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We investigate fluid transport in random velocity fields with unsteady drift. First, we
propose to quantify fluid transport between flow regimes of different characteristic
motion, by escape probability and mean residence time. We then develop numerical
algorithms to solve for escape probability and mean residence time, which are described
by backward Fokker-Planck type partial differential equations. A few computational
issues are also discussed. Finally, we apply these ideas and numerical algorithms to a
tidal flow model.
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1. INTRODUCTION

The Lagrangian view of fluid motion is particularly important in
geophysical flows since only Lagrangian data can be obtained in many
situations. It is essential to understand fluid particle trajectories in
many fluid problems.
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tCorresponding author. Tel.: 312-567-5335, Fax: 312-567-3135, e-mail: duan@jiit.edu

55



56 J. R. BRANNAN et al.

Stochastic dynamical systems arise as models for fluid particle
motion in geophysical flows with random velocity field

X =1(xy,1) + alx,y)w1, (1)

¥ = g(x,y,1) + b(x,y)wa, (2)

where w;(f), wy(f) are two real independent Brownian motion
processes, f, g are deterministic drift part, and a, b are the intensity
coefficients of diffusive noise part, of the velocity field. Note that the
generalized derivative of a Brownian motion process is a mathematical
model for “white noise”. For general background in stochastic
dynamical systems, see [1,6,9].

Deterministic quantities, such as escape probability (from a fluid
domain) and mean residence time (in a fluid domain), that characterize
stochastic dynamics can be computed by solving the Fokker-Planck
type backward partial differential equations.

In a previous paper [3], when the drift is steady, i.e., f, g do not
depend on time, we have quantified fluid transport between flow
regimes of different characteristic motion by escape probability and
mean residence time; developed methods for computing escape
probability and mean exit time; and applied these methods in the
investigation of geophysical fluid dynamics. In this paper, we further
consider the case of unsteady or nonautonomous drift f(x,y,1?),
g(x,y,t), develop a numerical algorithm for computing escape
probability and mean exit time, and demonstrate the application of
this approach to a tidal flow model.

2. STOCHASTIC DYNAMICS OF FLUID
PARTICLE MOTION

For a planar bounded domain D, we can consider the exit problem of
random solution trajectories of (1)—(2) from D. To this end, let 0D
denote the boundary of D. The residence time of a particle initially at
(x,y) at time ¢ inside D is the time until the particle first hits dD (or
escapes from D). The mean residence time 7(x,y,?)=1t+u(x,y,?),
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where u(x, y, t) satisfies [8]

1 1
Uy +§‘fuxx +§b2uyy +f(x7yv t)ux +g(x7ya t)uy = _1? (3)
u(x,y,t) =0, (x,y,t)edD x (0,T), 4)
u(x,y,T) =0, (x,y)eD, (5)

where T is big enough, i.e., T > sup 7(x, y, t) and here the sup is taken
over all (x,y) in a compact set, i.e., the closure of the domain D.

Note that u(x,y,t)=7(x,y,t)—1t is the mean residence time after
time instant ¢, or it quantifies how much longer a particle will stay
inside D after we observe it at position (x, y) at the time instant ¢.

Let I" be a part of the boundary 8D. The escape probability p(x, y, t)
is the probability that the trajectory of a particle starting at position
(x,y) and at instant ¢ in D first hits dD (or escapes from D) at some
point in I' (prior to escape through 0D —T"), and p(x,y,?) satisfies
[10,15]

Pit 3@t 3P0y +F(5y, Ops + 863, 0y =0, (6
P =0, (x,y,0)€(BD—T)x (0,T), )
px,y,0) =1, (x,y,0)el x(0,7T), 8)
p(x,y,T)=1, (x,y)€D. 9)

Note that p(x,y, ) depends on I', and it may be better denoted as
V4 F(x’ s t)'

Suppose that initial conditions (or initial particles) are uniformly
distributed over D. The average escape probability P(f) that a
trajectory will leave D along the subboundary I' at time ¢, before
leaving the rest of the boundary, is given by [10]

P(1) = ﬁ / ]D p(x,y, )dxdy, (10)

where |D| is the area of domain D.
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3. NUMERICAL APPROACHES

For the backward type of partial differential equation (3), we reverse
the time

s=T—1

Then the mean residence time u(x, y, s) (we still use the same notation)
satisfies

1 1
U, = Eazuxx =+ §b2u)’y
+£(x,y, T — s)ux + g(x,5,T — s)u, + 1, (11)
u(x,y,s) =0, (x,y,s)€dD x (0,T), (12)
u(x,y,0)=0, (x,y)eD. (13)

Similarly for the escape probability p(x, y,s) (we still use the same
notation), we have

1 1
DPs = Easzx + Ebzpyy +f(x,y, T~ s)px + g(x,y, T — S)P)’a (14)

p(x,y,5) =0, (x,y,5)€(0D—-T)x(0,T), (15)
p(x,y,8) =1, (x,5,5) €Tl x(0,T), (16)
p(x,y,0)=1, (x,y)€D. 17)

A piecewise linear, finite element approximation scheme [4] was used
for the numerical solutions of the escape probability p(x, y, s), and the
mean residence time u(x, y,s), described by the parabolic equations
(11) and (14), respectively. By transforming back to original time
t=T-s, we get p(x,y,1), and u(x,y,t). We have used a few different
time-discretization schemes, including the implicit backward in time,
and Crank-Nicholson scheme [5]. The code works also for boundary
defined by a collection of points lying on the boundary. A piecewise
cubic splines were constructed to define such boundaries.
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4. APPLICATION TO A TIDAL FLOW

To demonstrate the above ideas and numerical algorithms, we
consider a tidal flow model. This flow model is very idealistic and
here we just use it as an illuminating example.

Oscillatory tidal water motions dominate a large part of the coastal
regions. Beerens and Zimmerman [2] considered a tidal flow model
with velocity field

u, = msin(mx) cos(my) + wA cos(2t), (18)

Vo = —mcos(mx) sin(my), (19)

where A is a parameter measuring the intensity of the tidal wave
mwcos(2wt). We take 0 < A < 3 as used by Beerens and Zimmerman [2].

As pointed out by Beerens and Zimmerman [2], it is essential to
include more complicated temporal modes in this model in order to
describe more realistic tidal flows. We include random temporal modes
or white noise in this model, i.e., we consider a tidal flow model with
unsteady drift part and random diffusive part:

i, = wsin(mx) cos(my) + wA cos(27t) + \/igwl, (20)
¥, = —mcos(mx) sin(my) + \/ngz, (21)

where € > 0 is the constant intensity of the white noise. We assume that
the random temporal modes are weaker than the time-periodic mode
and so we take 0 < e < 0.1 in the following simulations.

We study the transport of fluid particles in this tidal flow model. The
equations of motion of fluid particles in this tidal flow are

% = wsin(mx) cos(my) + wAcos(2mt) + V2ewy, (22)
y = —mcos(mx) sin(my) + v2ews, (23)

where w(f), wo(f) are two independent Brownian motion processes.
The unperturbed flow, with no temporal periodic “tidal” mode
cos(2nt) and no temporal white noise modes w;, w; of this tidal flow
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model, is the so-called cellular flow:

X = msin(nx) cos(my), (24)

y = —mcos(mx) sin(my). (25)

Figure 1 shows the phase portrait of this unperturbed flow (24)—(25).

The partial differential equations for mean residence time u of fluid
particles in a fluid domain D, and for the escape probability p of fluid
particles cross a subboundary T of D, are the following (in reversed
time s = T—1), respectively,

Us = €(Uxx + thyy) + [wsin(mx) cos(my) + wA cos(2nT — s)]uy
— mcos(mx) sin(my)u, + 1, (26)

Ds = €(Pxx + Pyy) + [msin(nx) cos(my) + wAcos(2nT — s)]px
— mcos(mx) sin(my)p, . (27)

In practical numerical simulations, the ‘““final” time 7 should be
taken big enough so that the solution u, p do not change within a
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FIGURE 1 Unperturbed flow.
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reasonable tolerance. To do so, we monitor the mean-square difference
of u (and also p) at time T and T+ 1. When this difference is within a
reasonable tolerance (we use 0.001), we take the T as the “final” time;
otherwise, we increase the value of T and do the simulation again,
until the tolerance criterion is met.

We take a fluid domain D to be a typical cell, i.e., the unit square, in
the unperturbed flow; see Figure 2.

Unlike the stochastic systems with steady drift as studied by
Brannan, Duan and Ervin [3], the mean residence time and escape
probability depend on time (although the change is small in this
specific example); see Figures 3—6. All these plots are for A=1 and
£=0.1. The mean residence time and escape probability for 0 < A <3
and 0 < e < 0.1 display similar features.

In this flow model, it turns out that the average escape probability
crossing the top boundary y = 1 does not change much with time, with
value around 0.2639. We observe similar features for crossing other
three side boundaries.

In the tidal flow model (18)—(19) with only time-periodic “‘tidal”
mode 7 cos(27t), Beerens and Zimmerman [2] found that there are
“islands” in the tidal flow and the fluid particles trapped in such
islands will never escape, for 0 <A< 3 as used by Beerens and

FIGURE 2 A fluid domain D.
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FIGURE 4 Mean residence time after time #=150.5.

Zimmerman [2]. This phenomenon is common in non-dissipative,
Hamiltonian planar systems. Although the dissipation in the oceans is
small, “no matter how small the dissipation is, the (oceanic) fluid has
substantial time to experience the action of dissipative forces” [12]. So
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this “islands” phenomenon does not appear to be likely in realistic
tidal flows; see more physical discussions in [7, 11, 14].

While in our tidal flow model (20)—(21) with both time-periodic
“tidal” mode mAcos(2nf) and temporal white noise modes, all fluid
particles will eventually escape from any fluid domain in finite time
after we first observe them; see Figures 3, 4. This feature is true for any
€ > 0. It appears that our stochastic tidal model is a little more realistic
than Beerens and Zimmerman’s model [2]. We remark again that we
use this simple tidal flow model to demonstrate the applications of
mean residence time and escape probability.

In summary, in this paper we have discussed the quantification of
fluid transport between flow regimes of different characteristic motion
by escape probability and mean residence time, developed numerical
algorithms to solve for escape probability and mean residence time,
and applied these ideas and numerical algorithms to a tidal flow
model.
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