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Subspace-stabilization is a generalization of the classical idea of stabilizing motions of a
dynamical system to an equilibrium state. The concept of subspace-stabilization and a
theory for designing subspace-stabilizing control laws was introduced in a previously
published paper. In the present paper, two new alternative methods for designing control
laws that achieve subspace-stabilization are presented. These two alternative design
methods are based on: (i) a novel application of existing Linear Quadratic Regulator
optimal-control theory, and (ii) an algebraic method in which the control-law is expressed
as a linear feedback of certain “canonical variables.” In some cases, these new design
methods may be more effective than existing ones. The results are illustrated by worked
examples.
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0. PROLOGUE

In the period 1965-70 it was my good fortune to have Bob Skelton as
a student in my graduate courses in state-variable, optimal and non-
linear control. Bob was an outstanding student then and has since
become a world-class researcher and author in the field of control
theory. It is an honor and pleasure to participate in this special issue
of MPE honoring the 60th birthday of Bob Skelton and his achieve-
ments. Since many of Bob’s contributions are related to optimal and
algebraic aspects of control theory, I have chosen similar topics for this
paper and put them in a context that is responsive to an important
design issue Bob has recently raised [1].
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1. OVERVIEW OF THE SUBSPACE-STABILIZATION
CONTROL PROBLEM

One of the important insights associated with the application of mod-
ern optimal-control theories and state-space formulations to industrial
control problems is the recognition that a wide, diverse variety of those
control problems reduce to a common design requirement. Namely,
the requirement of first controlling the system-state vector x(f) (or
response—error state vector £(¢)) promptly to a certain linear subspace
S in the underlying state-space and thereafter maintaining x(z) (or &(2))
on or near S while controlling ||x(?)|| (or ||e(?)]|) to zero, or keeping it
suitably bounded. The state-space geometry of this kind of x(#) motion
is illustrated in Fig. 1.

This important feature of the state motions x(¢) in a variety of
optimal-control problems was apparently first discovered in [2,3] where
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FIGURE 1 State-space geometry of x(#) motions in a variety of optimal control problems.
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it was shown that the “singular solutions” in linear-quadratic regulator
(LQR)-type optimal-control problems, with “cheap-but-bounded” con-
trol, implied the motion of x(¢) was invariant on a certain well-defined
linear-subspace S; see also [4—7] for additional early results concerning
the motion of x(#) on invariant-subspaces.

After the publication of [2—7], it was discovered that this same kind of
subspace-stabilization motion x(¢) also arises as a natural design require-
ment in a wide variety of stabilization, set-point regulation (“pointing”)
and servo-tracking control problems, formulated in terms of state-
variables, and which do not necessarily involve optimal-control consid-
erations. In the latter cases the subspace-stabilized trajectories x(z) are
not required to have the sharp, optimal “corners” illustrated in Fig. 1
and typically have the smoother, asymptotic behavior shown in Fig. 2.
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FIGURE 2 State-space geometry of required x(z) motions in many stabilization, set-
point regulation (pointing) and servo-tracking control problems.
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In recognition of the central importance of achieving and maintain-
ing state-motions x(f) on certain linear subspaces S, in a broad class
of practical control applications, that generic control problem was
defined precisely, given the name “subspace-stabilization” and was
solved rather completely in a 1973 paper [11], for the case of linear
systems and control laws. More recently, the subspace-stabilization
method has been used to solve a variety of practical control problems
in the aerospace field. In the next section we briefly summarize some of
the known results concerning theory and applications of the subspace-
stabilization method for control design.

2. BRIEF SUMMARY OF PREVIOUS RESULTS IN
SUBSPACE-STABILIZATION

In [2-5] it was shown that the optimal control #°(¢) that minimizes a
quadratic performance index (with “cheap-but-bounded” control) of
the form

J= / xT()Qx()d, Q=0T >0, (1)
0
for a scalar-controlled, constant linear dynamical system of the form

X =Ax+bu(t), x=(x1,...,Xs), u=scalar
(A,b) = constant and completely controllable (2a)

subject to the bounded control constraint
lu(r)| <1 (2b)
and the null-state regulation specification

lim x(z) =0, (2¢)
t—00
leads to a “dual-mode” optimal controller. That dual-mode controller
consists of first a “bang-bang” mode (with a certain non-linear switch-
ing surface) that promptly controls x(z) to some point on a well-
defined linear subspace (singular surface) S € E", E" = n-dimensional
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Euclidean state-space, in a finite time-interval. Then, a “singular”
linear-control mode is used to maintain x(t) € S thereafter, while simul-
taneously controlling x(f) — 0 as illustrated in Fig. 1. As shown in
[3; Egs. (14)—(27)] (see also Refs. [12—14]) the subspace S is related to
Q in (1) and to the pair (4, b) in (2a)—(2c). It was shown in [2—5] that,
owing to the control constraint (2b), for some systems (2a) the achieve-
ment and maintenance of x(f) € S is not possible for all x(#,) and con-
sequently x(¢#) can be stabilized to only a subset S C S in those cases.
Some topological properties of S are described in [3].

Remark The reader’s attention is called to a long-known technical
inaccuracy that appears in [3]. Namely, the scalar constants {g;} in
[3; Eq. (7)] do not necessarily turn-out to be al// non-negative, in gen-
eral; see [12] for a technical explanation, and further discussion, of this
point and see [13,14] for some important consequences in general LQR
theory.

In [6,7] the purely algebraic and state-space geometric aspects of
stabilizing motions x(¢) 1o invariant linear subspaces S (hyperplanes)
was studied and some important eigenvalue—eigenvector and control-
lability/observability characterizations were derived.

As mentioned in Section 1, the formal definition of “stability with
respect to a subspace” was introduced in [11] where the subspace-
stabilization control problem for a general class of linear dynamical
systems, with (vector) linear state-feedback control laws, was defined
and solved. In particular, some fundamental existence conditions, an
expression which identifies the set of all linear control laws u = Kx that
can achieve subspace-stabilization, and a variety of related results for
various special cases were derived in [11].

In [15] a broad class of MIMO “output” stabilization, set-point
regulation (“pointing”) and servo-tracking control problems, for linear
dynamical systems with uncertain, time-varying external disturbance-
inputs, was formulated and solved as a subspace-stabilization prob-
lem, posed in a novel n-dimensional “servo-state” state-space, using
the subspace-stabilization control theory developed in [11].

In [16,17] the theory of Disturbance-Accommodation [18] was used
to develop a new approach to model-reference adaptive control
(MRAC), called “Linear Adaptive Control”. In that approach the
prompt stabilization of state motions x(¢) to a certain p-dimensional
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linear subspace M is used as a state-space interpretation of the
adaptive-control requirement that the closed-loop motions of x(¢)
should consistently mimic the behavior of a specified, reduced-order,
linear dynamical ideal-model.

More recently, the theory of subspace-stabilization has been used to
develop a variety of new control algorithms for high-performance guid-
ance and control system applications, including engine control systems,
in the aerospace field [8-10,20—22].

3. PROBLEM FORMULATION

In this paper we consider again the general subspace-stabilization con-
trol problem for linear dynamical systems as posed in [11]. Namely, we
assume one is given the general MIMO plant model

x=A(t)x+B(tu, x=(x1,...,%n), u= (U1,...,%), 5)
3
y= H(t)x y= (ylv'-sym)’

where (A(2), B(t), H(?)) are known, real-valued and well-behaved for
all 7. To keep things simple, it is hereafter assumed the system (3) is uni-
formly completely controllable and observable in the sense of Kalman.
In [11] the problem was to find a linear, state-feedback control-law

u=K(t)x (4)

such that when (4) is substituted into (3) all solutions x(¢) of (3) will be
“stabilized” to a given, or specified, p-dimension, 0 < p < n, linear sub-
space S(¢) defined by

S() ={x|C(t)x=0; x € E"}, (5a)

where C(¢) is a given (designer-chosen), real-valued, (n — p) X n matrix
having constant rank (n — p). A more precise, technical definition of
the term subspace-stabilization, in the context of (3) and (5a), is given
in (8) and (9) below. It follows from (5a) that S(¢) is the p-dimension
null-space of the constant-rank matrix C(2).

In optimal-control problems such as considered in [2—5], the sub-
space S is not specified directly, but rather is implicitly “defined” by



SUBSPACE-STABILIZATION CONTROL 105

the parameter-values in the plant-model (3) and in the optimization
criterion J. Consequently, in those cases S is not visible, a priori, and
if one wants to identify S it is necessary to perform certain preliminary
transformations and other calculations to obtain an explicit descrip-
tion (5a) for S; see [3, (Section 5), 12]. More generally, when opti-
mization is not a primary concern in the control design, S is visible,
a priori, because the explicit description (5a) of S is given at the outset
in terms of a specified set of closed-loop performance requirements.
Each of those performance requirements is equivalent to motion of
x() (or &(1)) on a certain (different) linear subspace S; defined by an
expression of the form:

Sj: {XIC,'1X1 -+—c,-2xz+---+c,-,,x,, ZO; i= 1,2,...,qj};
j=12,...,n (5b)
For instance, a set of subspaces {S;}] like (5b) might embody an
explicitly defined “ideal-model” performance requirement and/or an
output set-point requirement (with the x; in (5b) replaced by corre-

sponding “response—error” states €;(¢)). In such cases, the linear sub-
space S in (5a) is the intersection subspace defined by

§=n{s}!. (50)

Introduction of the Canonical Variables (z1, z;)

The results obtained in [11] were made possible, in part, by invoking a
novel, non-singular linear transformation on the state-space of (3) as
follows (unlike in [11], here we assume C(¢) in (5a), rather than M (¢),
is the given quantity that defines S):

(x) = [C*OIM()] (—)

22
c# = C"cC™) ™!, [T — denotes transpose, (6a)

where zi, z; are sub-vectors of dimension (n — p) and (p), respectively,
and M (?) is any n x p matrix, having constant rank p, such that
C(M(t) =0. (6b)

In other words, the columns of M(¢) form a basis for S(¢) (= null-space
of C(2)).
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FIGURE 3 Geometric relations between the state-vector x, the projections e;, e, and
the associated canonical-variables (sub-vectors) z;, z,.

The explicit inverse of (6a) is

(2) = (%) = [Af;’()t)} (x), M*=[MMTM. (6)
Referring to Fig. 3, it can be seen that the (» — p)-dimension sub-vector
z1(?) is the coordinate-vector (representation) associated with the pro-
jection ey = C¥z, = C*Cx of x(f) along S onto the orthogonal com-
plement St of S; likewise, the p-dimension sub-vector z(f) is the
coordinate-vector associated with the projection e, = Mz, = MM*x of
x(t) along S* onto S. Consequently, the “distance” 9 of x(f) from S
can be taken as

9=z (0)ll, (7)

and the motion ex(?) of x(¢) on S is equivalent to the motion of zx(¢)
when z1(f)=0. We will refer to the two sub-vectors (zq,z;) as the
canonical variables for the subspace-stabilization problem (3), (5).

The transformation (6) takes the state model (3) into (we occasion-
ally drop the ¢-argument on matrices to simplify notation)

(1) - [laer <o | cuam—in | (=) [co]"
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The subspace-stabilization problem considered in this paper can now
be precisely stated in terms of (8) as follows.

Definition of the Subspace-Stabilization Problem
for (3), (5) inTerms of (8)

Find a feedback control function u(-) such that, when substituted into
(8), the following three conditions on the solutions {z(¢), zo(¢)} of (8)
are achieved:

(1) tllglo z1(t) =0, for all {z1(1),2z2(t0)}, (92)
(ii) ||zi(2)|| < o0; forall t>1; i=1,2, (9b)
(ili) z1(2) =0=z1(t) =0, forallz> . (9¢)

Remarks Condition (9a) is the requirement that al/ solutions x(z) of
(3) are attracted to (asymptotically approach) the subspace S. Condi-
tion (9c) is recognized as the requirement for S to be an invariant-
subspace (equilibrium manifold) for the closed-loop system (3); i.e.,
x(tg) €eS=x(t) €S, Vt>1,. Condition (9b) embodies the important
practical requirement that the closed-loop state motion x(z) must
always remain bounded. In many practical applications it is prudent or
necessary to constrain the quantitative features of the motion x(¢) €S
even more than does (9b). For instance, by replacing the i=2 case of
(9b) with a stronger requirement such as uniform boundedness, or by
an asymptotic stability condition such as

tllrglo 25(1) =0, for all {z3(2); z1(¢) = 0}. (10)

Moreover, engineering requirements in industrial applications typically
demand that the convergence (9a) occur more rapidly than the conver-
gence (10), as measured by the respective closed-loop “settling-times.”
It is remarked that conditions (9a)—(9c) are not achievable for every
subspace S, in general; see [11] and Egs. (22)—(25) in this paper. More-
over, in some applications, when (9c¢) is enforced, the “natural” motion
of x(¢) € S is sufficient to satisfy (9b) or (10).

As in conventional stabilization problems, conditions (9) and (10)
can be achieved, in general, by a variety of feedback control functions
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(control-laws) u(-) having different mathematical structures, such as
linear, non-linear, bang—bang, digital, etc., as demonstrated in [3]. In
[11] attention was focused on the design of linear control laws (4)
using purely algebraic methods. In the next section we will show how
subspace-stabilization control laws of the linear form (4) can be sys-
tematically designed by a novel application of existing LQR optimal-
control techniques. In Section 6 of this paper an alternative algebraic
method is proposed for designing subspace-stabilization control laws
in the “canonical-variables” form u = K;z; + K,z,, which, in some cases,
may have computational advantages over the methods used in [11,15].
Due to space limitations, we will confine our attention in Section 4 to
the time-invariant case of (3)—(5).

4. FORMULATION AND SOLUTION OF THE (LINEAR)
SUBSPACE-STABILIZATION CONTROL PROBLEM AS
A SPECIAL TYPE OF LINEAR-QUADRATIC PROBLEM IN
OPTIMAL CONTROL

The traditional, infinite-time LQR optimal-control problem [19] for
the time-invariant case of the system (3), with no control constraints, is
concerned with finding the/a control u(t) that minimizes the quadratic
functional (performance index or criterion)

Ju] = /Ooo[xTQx +uTRu]dt; x = x(¢) = sol. of (3) (11a)

subject to the null-state regulation specification (boundary condition)

lim x(1) = 0, (11b)

and the assumptions R=R" >0, 0 = Q" > 0; the latter sometimes being
replaced by the weaker assumption

0=0">0, (11c)

subject to an additional technical restriction. Although we will not
pursue the matter here, it is perhaps worth mentioning that the semi-
definite assumption (11c) has been shown to be overly restrictive (not
necessary), in general, and may cause the LQR design process to rule-out
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some highly desirable sets of closed-loop poles in the left-half plane,
such as ITAE poles, etc.; see [13,14]. The designer’s choice of the
element-values g; of Q and the element-values r; of R determines the
qualitative and quantitative features of the optimal control %°(z) and
corresponding optimal response x°(¢), as determined by (3). It is well-
known [19] that the LQR optimal-control law #°(x) associated with
(3) and (11) always exists and has the linear form (4) — provided cer-
tain controllability/observability conditions involving (4, B, Q') are
satisfied.

To design an LQR optimal control »°(¢) that satisfies the subspace-
stabilization requirements (9) and (10) in a limiting or approximate
sense, for a subspace S explicitly given or specified in the form (5), one
can use the technique of [3; Eq. (27)], [12] and the transformation (6)
to “design” a special form of Q in the performance functional (11) as
follows. First, observe that, with respect to (8), the approximate satis-
faction of conditions (9a2) and (9b) can be approached by choosing u(¢)
to minimize the special “sum of state-quadratics” functional

Ju) = / (2] Q121 + 23 Q220 + u' Ru] dt, (12)
0

where it will be assumed that Q; = QT >0, @, = Q1 > 0, for simpli-
city [see remarks below (11c)] and that R= R" >0, where || R|| is suit-
ably small. To encourage the optimal control ¥°(¢) to also satisfy (9c)
one should choose ||Q||>(|Q,|| in (12). When z;(0) ~ 0, the latter choice
will encourage the optimal-control #°(¢) to maintain z,(¢) ~0 thereby
tending to make S become an approximate invariant-subspace —
provided || R|| is chosen sufficiently small to “discount” the cost of con-
trol effort [ u" ()Ru(f) dt required to maintain the “invariant” motion
21(£) = 0. The choice ||Q1]||>(|Q,| will also tend to encourage z;() — 0
“faster than” z,(f) — 0, as mentioned below (10). The weaker bounded-
ness condition (9b) for z,(¢) can be realized by allowing || Q5| to become
arbitrarily small, > 0, in some appropriate sense. If the “natural” motion
of x(#) €S is satisfactory, in the sense of (9b) or (10), one can let
0,—0in (12).

Next, the relation (6¢) is used to convert (12) to the normal LQR
form (11) by substituting the inverse relations

z21=Cx, zp=M%"x (13)
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into (12) to obtain the conventional expression
Ju) = / [xTOx + u" Ru] dt, (14a)
0

where Q has the special structure

Q0 =C'Q,C+ M*TQ,M#, (C,M*#) — defined in (5) and (6).
(14b)

The existing theory [19] and widely available computational algorithms
for the LQR problem can now be applied to (3), (11) and (14) to easily
obtain the LQR optimal-control #°(¢) in the form

u(t) = Kx(f), K= —R'BTP, (15a)

where the n x n matrix P is the symmetric, positive-definite solution to
the matric, steady-state (algebraic) Riccati equation

PA+ AP - PBR'BTP+Q =0. (15b)

If the subspace-stabilization control problem (5), (9), (10) has a
solution, the LQR optimal-control law (15) will constitute an approx-
imate solution, provided the numerical values of (Q;, Q,, R) in (12) are
chosen appropriately as indicated below (12). As in most LQR appli-
cations, determining those appropriate numerical values may require
a trial-and-error design procedure, using simulation “exercises”, to
achieve the desired qualitative and quantitative characteristics of con-
ditions (9) and (10) and of u°(x()). Practically speaking, this latter
feature constitutes the real merit of this LQR method for designing
a subspace-stabilizing control-law because the matric parameters
{01, 0, R} in (12) provide a notably simple and convenient means for
the control designer to “manage”, and explore “trade-offs between”,
the levels of effort/energy required of the control #°(¢) and the degree
to which the corresponding “optimal” motions z,(¢), zo(¢) satisfy condi-
tions (9) and (10). For practical implementation purposes the control-
law (15a) would be written as u°(r) = KX(t), where x(z) is a real-time
estimate of x(¢) generated by an observer or Kalman filter [19].
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The more-general time-varying cases of (3), (5) and (11) can be handled
by introducing the same LQR performance criterion (12), and employ-
ing a solution procedure similar to that used here, at the expense of
more tedious technical details and calculations involving asymptotic
behavior of solutions P(#) to the matric Riccati differential equation [19]
associated with (15b).

If the subspace-stabilization control problem (5), (9), (10) does not
have a solution in the strict sense, the LQR method (12)—(15) can be
used as a basis for deriving various forms of “optimally-approximate”
subspace-stabilization control laws [23].

5. SOLUTION OF AN EXAMPLE USING THE LQR METHOD FOR
SUBSPACE-STABILIZATION CONTROL DESIGN
To illustrate the new LQR methodology for subspace-stabilization

control design, as proposed in Section 4 of this paper, consider the gen-
eral, time-invariant, scalar-controlled 2nd-order system modeled by (3)

with
0 1 0
a0 U ]sen=(0) 09

and assume the subspace S to be stabilized is 1-dimensional and defined
by (5a) with

C — c¢=(c1,¢2) (= constant, non-zero 1 x 2 matrix).  (17a)

Following (6) the matrix C*, and associated (non-unique) matrices
M, M*, are computed/chosen to be

=l ?(8) m=(2) M=l e —a) 7

—C1

where ||c||* = (¢2 + ¢2) > 0. For this example, the corresponding LQR
functional (14) that, when minimized, will lead to a subspace-stabilizing
optimal control u°(¢), for appropriate choices of O — g1 = scalar >0,
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0, — gy =scalar >0, R — r =scalar > 0, is given by
J=/ [xTOx + r)dt, x = <x1)' (18a)
0 X2

In the case of (17), Q in (14b), (18a) reduces to the 2 x 2 matrix

(er,2) (e2—er)
- c _
0= {ql (&) et 2) } (18b)

The problem data (16) and (18) can now be substituted into (15) to
determine the subspace-stabilizing, LQR optimal-control law u°(¢) =
Kx(f) — assuming the existence conditions in [11] are satisfied; alter-
natively, see the more specific existence conditions for this particular
example as given in Egs. (28)—(32) presented later in this paper.

As explained below (12) and (15), it may be necessary to experimen-
tally adjust the values of the positive LQR parameters {q;,q»,r} in
(18), in a trial-and-error manner, to determine a set of values that
yield the desired settling-times and other quantitative properties of
the subspace-stabilization conditions (9) and (10), as well as acceptable
behavior of u°(x(z)). In particular, as the value of r > 0 decreases in (18a)
(increasingly “cheap-control”) conditions (9) and (10) should occur in
a near-ideal manner, for appropriate choices of q; > g, > 0 — assuming
the existence conditions referred-to below (18b) are satisfied for the
chosen subspace S. The limiting case r — 0 has little practical interest
because it typically leads to unbounded behavior of ||K]||, and con-
sequently of ||u(?)||, due to the term R~ in (15a); see [3] for a detailed
study of the scalar control case with » =0 and with the hard constraint
(2b) imposed on u(z).

To demonstrate the considerations in the preceding paragraph, a
specific case of the Example (16)—(18) will now be considered and simu-
lation results presented.

A Specific Case of the Example, Using the LQR Method

As a specific case of the preceding Example (16)—(18), illustrating the
LQR design method, consider the system (16) with a; =a,=0 (the
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“double-integrator” system) and suppose ¢; =c,=1 in the definitions

(5a) and (17) of the subspace S. In that case the matrix Q in (18)
becomes

5 [(@+0/4) (01— 0/4)
0= [(‘11 —q2/4) (qu +q2/4)]- (19a)

For this specific case the elements (p11, p12, p22), of the corresponding
2 x 2 solution P=PT >0 of (15b), can be easily computed analytically
and are found to be

pu=—(q1 — @/4) + \/2 Vr(ar+a2/4) + (@1 + 2/4)%,
pi2 = Vr(gi +42/4),

P =\ F 0B + (@1 + a2/4)]. (19)

Finally from (15a) the LQR optimal, subspace-stabilizing control u°(-)
is given as

w(x) = —r 0T Px = kyx; + kyxa, (19¢)

where

ki ==/ q1 + q2/4),
ky = —\/Z\N“(ql +q2/4) +r g1 + q2/4). (19d)

Some plots of the closed-loop, optimal state-trajectories x°(¢) for the
two initial-conditions x(0) = (5, —1) and x(0) = (4, —5), with the fixed-
values ¢; = 10, g, =0.1 and for decreasing values of » > 0, are shown in
Fig. 4. It can be seen in Fig. 4 that as r decreases in value the LQR
optimal-control (19¢) and (19d) becomes increasingly effective at quickly
stabilizing x°(7) to the subspace S.

This same Example (16)—(18) will be considered again in Section 7
of this paper, where it will be used to illustrate an alternative, purely
algebraic method for designing subspace-stabilization control-laws.
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-

x2(t)
w

//

FIGURE 4 Some closed-loop, optimal state-trajectories for the Example specific case:
a;=a,=0; ¢c;=cp=1in (16) and (17), with ¢, =10, go=0.1 and 2>r>0.01.

6. FORMULATION AND SOLUTION OF THE (LINEAR)
SUBSPACE-STABILIZATION CONTROL PROBLEM USING AN
ALGEBRAIC METHOD AND LINEAR FEEDBACK OF THE
CANONICAL VARIABLES (zy, z»)

The widespread availability of computer-aided design programs for
LQR-type problems makes the LQR methodology for designing
subspace-stabilizing control-laws, as presented in Section 4 of this
paper, an effective design tool for complex, high-order problems. On
the other hand, the introduction of a possibly artificial or contrived
optimization performance criterion J, whose parameters must be
“tuned” by trial-and-error, to solve what is basically a linear-algebraic
problem in stabilization theory is viewed by some as an indirect design
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procedure that may obscure important mathematical features of the
problem and its solution. Thus, there is an interest in developing more
direct methodologies for subspace-stabilization control design that are
purely algebraic in nature and reveal important scientific aspects of
the problem, such as underlying necessary and sufficient conditions for
existence of a solution, etc.

The algebraic design methodology developed in [11] and refined in
[15] was an attempt to satisfy that interest. However, the design method-
ology in [11,15] can sometimes become rather involved and unwieldy.
In this section, we introduce an alternative algebraic methodology for
designing subspace-stabilizing controllers that may offer computa-
tional advantages, in some cases.

To begin, we return to expression (8) and agree to write the sought
control-law u= Kx equivalently in terms of the canonical variables
(21, z,) as follows:

u=Kx=K[C*| M] C—l) = Kiz) + Koz, (20a)
2

where
Ky = KC*; K, =KM. (20b)

Our assertion here is that, in some problems, it may be easier to begin
with the form (20a), where (K, K) are arbitrary, and design the two
matrices (K, K;) rather than to begin with (4) and design the one matrix
K, as was considered in [11].

Substituting (20a) into (8) yields the “closed-loop” plant state-model
in canonical variables as

<z'_1)_ C(AC# — C*#) + CBK, C(AM — M) + CBK; (z_,>
z3) |M#(AC# — C#) + M#BK, | M#(AM — M) + M#BK,[\z2/)'
(21)

Design Requirements for the Canonical Gains (K, K5)

It was shown in [11] that the three requirements for achieving
subspace-stabilization, cited here in Eq. (9), imply the following
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conditions in (21).

(9a) = The matrix K; must be chosen such that all solutions of the
decoupled sub-system

2 = [C(AC* — C*) + CBKi]z (22)

are asymptotically stable to z; =0, with sufficiently short
setting-time, for all z;(zo).

(9b) = K, and K, must be chosen such that all solutions z;(¢) of (22),
and all solutions z,(#) of the truncated sub-system

i = [M#(AM — M) + M#BKj)z,, (23)

remain suitably bounded for all ¢ > ¢, (or, in the case of z,(?),
suitably stable/asymptotically stable with respect to z; =0, as
dictated by application requirements).

(9c) = K, must be chosen such that the upper-right coupling block in
(21) is (ideally) zero. That is,

[C(AM — M) + CBK;] = 0. (24)

It should be noted that the matrix K, must be designed to simul-
taneously satisfy both (23) and (24). To systematically identify candi-
date choices for such a K, it is convenient to proceed as in [11] and first
identify the set of all K, that will satisfy (24). The necessary and suf-
ficient condition for existence of a matrix K, that achieves (24) can be
written as [11; p. 180]

rank[CB| C(AM — M)] = rank[CB] (25)
in which case it is necessarily true that
[C(AM — M)] = CBT (26a)

for some (possibly non-unique) matrix I'. Any such I" can be used to
compute a K, satisfying (24) by setting

K; = —T'; T satisfies (26a). (26b)

A parametric expression for the set {I'} of all T satisfying (26a), assum-
ing (25) is satisfied, can now be developed by using the appropriate
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Moore—Penrose generalized-inverse expression, as was done in [11;
p. 180]. Then, one can proceed to determine if there is any K =—T,
T € {T'}, that produces the required boundedness (or stability) of solu-
tions z(¢) of (23); see [11, Section 6].

As indicated in [11], the necessary and sufficient conditions for exis-
tence of a K; that achieves stabilization of (22), in the most general
time-varying case, are not available. A noteworthy sufficient condition
for that general case, due to Kalman, and also the known, necessary
and sufficient existence conditions for the time-invariant, and other
special cases of (22), are given in [11]. As previously mentioned, any K,
used in (23) must also satisfy (24) and therefore must be chosen from
among the set {K} of all K, that satisfy (25) and (26). If the latter
set is empty, the (strict) subspace-stabilization control problem does
not have a solution. A similar conclusion obtains if every K, satisfying
(25) and (26) yields an unbounded or unacceptable behavior of one or
more solutions z,(¢) in (23). In such cases, to avoid an impasse in the
design procedure, it is necessary to revise the subspace-stabilization
problem-data by, for instance, introducing an alternative or com-
promised choice of S in (5a) and/or allowing more control-inputs
(components) u; in the plant model (3). Alternatively, when the essen-
tial condition (25) is not satisfied, one can use the same Moore—
Penrose generalized-inverse expression employed in [11] to identify a
set of K, that minimize ||C(AM — M)+ CBK>| in (24); cf. [18,
pp. 456—7]. In that way, one can employ algebraic methods to explore
the possibility of achieving “best-approximation” type solutions to
subspace-stabilization control problems [23]. In any case, after a suit-
able pair (K, K5) has been designed, the control-law (20a) can be
expressed in terms of the system’s natural-state x by using (13) to
write u=[K,C + K,M*]x, where x would be replaced by an observer-
generated estimate X for practical implementations.

7. SOLUTION OF AN EXAMPLE USING LINEAR FEEDBACK
OF THE CANONICAL VARIABLES

To illustrate the alternative algebraic methodology for subspace-
stabilization control design, using linear feedback of the canonical
variables, we will consider the same general 2nd-order, scalar-input
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plant model (16), and 1-dimensional subspace S, used previously in
Section 5 to illustrate the LQR design methodology. Namely, we will

assume
0 1 0
A= , B—ob= ( >, (27a)
—a; —a 1

S={x]axi+cx2 =0}, c=(c1,c2) #0, (27b)

where the (ag;, ¢;) are real-valued constants. For this case, K1 — k)=
scalar, K, — k, = scalar, and {C*, M, M*} are computed/chosen just as
in (17b).

Substituting (17b) into (22)—(24), and assuming (24) is not satisfied
by the trivial solution k, =0, it is found that a non-zero k; satisfying
the invariant-subspace condition (24) exists if, and only if, ¢, #0, in
which case the k, satisfying (24) for this particular example is uniquely
defined as

[ 2 2
ko| = <(C2“‘ il 0‘02“2)); 2 #0. (28)
) “

Note that the unique k,-value defined by (28) eliminates all design
options in selecting a kj-value that also suitably bounds the z(¢)
motions in (23). This unusual outcome is not representative of higher-
order examples where u # scalar, but it does illustrate the kind of useful
technical insights made possible by a purely algebraic approach to
subspace-stabilization control design.

If one now substitutes (28) into (23) the following surprizingly simple
result obtains:

Z.2 = [—(61/62)122. (29)

It follows from (29) that, for this example, the value (28) of the unique
k, satisfying (24) also makes all solutions z,(¢) of (23) become stable/
asymptotically stable to z, =0 if, and only if, (29) is “naturally” stable,
i.e., the (¢1, ¢p) in (27b) satisfy

(c1/e2) 20, 2 #0, (30)

where the equality (c¢;/c;) =0 in (30) corresponds to motions z,(f) that
are stable with respect to z, = 0, but not asymptotically so.
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Finally, substituting (17b) into (22) yields
21 = |le]| Plerea(l — @) — Bay + erkizy. (31)

Thus, all solutions z;(¢) of (31) will be forced to become asymptotically
stable to z; =0 if, and only if, k; is chosen to achieve

Cg(kl — Cap + 6‘1(1 — al)) <0, 75 0. (32)

Asmentioned previously, practical applications typically carry the addi-
tional requirement that the settling-time for z;(¢) — 0 in (31) should be
somewhat smaller than that for z;(f) — 0 in (29). Under that require-
ment, the inequality in (32) may require strengthening, compared to (29)
and (30).

In summary, the algebraically designed subspace-stabilizing control
law for this simple example, expressed in canonical variables, is

u=kyzy +kyzy, z1,zo = scalars, (33)

where k, is given by (28) and k; satisfies (32) — provided (30) is satisfied.
To convert the control-law (33) to the natural-state form (4) one should
use the corresponding relations (6¢) and (13) to replace the z;-terms
in (33) by x;-terms. Note that the precise existence conditions and
other important technical results associated with (28)—(32) tend to be
obscured when the LQR method is used to solve this same Example,
as in Section 5.

This illustrative example has been chosen simple to enable easy visu-
alization. Some more realistic and complicated aircraft, acrospace and
engine control problems, formulated as subspace-stabilization prob-
lems and solved using algebraic-type subspace-stabilization control-
design methodologies, are presented in [8—10], [20—22].

8. CONSIDERATION OF OTHER STRUCTURAL FORMS OF
SUBSPACE-STABILIZATION CONTROL LAWS

As explained in Section 2, the earliest appearance of the subspace-
stabilization idea in optimal control was in connection with the infinite-
time, LQR Problem (1) and (2) with “cheap-but-bounded” control.
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For that problem the optimal control turned-out [3] to be a “dual-
mode” subspace-stabilizing controller consisting of a strategic, non-
linear bang—bang control law, which “optimally” controls x(t) — S in
some finite time, and a linear control law which “optimally” maintains
x() € S thereafter, while regulating x(¢) — 0 as shown in Fig. 1.

Thus, it is important for control designers to recognize that the
linear state-feedback control laws (4), as considered here and in [11,15],
etc., represent only one of many possible options for the mathematical
structure of a subspace-stabilizing control law for linear plants (3).
In this section we will describe a general framework in which one can
systematically explore other structural options in subspace-stabilization
control designs for linear plants (3). In addition, the consideration of
non-linear plants and manifolds S that are not linear subspaces is
addressed briefly.

A Design “Separation Principle” for Subspace-
Stabilization Control

As explained below (5a), in many practical applications the dimension
and orientation of the subspace S is explicitly defined, in the form
(5a), by a given set of closed-loop performance specifications, such as
requirements for “ideal-model” response of tracking-errors, etc. Thus,
assuming S has been identified explicitly by such a set of specifications,
as in (5b) and (5c), one can consider the overall subspace-stabilization
control-design problem as separated into the following two, essentially
decoupled, sequential phases: Phase 1 — the control of x(z) — S, and
Phase 2 — the maintenance and appropriate control of x(¢) € S, as
dictated by (9b) or (10) and the application requirements.

Design Options for the Phase 1 Control Problem

The design of a control-law to solve the Phase 1 problem can be
approached by either optimal-control techniques or algebraic stabiliza-
tion techniques. In the case of optimal-control techniques, the “given”
p-dimension subspace S (or an appropriate S C S, in the case of
bounded control) should be defined as the mathematical “terminal
manifold” for the optimization problem, cf. the procedure used in
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[3, p. 109], and one should then choose the optimization criterion J
(Jneed not be restricted to LQR/LQG type [19]) to reflect the designer’s
performance requirements for the Phase 1 motions x(r) — S(S). A
Mayer-term (terminal-state penalty term) can be appended to J to
reflect the “preferred” regions of S (if any) for x(7) to “terminate” on;
i.e., the preferred values of z, when x(7) first contacts S. Then, the
standard tools of optimal-control theory can, in principle, be used to
derive the corresponding (optimal) control-law u°(x(z)) that solves the
Phase 1 problem x(f) — S. In this way, one can incorporate a wide
variety of performance criteria J that produce Phase 1 control-laws
which achieve practical engineering requirements such as minimal-time,
or minimal-energy, or minimal-stress, etc., as x(f) — S.

The rich variety of algebraic-type linear and non-linear stabiliza-
tion control-law design techniques available in the existing literature
(Liapunov, Feedback-Linearization, Bang—Bang, Discrete-Time, etc.),
can also be used to solve the Phase 1 problem by first proceeding
as in DAC theory [18] and splitting u(-) in (8) into two terms as
u=u; +u,, where u, = K>z, and K, is designed as in (26b), assuming
the essential condition (25) is satisfied. This forces the subspace S
to become a generalized “equilibrium-manifold” for the stabilization
problem, i.e., achieves condition (9c). Then, the design of the other
(not necessarily linear) control term u; =f(z;) to stabilize x(1) — S
(z1(f) — 0) can proceed using the decoupled sub-system model z; =
[C(AC# — C#))z1 + CBuy, u1 = f(z1).

Design Options for the Phase 2 Control Problem

The design of a control-law to solve the Phase 2 problem
(=maintenance and appropriate control of x(¢) € S), generally does
not offer the same extent of structural options as the Phase 1 problem.
In particular, if the plant is linear as in (3), the choices for the Phase 2
control may be limited-to those control laws (4), (20a) that are linear
in x(¢) [zo(2)] (or, in some averaged sense, are essentially equivalent to
such a linear control-law). In this regard, the possible non-uniqueness
of the linear control “gain-matrix” K[K3] in solving the Phase 2
problem is discussed in [11; Section 6] and in the discussion of
“candidate” K, options associated with Egs. (24)—(26) in the present
paper.
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Consideration of Non-linear Plants and/or Manifolds S

In principle, the (linear) subspace-stabilization ideas and control-
design techniques presented here, and in [11,15], can be generalized to
accommodate dynamical systems modeled by non-linear equations (3),
and/or manifolds S that are not linear subspaces. However, general
control design procedures for non-linear systems (3) and precise exis-
tence conditions for solutions, like those presented here and in [11,15],
are rather difficult to develop. On the other hand, the results obtained
in [24], using linear-adaptive control, demonstrate that the technique
of active-linearization can effectively “force” some non-linear systems
to behave like a designer-chosen linear system. That novel approach
allows control-designers to use the /inear system and subspace-stabili-
zation results presented here, on some dynamical systems that are not
linear [25].

9. SUMMARY AND CONCLUSIONS

In this paper two new methods for solving the (linear) subspace-
stabilization control problem have been introduced and illustrated by
worked examples. One method utilizes the existing theory and well-
developed computational algorithms of LQR optimal-control theory
to systematically design “optimal” linear control-laws #®= Kx that
solve the subspace-stabilization control problem for a linear system (3)
and a specified linear subspace S defined by (5). The other method,
like that in [11], is purely algebraic in nature but differs from [11] in
that the control-law is expressed as a linear feedback of the canonical
variables zj,z,. In some cases these new methodologies for designing
linear subspace-stabilizing control laws may be more effective, compu-
tationally, than the methods originally presented in [11,15]. A general
methodology for extending the solution procedures used here, to accom-
modate cases of non-linear, bang—bang, discrete-time and other forms
of control-laws, has also been presented.

The results presented here and in [11,15] are intended for con-
tinuous-time (analog) control designs u=u(¢). The (linear) subspace-
stabilization control problem for discrete-time controls u=u(kT) is
considered in [26,27].
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