBLEM DESCRIPTION

We consider a class of uncertain time-delay systems represented by:

(Za): x(k+1)=[A4, + AA(k)]x(k) + B,w(k) + Eox(k — 1)
= Aa(k)x(k) + B,w(k) + E,x(k — 1) (1)
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y(k) = [Cy + AC(K))x (k) + Dyw(k)
= Cp(k)x(k) + D,w(k) (2)

z(k) = H,x(k) (3)

where x(k) € W' is the stable, w(k) € " is the input noise which
belongs to £; [0,00), y(k) € N’ is the measured output, z(k) € N, is
a linear combination of the state variables to be estimated and
the matrices A4, € X", C, e W', D, e RN E,e¢ W™ and
H, € W™ are real constant matrices representing the nominal plant.
Here, 7 is an unknown constant scalar representing the amount of
delay in the state. For system (Z,), we have the following as-
sumption:

ASSUMPTION 1 The matrices AA(k) and AC(k) are represented by:

[iégi;] = [QL]A(/OM, A(K)Ak) < T, Vk >0 )

where L; € W%, Ly € W and M € NP are known constant ma-
trices and A(k) € W**" is unknown matrices. The initial condition is
specified as o,(.) = (x,, ¢(s)), where ¢(.) € £2[—1,0]. In this paper, we
examine two problems:

(1) Internal stability of system (Z,) for all admissible uncertainties
satisfying (4),

(2) Estimating the variable z(k) given the measurements
{y(P) : 0 < B < k}. Since problem (1) is a prerequisite to problem
(2) and stability analysis is a key issue in the subsequent devel-
opment, we focus our attention initially on a relevant stability
measure for system (Za) for all admissible uncertainties.

3 ROBUST STABILITY RESULTS

In this section, we study the problem of internal stability of system
(2a) using a quadratic Lyapunov-Krasovkii function and develop
appropriate measures accordingly. In the sequel, we refer to the
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following systems:

(Zao): x(k + 1) = Aa(k)x(k) + Eox(k — 1) (5)
(Zan): x(k+1) = Ap(k)x(k) + Byw(k) + E,x(k — 1)
z(k) = H,x(k) (6)

and develop complete results for internal stability of discrete uncertain
systems with unknown state-delay.
Define the scalar valued function V: " — N as

bl

-1

V(x,k) = x'(k)Px(k) + x'(0) Ox (o) (7)
where 0 < P=P R and 0< Q=0 € R"™". Observe that
V(x,k) =0 for x =0 and V(x,k) > 0 when x # 0. Along the trajec-
tories of system (5), the first-order difference AV(x, k) :=
V(x,k + 1) — V(x,k) is given by:

1
=~

(—T

AV(x,k) = x'"{A\(k)PAx(k) — P+ Q}x
—x'(k - 1)[Q — E[PE,|x(k — 1)
+ x'(k — t)EL PAx(k)x (k) + x" A\ (k) PE,x(k — 1)

By a standard ‘completion of the square’ argument, we get:

AV(x,k) < x'{A'\(k)PAx(k) — P+ Q + A (k) PE,|Q — E' PE,]™
x EyPA(k)}x — {x(k —1) — [Q — E,PE,) "' E,d(k)x}'
X [Q - E\PE,}{x(k <) ~ [Q — E,PE,| ™ ELAa(k)x}
(8)
Inequality (8) can be overbounded in the form:
AV(x,k) < x'{Ay(k)PAn(k) — P+ Q
+ A (k)PE,|Q — E'PE,)'E.PAA(K)}x  (9)
Based on (9), we provide the following definition:

Definition 1 ~System (Xp,) is robustly stable (RS) for variable delay t
if given a matrix 0<Q=0Q'€R"™", there exists a matrix
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0 < P=P eN” satisfying the algebraic Riccati inequality (ARI):

AL(KYPAr(K) — P+ Q + A\ (k) PE,[Q — E\PE,] ™ E. PAs(k) < 0
(10)

for all admissible uncertainties satisfying (4).

Remark 1 Tt is readily seen using Fact 1 that (10) is equivalent to the
algebraic matrix inequality (AMI):

-P+Q 0 A\(k)
0 -0 E | <0, VAJAP<I (1)
AA(/() E, —p!

Either (10) or (11) can be converted, via Fact 2, into the compact form:
AV P = E, Q7 ENV Aa(k) = P+Q <0, VAYAP <1 (12)

From now onwards, we are going to use (10), (11) or (12) inter-
changeably. A basic result is provided below.

THEOREM 1  The uncertain discrete delay system (Zp,) is robustly
stable (RS) if and only given a matrix 0 < Q = Q' € W™ and a scalar
u > 0 there exist a matrix 0 < P = P' € W"™" satisfying the ARI:
AP~ E,QE — LY Ay — P+ MM +Q <0 (13)
Proof (=) Suppose that 0 < P = P’ satisfies (13) for some u > 0.
For any A satisfying A'A < I, we have
A\(K)PAs(K) — P+ Q + A\(k)PE,[Q — E'\ PE,] ™ E! PAs(K)
= A\(k){P' = E,QTE}  Apn(k) - P+ Q
<AYP —E,Q7E —uL L} A, — P+ MM+ Q
<0

This is implied from (13) and Fact 3.
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(«:) Suppose that 0 < P = P' such that system (Z,) is RS. It
follows that (11) holds for all matrices A:||A||* < 1. That is

x'{A(k)PAA(K) — P+ Q + A4 (k) PE,[Q — E.,PE,) ™" E\ PAa(K)}x
= x'{A4(k){P~" = E,Q7"E}} "' Aa(k) — P+ Q}x
<0

for all x #0 and ||A||* < 1. By [17], this implies that there exists a
scalar u > 0 such that

AP —E,Q7'E — uL L} "4, — P+ MM+ 0 <0
which completes the proof. O
COROLLARY 1 It follows from [8] that the existence of a matrix

0 < P = P! satisfying (13) is equivalent to the existence of a stabilizing
solution 0 < P = P' to the algebraic Riccati equation (ARE)

AP~ EQE, —uLL'} "4y — P+ MM+ Q=0 (14
Building on Lemma 1, we have the following result.

LEMMA 1 System (Za,) is robustly stable with disturbance attenuation
y for variable delay t if given a matrix 0 < Q = Q' € R"™" there exist a
matrix 0 < P = P' € R satisfying the ARI:
AP —E,Q"'E —y*B,B'} '4p— P+ H'H,

+0<0, VA:|AF<I (15)
Proof By evaluating the first-order difference AV(x,k) of (7) along
the trajectories of (6) and considering the Hamiltonian

H(x,w) = AV(x,k) + {z'(k)z(k) — y*w'(k)w(k)}

it yields:

H(x,w) = x'{4\PAs — P+ Q}x + w'B, PB,w + x"H H,x — y*w'w
+ x' A\ PE,x(k — t) + x'(k — T)E, PApx
+ x'A\PB,w + w'B,PApx + w'B, PE,x(k — 1)
+ x'(k — ©)E. PB,w — x'(k — 1)[Q — E\PE,]x(k — 1)  (16)
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In terms of h(k) := [x'(k) w'(k) x'(k — 1)]', we express the Hamilto-
nian in the form:
H(x,w) = h'(k)Qh(k)
Q Q) O
Qo k)= [ Q) Q4 Qs (17)
Qp Q5 Q

where

Q = A\PAy — P+ Q + H'H,, Q3 = A\PE,, Qs = B'PE, (18)
O, = A\ PB,, Qs = —[Q - E,PE,), Q= —[’1 - B,PB,] (19
For system (Za,) with quadratic Lyapunov function (7), the stability

condition with ¢,-gain contraint H(x,w) < 0 is implied by Q < 0. By
Fact 1 and using (18)—(19), it follows that Q(a, k) < 0 is equivalent to

~P+Q+HH, 0 0 A)
0 _'yzl 0 + B:’ P[AA B() El)] <0
0 0 -0 E,

The above inequality holds if and only if

-P+Q0 0 0 H Al
0 — le 0 0 B
0 2) —Q 0 + E’/ P[AA B, E, 0] <0 (20)
Hv 0 0 —7 0

By repeated application Fact | to (20), we obtain the ARI (15). [

Remark 2 Applying Fact 1 again to the ARI (15) we obtain the AMI:

-P+Q 0 0 H' A,
0 - 0 0 B
0 0 -0 0 E |<0 (21)
H, 0 0 -1 0

AA Bo Eo 0 -P- !
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Alternatively, by Fact 3, inequality (15) is equivalent to

A {P' - E,Q'E' —y2B,B, — uLL}}"' 4,
~P+HH, + " '"MM+Q<0 (22)

Remark 3 Observe that either (15) or (22) provides a sufficient robust
stability condition with a disturbance attenuation y. It comes in line
with most robust stability results of time-delay systems that yield only
sufficient conditions [17]. This is due to the presence of the delay term
as an additional uncertainties. Therefore while it may be considered
conservative, however the inclusion of a scalar parameter u enables the
designer to tune up the stability margin.

In view of Theorem 1 and Remark 2, we have the following result.

LEMMA 2 For the uncertain time-delay system (1)—(3), the following
statements are equivalent:

(1) System (Z,,) is robustly stable with disturbance attenuation 7y
(2) There exists a matrix 0 < P = P! satisfying the ARI (15)

(3) There exists a matrix 0 < P = P! satisfying the AMI (21)

(4) The following Ho, norm bound is satisfied

<1 (23)

(o]

=-1/2pr _ _ _
H[#Ql/z ][ZI‘AOJ "' B WL E,Q7' )

(5) There exists a matrix 0 < P = P' satisfying the ARE

A {P' —E.Q7'E, —y?B,B, —uLL'} "' 4,
~ P+ 'MM+HH,+Q=0 (24)

Proof (1)&(2) follows from Theorem 1. (2)<(3) follows by
repeated applications of Fact 1 and using Fact 2. (3)&(4)
follows from the results of [13]. (2)<(5) follows from [8] in line of
Corollary 1. O

Remark 4 1t is significant to observe that Lemma 2 establishes a
version of the Bounded real Lemma [8] as applied to uncertain discrete-
time systems with state-delay. Additionally, it provides alternative
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numerical techniques for testing the robust stability of the class of
discrete systems under consideration.

4 'H,-ESTIMATION RESULTS

The state-estimation problem we study in this paper is a robust H-
estimation problem and can be phrazed as follows:
For system (Z4), design a linear estimator of z(k) of the form

(Z.): 2(k + 1) = A%(k) + K[y(k) — Cx(k)]
= [A, + 0A]%(k) + K[y(k) — (C, + 6C)%(k)], £(0) =0

(=H,% (25)
such that the estimation error e(k) := z(k) — 2(k) is quadratically stable
Vw(k) € £,]0,00] and ||z — Z||, < y||wl,.

In (24), 04 € ™" 5C € N K € NP are the design matrices to
be determined.

We now proceed to solve the robust H.-cstimation problem. By
defining ¥(k) = x(k) — (k) we get from (1) and (25) the dynamics of
the state-error:

Sk 4+ 1) = {(4, +64) — K(C, + 5C)}x(k)
+{A4 — 64 — K(AC = 6C)}x(k)
+{B, — KD, }w(k) + E,x(k — 1) (26)

Then from system (Xa) and (26), we obtain the dynamics of the fil-
tering error e(k):

.\‘(/C + 1)
f(k+1)

= {Au + L:/Al (f)Ma}Sz(k) + Eaf(k - T)
+ B,,W(k), 5(0) = éo (27)

(Zae) &k +1) =




ROBUST STABILITY 403

e(r) = Hal(k)
=[0 H,](k) (28)

where

Y A, 0 L Ly
“T =04+ KSC A, 44— K(Co+0C)|" T | L — KL,
(29)

E() 0 Bo ao
E= |y o) 2= Dko ) 6= 2] M=t 01 )

THEOREM 2  Given a prescribed level of noise attenuation y > 0 and a
matrix 0 < @ = Q" € R¥™2_If for some scalar p > 0 there exists a
matrix 0 < P = P' € R satisfying the ARI:

AP — E,Q'E. —y"2B,B, — pL,L’}”
X Ag—P+HH,+p '"M\M,+ Q<0 (31)

then the robust Hoo-estimation problem for the system (Xp.) is solvable
with estimator (25) and yields.

lle(®)l, < 2wkl (32)

Proof By Theorem 1 and Remark 2, system (Z4.) is QS with dis-
turbance attenuation 7 if given a matrix 0 < Q = Q' € R there
exists a matrix 0 < P = P’ € R¥*?" satisfying

-P+Q 0 0 H, 4,
0 - 0 0 B
0 - 0 E |<o (33)
H, 0 0 -1 0
B, E, 0 -p!
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By Fact 1, inequality (33) holds if and only if

—P+Q+u'MM, 0 0 H
0 0 0
0 0 -9 0
H, 0 0 -7
L Ay B, E, O
FMT
0
0
+ 0 A0 0 0 0 L]
0
L 0 ]
r 07
0
+ 10 |AK) M, 0 0 0 0]<0
0
L L, ]
By a well-known result in [11], inequality (34) is equivalent to
[-P+Q+u'MM, 0 0 H
0 — 0 0
0 0 -9 0
H, 0 (|
L Ay B, E, O
' 2M T
0
+ 0 (w'2M, 0 0 0 0]
0
0
L 0

t -
A a
!
B(I
t
E(l

Pt

Al
B,
E,

0

Pt

(34)
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0
0
0 [[0 00 0 wirtj<o (35)
0

L' 2L, ]

for some u > 0. Rearranging, we get

~P+Q+u'MM, 0 0 H A
0 - 0 0 B,
0 0 -Q 0 E' <0
H, 0 0 I 0
Aq B, E, 0 —[P'-uL,L]

(36)

Application of Facts 1, 2 to the AMI (36) yields the ARI (31). O

Remark 5 Tt should be observed that Theorem 2 establishes an LMI-
feasibility condition for the robust H.-estimation problem associated
with system (Za) which requires knowledge about the nominal
matrices of the system as well as the structural matrices of the un-
certainty. In this way, it provides a partial solution to the H-esti-
mation under consideration.

To facilitate further development, we introduce

Ri = SIM' [l — MS\M'|”' MS,,
Ry = S;H.[I - H,5,H']"" H,S, (37)

Ri = [Ru + 8]+ [Ri +S1]EA{ Q1 — E)[Riy + 81 + Riz +82]Er)}—l

x Ej[Ri1 + Si] (38)

Ry =[R2+ Sa] + [Riz + S2)E{ Q1 — EL[Ri1 + 81 + Riz + 52]150}_I
x El[Ri2 + S2) (39)

Ry = —{[Rui + 8] = [Ru + S1]E, Q3 E; [Ru1 + 81}
x E, Q7 E;Rs (40)
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9y = Q7' — E/[Ri + SI|E, (41)
G = ,uL’| L+ "/"_23:,30 + AI,’R/;A(M
Gy = ulo L +972D,B" 4 C, R4 A, (42)

for some matrices 0<S8 =8],0<8=85,0<9, =8, and
0 < Q; = &Y. Accordingly we define the matrices:

0A = GA;{RI - Ry, 6C = Gd Ry — Ry} (43)

A=A4,+64, C=C,+C (44)

T = 0C{Ry — Ry} A" + C,R3A" — C,R43A" + SC{R| — R} }oA4"
(45)

Z = CRyC' = CRLOC! — SCRLC' + 6CR, 5C (46)

It is important to note that the indicated inverses in (37)-(38) exist in
view of Fact 2 and the selection of matrices 0 < Q; and 0 < Q,. Ob-
serve in (42) using (37)-(39) that (R, — R%) > 0. The next theorem
establishes the main result.

THEOREM 3 Consider the augmented system () for some y > 0 and
given matrices 0 < Q= Q) € R and 0 < Q, = Q) € R™". If for
some scalar p >0 there exist matrices 0 < S =8| € R™" and
0< S =8 € R satisfying the ARIs

ARIAL = Sy + Q) +puLy Ly +97B,B, <0 (47)

ARZA" = Sy + JARA" + Q) — ARLA' — SARLA' = T'Z7'T < 0
(48)

then the robust Hy-estimation problem for the system (Zp,) is solvable
with the estimator

Sk + 1) = Az(k) + T'Z27 " [p(k) — C3(k)] (49)
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which yields

lle(o)lly < yllw(k)ll (50)

Proof Given a matrix of 0 < @ = Q' € %% and by Theorem 2, it
follows that there exists a matrix 0 < P = P’ € R¥"*?" that satisfies the
ARI (31). From the results of [6], it follows that (31) holds if and only
if there exists a matrix 0 < S = &' € R?"*?" satisfying

E(S) = Au{S™ — EQEL — i MM, — HLH,} ™' A
—~ S+ uL,L,+7y?B,B.+Q <0 (51)

Define

s[5 8 a2l e

Expansion of (50) using (29)—(30) and (51) yields:

B Ei(S) 52(8)]
2(S) := _.l( —_ 53
(8) [z5<8> =5(5) (53)
where

Ei(S) = 4,R1 4" — Si + Qi + uL\ L} +972B,B!, (54)

Ex(S) = A,Ri(—0A4 + K3C)' + uLi L — uL LYK + 972 —y~2B, D! K!
+ A,RaA, + 84 — K(C, + 6C))' (55)

E3(S) = [, + 04 — K(C, + 6C)|R3[4, + 64 — K(C, + 6C))'
+ [Ay 4+ 64 — K(C, + 6C)| R (=04 + K5C)'
+ (=04 + K6C)R (—8A4 + K6C)' — 81+ Q,
+u(Ly — KLy)(Ly — KLy)'
+772(B, — KD,)(B, — KD,)' (56)
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For internal stability with £;-bound, it is required that Z(S) < 0.
Necessary and sufficient conditions to achieve this are

Ei(8) <0, ES)=0, E3(S)<0 (57)
It is readily seen from (53) that the condition E,(S) < 0 is equivalent
to the ARI (46). Using (42) in (54) and arranging terms, we reach that
the condition E,(S) < 0 is satisfied. Finally, from (43)-(45) and using
the ‘completion of squares’ argument with some standard algebraic

manipulations we therefore conclude that the Kalman gain is given by
K =T'Z"" the ARI (47) corresponds to Z3(S) < 0. O

Two important special cases follow

COROLLARY 2 Consider the uncertain discrete system without delay

x(k+ 1) =[A, + AA(k)]x(k) + Bow(k)
= Ap(k)x(k) + B,w(k) (58)

y(k) = [C, + AC(k)]x(k) + D,w(k)
= Ca(k)x(k) + D,w(k) (59)

z(k) = H,x(k) (60)

If for some y >0 and a scalar p > 0 there exist matrices 0 < S| =
S| € R and 0 < S = S € W™ satisfying the ARIs

AR +81]4) — S+ Qi + uLi L} +772B,B <0 (61)
AR+ S)A" + 0A[R\ + 81104 =S, — T Z7' Ty <0 (62)

then the robust Hu-estimation problem is solvable with the estimator

Sk +1) = A%(k) + T' 27 (k) — Cx(k)] (63)
which yields

ety < 2ihe(k)l (64)
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and where
Gy = puLiLy +y72B\B,, G4 =puLjL\ +77°D,B,
04 = G A;'R;, 6C=GA;'R;!
A=4,+64, C=C,+dC
T, = CRsA' + 0CR4A", Z; = CR3C' + 6CR45C"

Proof Follows from Theorem 3 by setting £, =0 and Q; = Q, =0
in (37)—(45) and observing that R, = 0. O

COROLLARY 3  Counsider the system

x(k+ 1) = Aox(k) + Bow(k) + Eox(k — 1) (65)
y(k) = Cox(k) + Dow(k) (66)
z(k) = Hox(k) (67)

for some y>0 and given matrices 0< Q= Q| € R*? and
0 < Q) = Q) € R¥2_ [f there exist matrices 0 < S; = S| € R™" and
0<S, = Sg € R satisfying the ARIs

AR4AL = 81+ Q1 +772B,B, <0 (68)

AR3A' + GAR4OA — Sy + Q) — ARLIA' — SARsA — TH27'T, < 0
(69)

then the robust He-estimation problem is solvable with the estimator

A

Rk +1) = Ax(k) + T4 27 [y(k) — Cx(k)) (70)
which yields
lle(E)l, < yllw(k)ll, (71)
and where

R4 =81 —SIE{Qi — E'[S| + Rizs + S2)E,} 'ELS
Rs = —{S| — S1E,Q;'E'S1}E, Q[ 'E' Rs
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Gs =y72B'B, + A'R%A,

Go =77*D,B, + C,R54,

04 = Gs AT {Ry —RL}™, 6C = GeA ' {Ry — RL}™
A=A,4+04, C=C,+dc

Ty =0C{Ry —Rs} A" + C,R4A" — C,RL3A" 4+ 6C{R3 — RL}o A’

2y = CRyC — CRLSC! — SCR5C' + SCR35C

Remark 6 1t is interesting to observe that Corollary 2 gives an AMI-
based version of the results in [4]. Corollary 3 presents an H., filter for
a class of discrete-time systems with unknown state-delay. Both Cor-
ollary 2 and Corollary 3 are new results for state estimation of time-
delay systems.

5 EXAMPLE

Consider a discrete-time system of the type (1)-(3) with

0.67 0.087 . 02 0
’ 0 1.105| 0o 02|

0.1
C,=105 05), H,=[1 2], D,=1, LI:{ }
Ly=04, M=[02 03]

We select Q) and Q; as

50 20

and solve the ARIs (47)-(48) using a sequential computational scheme.
This scheme is initialized by dropping out the nonlinear terms in (47)-
(48) and solving the resulting linear incqualitics to yield an initial
feasible solution. Then by continuously injecting the solutions into the
actual inequalities, it has been found that a satisfactory feasible
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solution can be obtained after few iterations. In one case with an
accuary of 1075, the result of computations are:

5, — | 90601 043801 . _ [140.5205 10.6250
P=1-0.4380 13.0666 | <2~ | 10.6250 125.4550

for p = 0.25 where the associated matrices are given by:

1.1417  —1.0963 1.3145  —0.4566
L= [—1.0963 1.1733 ] 2= [—0.4566 0.9339 ]
12225 —1.0433]7 . [ 03237  0.6978
T [—1.0433 0.7652 ] - [—1.3861 —0.2980]’

, [—9.6089} A,_[—o.zocu

= Z=-25
~8.7517 —0.1840]’ 253831

Hence, from (49) the H,, estimator is described by:

A 03237  0.6978 1.
Me+1) = [—1 3861 —0 2980]x(k)
0.3756
k) — [~0.2041 — 0.1840]2(k
o2 |00 -1 J5(4)

6 CONCLUSIONS

For a class of discrete-time systems with real time-varying norm-
bounded parameteric uncertainties and unknown state-delay, this
paper has

(1) developed complete results for robust stability with prescribed
performance measure

(2) established a version of the discrete Bounded Real Lemma

(3) designed a linear state-estimator which provides robust stability
with a guaranteed H-performance for the estimation error irre-
spective of the parameteric uncertainties and unknown state-
delays.

A numerical example has been worked out to illustrate the developed
theory.
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