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1. INTRODUCTION

Serial production lines form the heart of many manufacturing systems.
Their optimal design is subject to specific constraints, associated costs,
and revenue projections. Much of the research in this field concerns
the design of these manufacturing systems when there is considerable
inherent variability in the processing times at the various stations,
a common situation with human operators/assemblers. The general
design problem in serial production lines involves the allocation of
resources such as the number of servers, their service rates, and buffers
at each of the servers. These problems are called, respectively, the
server allocation, the workload allocation, and the buffer allocation
problems. The problem mentioned above is a nonlinear stochastic
problem. One of its features which makes it very challenging to solve is
that no known closed-form expression for estimating the throughputs
of the lines is known. This characteristic makes it very difficult to
control the design variables as a function of the variation in the
objective function.

For a systematic classification of the relevant works on the
stochastic modeling of these and other types of manufacturing systems
(e.g., transfer lines, flexible manufacturing systems (FMS) and flexible
assembly systems (FAS)), the interested reader is referred to a review
paper by Papadopoulos and Heavey [1] and some recently published
books, such as Askin and Standridge [2], Buzacott and Shanthikumar
[3], Gershwin [4], Papadopoulos et al. [5], Viswanadham and Narahari
[6] and Altiok [7].

The difficulties of the problem have led us towards the deployment
of an arsenal of different methods for determining the optimal design
of the production line. These methods involve both the estimation
of line throughput and the calculation of the optimal line design
variables. In this paper we describe the design of exPLOre: a modular,
object-oriented, production line optimization software architecture.
Upto now we have used the system for solving the buffer allocation
problem in production lines with well over 100 stations in series [8],
and for investigating the allocation buffers, servers, and service rates in
production lines with up to 60 stations in series.

The rest of this paper is organised as follows: in Section 2 we present
the mathematical model of the production line, in Section 3 we
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describe the exPLOre architecture, in Section 4 we present the
exPLOre prototype implementation and some initial results, while
Section 5 concludes the paper with a description of our future plans.

2. THE PRODUCTION LINE MODEL

The production line decision model we used is based on the optimal
allocation of its constituent resources namely: the number of servers,
their service rates, and buffers at each of the servers. The effect
of the number of servers and the service rates on the production
throughput and cost is obvious: an increased number of servers or
service rate can be readily associated with a given cost and will
increase the line throughput by a specific measure. The effect of the
production line buffer allocation in terms of throughput and cost is
more subtle. The main purpose of buffers in production or flow lines
is to give each stage of a system some degree of independence
from the rest of the system. If buffers were non-existent then the only
way two connected workcenters could operate would be in perfect
synchronization; a utopian situation. If there were no buffers be-
tween two workcenters at least one of two situations would occur:
“blocking” of the first station or “starving” of the second station.
Blocking of the first station occurs when the first station finishes
processing its stock and releases it before the second station com-
pletes the material it is working on and the buffer of the second sta-
tion is full. Starving occurs when the second station completes its
work yet there are no parts in its buffer because the first workcenter
is either busy or has no work. In both cases the system throughput is
below the expected.

One other situation that leads to loss of capacity is the breakdown
of a workcenter in the line. If there are no buffers, all the stations of
the system have to shut down either because of starving or blocking. If
there are buffers between the stations the remaining stations can keep
operating for some time. In allocating buffers the number of buffers is
not only dependent upon the processing parameters of the production
line but also upon the positions of stations within the line. Another
feature of buffers is that buffers cease to be effective after some
quantity. Beyond a threshold quantity of buffers the increase in the
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overall output of the line is overridden by the costs associated with
buffers.

Although buffers are an essential part of any production line with
finite capacities, there are costs associated with buffers. One of the
important costs of buffers is the effect on flow time. Flow time is the
time required to move a piece through the system process from entry
to completion of the last stage. Customers accumulate indirect costs
proportional to the time spent in the system. An increase results in
high flow time to processing time ratios and thus reduced output.
Another area of cost is the cost due to occupation of space. Larger
quantities of buffers mean more space is occupied for waiting which
otherwise could be used for processing equipment or faster movement
of material handling equipment. Handling the unit into and out of the
in-process inventory banks also adds to the costs.

From this description one can see that determining the quantity of
buffers for each station in order to create perfect balance between the
costs and benefits associated with buffers is a challenging task. Based
on a given setting of the resources described above we can calculate
two objective measures of the line’s operation: the average throughput
and the average work in progress i.e., the average total number of
units in the production line at steady state. Taking into account the
average revenue per item, its associated variable production cost and
holding cost, and the costs of deploying the resources we described
above we can obtain an objective measure of the line’s economic
performance.

Thus the production line under investigation can be modeled using
the following basic objective function:

K K K
maxZ:X(R—V)—hL—-CBZqi—ZCs,-s,-—ZCRi (1)
i=2 i=1 i=1

where

e K is the number of individual stations within the line,
e X is the average throughput of the line,

e R is the average revenue per item,

e Vis the average variable production cost,
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h is the average holding cost per item,

L is the average WIP,

Cp is the cost of providing one unit of buffer space,

g; is the buffer capacity allocated at buffer location i,

Cg; is the cost of a server at location i,

s; is the number of servers per workstation i, and

Cri is the cost of obtaining a given service rate at workstation
location i.

3. THE exPLOre ARCHITECTURE

The exPLOre architecture is used for building customized, flexible, and
efficient production line optimization decision support systems. The
modularity of the system allows the utilization of different evaluative
function and optimization methods as well as the parametric ex-
pression of the production line constraints and the business model.
This flexibility is needed so that the system’s user can choose the
appropriate algorithms for solving the problem at hand. The guiding
tradeoffs between the different modules concern their relative effi-
ciency, accuracy and applicability. As an example it is possible to ob-
tain an exact buffer configuration for a small production line using
full enumeration and the decomposition method. On the other hand,
in order to obtain a buffer and server number allocation for a large
production line one would choose simulated annealing as the op-
timization method because the full enumeration of all configurations
would take a prohibitive long time to complete, and the expansion
method as the evaluative function because the decomposition
method we utilize in our current implementation does not deal with
parallel servers.

The exPLOre architecture is graphically depicted, as a UML class
diagram [9], in Figure 1. The architecture’s driver is an abstract
optimization module. This can be instantiated using a variety of op-
timization methods such as simulated annealing, genetic algorithms,
or even the exhaustive (or reduced) enumeration of the search space.
The search space of the optimizer is constrained by the output of the
constraint checker which, based on a production model expressed in a
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FIGURE 1 The exPLOre architectural model.

declarative domain-specific language [10], acts as an “oracle” de-
termining the allowed line configurations. The search direction of
the optimizer is guided by the cost analyser which combines the out-
put of the throughput evaluator with variables from the business
model to determine the objective merit of a given line configuration.
The business model specifies the business benefit of a given line
throughput as well as the business costs associated with the resources
that are used to obtain that level of throughput. The abstract
throughput evaluator can be instantiated using Markovian, generalised
queueing network methods, a decomposition, or an expansion method
algorithm.

4. PROTOTYPE IMPLEMENTATION

In order to test the viability of the exPLOre architecture we have
implemented a number of concrete modules for the optimizer and the
throughput evaluator. Based on those modules we were able to obtain
optimal production line configurations for both small and large pro-
duction lines within acceptable execution time constraints (e.g.,
Fig. 3). In the following paragraphs we outline the modules that we
have implemented.
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4.1. Full Enumeration Optimizer

The full enumeration optimizer determines the optimal line config-
uration by an exhaustive enumeration of all possible configurations. It
is viable only for small production lines, servers, and buffer space.
However, it is useful for cross-checking the results of other opti-
mization methods.

All buffer (and server) combinations can be methodically enumer-
ated by considering a vector p denoting the position within the pro-
duction line of each one of the Q available buffers. If we use q=

(92,43, - --,9x) then given the vector p we can then easily map p to ¢
using the following equation:
Q . .
. 1 ifp=i
%= le{ 0 otherwise (2)

For example p = (1,2,2,2,4,1) = ¢=(2,3,0,1).
If we then define a recursive function g as

(Pl’,---,P1+1,---,PQ) if pp+1<K

, .
(Plstr-- P13 P141>P1y2r - --) Otherwise
s, e

g(p, )= (3)

!
where p’ = g(p,/ + 1)

given an initial buffer configuration of Q buffers

p=LL..,1) (4)

we can sequentially advance through each next possible configuration
p' by setting

2,23(271) %)

Essentially, g maps the vector of positions to a new one representing
another line configuration. When the incremented position p; of a
buffer resource i reaches K, the last place in the line (p;+1=K) then g
is recursively applied setting / to point to the buffer in position p; ;.
The result of the recursive application of g is then adjusted by setting
the values from p; to p; to the new value of p; ;. The complete



534 D. D. SPINELLIS AND C. T. PAPADOPOULOS

enumeration terminates when all buffers reach the line position K. As
an example, in a line consisting of 3 buffers and 2 stations (Q=3,
K=2) p and g will take the following values:

)
) (6)
)
)

The above procedure is also used for obtaining all different server
combinations. To enumerate all buffer and server combinations one
complete server enumeration is performed for each line buffer
configuration.

4.2. Reduced Enumeration Optimizer

A variant of the full enumeration optimizer uses a reduced enumeration
procedure by skipping non-viable buffer allocation configurations.
Reduced enumeration is based on the experimental observation that
the absolute difference of the respective elements of the optimal buffer
allocation (OBA) vectors with N and N+ 1 buffer slots is less than or
equal to 1:

g7 —gY|<1, Vi:2<i<K. (7)

i.e., once the OBA for a given value N of the number of the total buffer
slots that have to be allocated among the intermediate buffers of the
production line has been determined, the OBA for a value N+ 1 can be
found by allocating the extra buffer slot in one of the neighbouring
buffer locations of the previous optimal buffer allocation.

In this way, we have been able to derive the OBA by induction for
any number N of buffer slots that are to be allocated among the K—1
buffer locations of the line. The reduction works as follows: when N*
and K are given one needs to determine all the OBA vectors for
N=1,2,...,N* and then for N=N*+1 by searching only the values
of g% —1,4Y and ¢V + 1. Furthermore, this reduction starts after a
number of total buffer slots N. The reduction is substantial: by
applying the improved enumeration it has been experimentally
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observed that the number of iterations were reduced by at least 60%
for short lines. This reduction accounts for well over 90% for large
production lines (with more than 12 stations).

4.3. Simulated Annealing Optimizer

The simulated annealing (SA) optimizer determines a near-optimal
configuration using the SA [11,12] stochastic algorithm. Its search
parameters may need expert problem-specific tuning. Simulated
annealing is an adaptation of the simulation of physical thermo-
dynamic annealing principles described by Metropolis et al. [13] to
the combinatorial optimization problems [14, 11]. Similar to genetic
algorithms [15, 16] and tabu search techniques [17] it follows the ““local
improvement” paradigm for harnessing the exponential complexity of
the solution space.

The algorithm is based on randomization techniques. An overview
of algorithms based on such techniques can be found in the survey by
Gupta et al. [18]. A complete presentation of the method and its
applications is described by Van Laarhoven and Aarts [12] and
accessible algorithms for its implementation are presented by Corana
et al. [19] and Press et al. [20]. As a tool for operational research SA
is presented by Eglese [21], while Koulamas et al. [22] provide a com-
plete survey of SA applications to operations research problems. In
our implementation [8], we found that the algorithm can handle
large configurations in bounded execution time.

4.4. Genetic Algorithm Optimizer

The genetic algorithm (GA) optimizer determines a near-optimal
configuration using genetic algorithms. Genetic algorithms [15, 16,
23,24] are global optimization techniques that avoid many of the
shortcomings exhibited by local search techniques on difficult search
spaces, such as the buffer allocation problem. Genetic algorithm
applications are outlined by Goldberg [25], their use for modeling,
design, and process control is presented by Karr [24], while the
methodology used for optimizing simulated systems can be found in
the work by Tompkins and Azadivar [26].
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GAs rely on modeling the problem as a population of organisms.
Every organism represents a possible valid solution to the problem.
Organisms are composed of alleles representing parts of a given
solution. Standard genetic recombination operators are used to create
new organisms out of existing ones by combining alleles of the existing
organisms. In addition, mutations can randomly change the composi-
tion of existing organisms. Typically, the algorithm evaluates all the
organisms of the population and creates new organisms by combining
existing ones based on their fitness. This procedure is repeated until the
variance of the population reaches a predefined minimum value.

The GA optimizer can also handle large configurations in bounded
execution time. We found [27] that the optimizer typically executes
faster than the simulated annealing optimizer, producing however less
optimal configurations.

4.5. Exact Evaluator

The exact evaluator uses an exact numerical algorithm [28] in con-
junction with a traditional Markovian state model. It provides an ex-
act measure of the line throughput at the expense of prohibitively large
execution times. Our implementation only handles lines with variable
buffer allocations. The evaluator is mostly useful for small lines with
a limited number of buffers, or for verifying the operation of the other
evaluators.

4.6. Decomposition Method Evaluator

The decomposition method evaluator is a throughput evaluator based
on the decomposition method [29,30]. Compared with the exact
evaluator it provides an efficient and relatively accurate approximation
of the line throughput. Our implementation can not handle parallel
servers and variable service rates.

4.7. Expansion Method Evaluator

The Expansion Method is a robust and effective approximation
technique developed by Kerbache and Smith [31]. This method is
characterized as a combination of Repeated Trials and Node-by-node
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Decomposition solution procedures. In contrast to our decomposition
method evaluator, the expansion method evaluator can handle ar-
bitrary line topologies with parallel servers and variable service rates.
Its evaluative efficiency is however worse than the decomposition
method evaluator.

4.8. Application Scenarios

Based on the above modules we obtained near-optimal line config-
urations for a number of different buffer, server, and service rate
allocation problems for both large and small production lines. As
a representative example, in Figure 2 the computed throughput of
lines with buffers allocated using simulated annealing is compared
with complete enumerations using the exact and the decomposition
evaluative methods for 9 station line configurations with 1—12 buffers.
In addition, Figure 3 illustrates the time needed to calculate near-
optimal line configurations for buffer (¢) allocation, server allocation

Throughput: 9 stations
0.62 T T T T T T

0.6 r S(CE, Exact) —+—
S(CE, Deco) -+
0.58 I S(SA, Deco) =~

0.56 |
0.54 |
052 |
05 |
0.48 |
0.46 |
044 | ]
042 b o 1

0.4 . - . x . .
0 2 4 6 8 10 12
Buffer space

Line throughput

FIGURE 2 Computed throughput of lines with OBA computed using simulated
annealing S(SA, Deco) compared with complete enumerations using the exact S(CE,
Exact) and the decomposition evaluative methods S(CE, Deco).
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FIGURE 3 Execution time for different measures of optimal configuration calcula-
tions using the simulated annealing optimizer and the expansion method evaluator.

(s), and service rate allocation (w) as well as combinations of these
resources by using the simulated annealing optimizer in conjunction
with the expansion method throughput evaluator on production lines
consisting of K=1--- 60 stations, >~ , ¢; = 2K buffers, and K si=
2K servers.

We also used exPLOre in conjunction with algorithm animation
techniques [32] to visualize the search space of different optimization
algorithms in the temporal domain. An interesting example of these
results can be seen in Figure 4 where a graphical representation of
the operation of the simulated annealing optimizer appears beside
the equivalent representation for the genetic algorithm optimizer.
Each point on the two scatter charts represents a given line through-
put value at a specific step of the algorithm. Both charts depict
the calculation of the placement of 30 buffers in a balanced line of
15 stations. The simulated annealing algorithm optimizes a single
solution in the specific example in 80.000 iterations. The solution’s
throughput value oscillates as both better and worse solutions are
randomly selected at each iteration step. As can be seen on the chart,
the oscillation width decreases following the algorithm’s exponential
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FIGURE 4 Stochastic method operation comparison.

cooling schedule and converges towards the optimal value. In contrast
to the simulated annealing algorithm, the genetic algorithm is based
on the implicit parallelism of the solutions represented by the initial
population. Thus, in the specific example, it terminates with an
optimal configuration after 250 generations. As the chart demon-
strates, the search starts with a wide spectrum of different solutions
which are evaluated and evolve in parallel with non-optimal solutions
gradually becoming extinct. Mutations and recombinations regenerate
suboptimal solutions, but, due to the probabilistic organism selection
strategy, their survival does not last for long.

5. CONCLUSIONS

ExPLOre was built from the bottom up as a workbench for ex-
perimenting with production line optimization algorithms and meth-
odologies. It currently provides a rich set of algorithms for evaluating
production line configurations. The architecture’s modularity and
the plug-compatibility of the optimizer and throughput evaluator
module instances have allowed us to concentrate our work on an ob-
jective comparison of the relative merits and deficiencies of the vari-
ous algorithms. Placing methodologies which were up to now studied
in isolation under the same roof has provided us in some cases with
surprisingly differing results in terms of accuracy and efficiency for
similar line configurations. Thus part of our new work entails the re-
examination and tuning of the respective methods using exPLOre as
an algorithm evaluation tool. In addition, the modularity of exPLOre
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has prompted us to examine further optimization and evaluation
algorithms as candidates for inclusion. We are currently working

on

fine-tuning the exPLOre optimizer based on genetic algorithms.

Finally, a further direction of our research concerns the publication of
the exPLOre module port specifications and the provision of a friendly
user-interface in order to create a publicly available version as a
standard production line optimization algorithm workbench.
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