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We consider the viscous Burgers’ equation under recently proposed nonlinear boundary
conditions and show that it guarantees global asymptotic stabilization and semiglobal
exponential stabilization in H' sense. Our result is global in time and allows arbitrary
size of initial data. It strengthens recent results by Byrnes, Gilliam, and Shubov, Ly,
Mease, and Titi, and Ito and Yan. The global existence and uniqueness of classical solu-
tions follows from the general theory of quasi-linear parabolic equations. We include a
numerical result which illustrates the performance of the boundary controller.
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1 INTRODUCTION

Burgers’ equation is a natural first step towards developing methods
for control of flows. Recent references by Burns and Kang [1], Byrnes
et al. [3,4], Ly et al. [12], and Ito and Yan [8] achieve progress in local
stabilization and global analysis of attractors. The problem of global
exponential stabilization in L? norm was first addressed by Krsti¢ [9].
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This problem is non-trivial because for large initial conditions the qua-
dratic (convective) term — which is negligible in a linear/local analysis —
dominates the dynamics. Linear boundary conditions do not always
ensure global exponential stability [4] or prevent finite blow-up [5] in
the case of nonlinear reaction—diffusion equations. Nonlinear bound-
ary conditions might cause finite blow-up [11], even for the simple heat
equation [7].

With the introduction of cubic Neumann boundary feedback con-
trol we obtain a closed loop system which is globally asymptotically
stable and semi-globally exponentially stable in H' norm and, hence in
maximum norm whenever the initial data is compatible with the equa-
tion and the boundary conditions.

For clarity, our treatment does not include external forcing as in
[3,4,8,12]. External forcing would preclude equilibrium stability but
one could still establish appropriate forms of disturbance attenuation
and regularity of solution.

2 PROBLEM STATEMENT AND MAIN RESULTS

Consider Burgers’ equation
W, — €W+ WW, =0, (2.1)
where € > 0 is a constant, with some initial data
W(x,0) = Wy(x). (2.2)
Our objective is to achieve set point regulation

lim W(x, 1) = Wa, Vxe[0,1], (2.3)

t—00

where W, is a constant, while keeping W(x, t) bounded for all (x,?) €
[0, 1] x [0, 00). Without loss of generality we assume that W,;>0. By
defining the regulation error as w(x,?)= W(x,t)— W, we get the
system

Wy — eWxx + Wawy +wwy =0, (2.4)
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with initial data
w(x,0) = Wo(x) — Wa= wo(x). (2.5)

We will approach the problem using nonlinear Neumann boundary
control proposed in [9]

wx(0, 1) = % (co + —I/gﬁ + 9—165w2(0, t))w(O, 1), (2.6)
wy(l, 1) = —% (cl -+-9171w2(1,t)>w(1,t), (2.7

where cg, ¢; > 0.

The choice of w, at the boundary as the control input is motivated
by physical considerations. For example, in thermal problems one
cannot actuate the temperature w, but only the heat flux w,. This
makes the stabilization problem non-trivial because, as Byrnes et al.
[3] argue, homogeneous Neumann boundary conditions make any con-
stant profile an equilibrium solution, thus preventing not only global
but even local asympiotic stability. Even mixed linear boundary condi-
tions can introduce multiple stationary solutions [2].

DEFINITION 1  The zero solution of a dynamical system is said to be
globally asymptotically stable in an £ spatial norm if

wllz < B(Iwoll, 1), Ve =0, (2.8)
where B(-,-) is a class KL function, i.e., a function with the properties
that

e for fixed t, 3(r, t) is a monotonically increasing continuous function of
r such that 8(0, 1) =0;

e for fixed r, 3(r, t) is a monotonically decreasing continuous function of
t such that lim,_,., B(r, 1) =0.

The trivial solution is said to be globally exponentially stable when

B(r,1) = kre™® (2.9)
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for some k, 8> 0 independent of r and t, and it is said to be semi-globally
exponentially stable when

B(r,1) = K(r)e ™™, (2.10)

where K(r) is a continuous nondecreasing function with K(0) =0.

We use the following H'-like norm in our stability analysis

Iw(®)llz = \/W(O, 0%+ w(l, 1)” + [lwx(1)]>. (2.11)

We refer to [10] for the definition of Holder type function spaces
H'([0,1]) and H"/2([0,1] x [0, T]), where />0 is typically noninteger.
Smooth solutions of system (2.4), (2.6),(2.7) should clearly be compat-
ible with the boundary conditions at =0 in some sense. For the
definition of compatibility conditions of different order we refer to [10]
again.

Our main result is the following theorem.

THEOREM 1 Consider the system (2.4),(2.6),(2.7). For any T>0,
>0, and for any wy € H**'([0,1]) satisfying the compatibility condition
of order [(I1+1)/2] there exists a unique classical solution w(x,t) €
HAHIH2((0,1] x [0, T]) € C>1([0, 1] x [0, T]) with the following stabil-
ity properties.

(1) Global exponential stability in the L? sense: for any q €[2, c0) there
exists 6(q) > 0 such that

Iw(®)lze < lwollee™, Ve >0. (2.12)

(2) Global asymptotic and semi-global exponential stability in the H !
sense: there exist k, 6 € (0, 00) such that

(D)l g < Kllwoll g eIl e=8 vz > 0. (2.13)

Since H" = C" for n integer, the theorem assumes initial data
smoother than C? (but not necessarily as smooth as C?). Specifically,
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the initial data need to satisfy

" ol
p 1900 =i ()

. < oo (2.14)
x,y€l0,1] |x =yl

for some /> 0.

For solutions to be classical, besides C>* smoothness of initial data,
it is required that they satisfy the compatibility condition of order
Zero, i.e.,

wy(0) = é (Co + % + 9—lcgw02(0)) wo(0), (2.15)
wé(l):——le—(cl +—91?1w02(1)>w0(1). (2.16)

3 GLOBAL ASYMPTOTIC STABILITY

While irrelevant for finite-dimensional systems where all vector norms
are equivalent, for PDEs, the question of the type of norm £ with
respect to which one wants to establish stability is a delicate one. Any
meaningful stability claim should imply boundedness of solutions. We
first establish global exponential stability in L? for any g €2, o),
which does not guarantee boundedness. Then we show global asymp-
totic (plus local exponential) stability in an H'-like sense which, by com-
bining Agmon’s and Poincaré’s inequalities, guarantees boundedness.
Consider the Lyapunov function

1
Vw() = /0 w?dx = [w?(1)]* = [w)l %, p> 1. 3.1)
Its time derivative is

1
V= Zp/ w2 (ewyy — Waw, — ww,) dx
0

1
=2p I:—E(Zp - 1)/ wzp'zwi dx
0

1 1 1

o 2p+1

1

_ Wa
+ew? ., w2

w 2p+1
0o 2p

|
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= —e2p(2p — )||w? ™ (1)wx ()

—2pw?(0,1) [co + (1 - 1) = -

14
_ 21 Zd, -
2pw (,t)[c1+2p+2p+l

W2 2 2
s—e2p<2p—1>||wp-1<t)wx(t)||2—2p[ o <C—°+ (O’t))

+W2pc(]1’t) <%%+W2§;’ ’))} (3.2)

From Poincaré’s inequality it follows that
Iw?(D)I> < 20w (0,2) + w?(1,1)) + (2p)* W ()we(1)]>. (3:3)

Thus we get

where ¢’ =min{g, ¢g, ¢;}. It then follows that
WD) 2 < e @=D/@IE |, (3.5)

Thus the solution w(x, £)=0 is globally exponentially stable in an L7
sense for any g €[2, 0o). Letting p — oo in (3.5), we get

ess sup |w(x,?)| <ess sup |w(x,0)|, Vz>0. (3.6)
x€[0,1] x€[0,1]

This result is not particularly useful for two reasons:

(1) The above estimate does not guarantee convergence to zero (it
guarantees stability but not asymptrotic stability).

(2) Without additional effort to establish continuity, with esssup we
cannot guarantee boundedness for all (but only for almost all)
x€[0,1].
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For this reason, we turn our attention to the norm defined in (2.11).
By combining Agmon’s and Poincaré’s inequalities, it is easy to see
that

max w(x, )] < V2w(0)|l5- (3.7)

We will now prove global asymptotic stability in the sense of the
B-norm. Let us start by rewriting (3.2) for p=1 as

d
ke Iw(@O)* + w(®)l} <0, (3-8)

where k is a generic positive constant independent of initial data and
time, and by writing (3.5) as

(@)l < e ]|wol*. (3.9)

Multiplying (3.8) by e/0), we get

3 P (OIP) + e () < el o)

< 37w, (3.10)
Integrating from 0 to ¢ yields
! 2 2
[l < KwolP (3.11)

where § = 1/(2k) > 0.
Now we take the L*-inner product of (2.4) with —w,.,

1 1 1 1
—/ WiWxy dx + e/ wixdx — Wd/ WyeWyx dx —/ WWwewyey dx = 0.
0 0 0 0

(3.12)
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The estimation of the various terms follows:

1
— / WiWxy dx
0

1
1
= —W;Wxlg +/ WxWyx dXx
0

2dt” wx(O|” + - clw(l,t)+9clw (1,1)

w,(0, 1) & I 4
+ p (cow(O, 1+ 5 w(0, 1) +9cow (0,2)
=53 w=(1,1) + 18c16w (Lig)+ e w*(0, 1)
1 4 2
+ 18coew 0,2) + [lwx(D)]| ), (3.13)

1 2
Wa [ o < Wllwn(l DO < 2L O + 5 DO,
(3.14)

/01 Wwawee dx < ()] /01 o] dx
< HW(I)HLoo||Wx(t)||||Wxx(f)H

- IIW Mz ()] +§-||wxx(t)ll2

s%||wx<z>u2||w(t>||§+§nwxx<r)||2. (315)

Using the notation

e 4 (2c0 + Wa)
A(t) = oW (L,6)+ 18c|ew (L,7) t W (0,1)
4 2
+18ee " @0+ wx (DI (3.16)
and substituting (3.13)—(3.15) into (3.12) we obtain

1d € 2 _ Wi 2 2 4
—— = <4 z .
5 T AD + 5w’ <=L WOl + 2wl (.17)
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and hence
A(t) < Kllw(n)l[ + Kllw(D)134(0). (3.18)
Multiplying by e we get

%(GE’AU)) < ke |[w(1) [ + 6" A + k|| w(1) [ 3 A(2)

< ke[| w5 + Kl|wl5e™ 4(2). (3.19)

By Gronwall’s inequality, we get

() < [4(0) 4 [ e wirfar OB
< [A(0) + Kl wo|2JekilF, (3.20)
Thus
A1) < (A(0) + kfwol et e~

2
< k(|lwoll5 + [lwol|3)eklwollse=et

< k| wo|[3 eklPollve=51, (3.21)
which implies
Iw(®)l| 5 < Kllwoll ¢ olise=2/2, (3.22)

This proves global asymptotic stability in the sense of the B-norm with
B(r, 1) = krek”"e=9/2, 1t also shows semi-global exponential stability.
The last estimate also guarantees that

sup max |w(x, )| < oo (3.23)
>0 x€[0,1]

whenever w(0, 0), w(l, 0), and fol wy(x,0)* dx are finite.

The existence of classical solutions follows from Theorem 7.4 in [10],
Chapter V. This Theorem establishes, for a more general quasi-linear
parabolic boundary value problem, the existence of a unique solution
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in the Holder space of functions HZ™%1*/2(]0,1] x [0, T']) for some
[>0. Since H>*H1%/2([0,1] x [0, T]) € C*'([0,1] x [0, T]), we obtain
the existence of classical solutions for time intervals [0, T'], where 7> 0
is arbitrarily large. The proofin [10] is based on linearization of the sys-
tem, and on application of the Leray—Schauder theorem on fixed points.
It is important to note that a crucial step in the proof is establishing
uniform a priori estimates for the system. These estimates are for the
Hoélder norms of solutions and hence are different from our Sobolev
type energy estimates. The Holder estimates establish boundedness of
solutions, while our energy estimates establish stability. The existence
of strong (but not necessarily classical) solutions was proved in [8]
using a different method.

4 SIMULATION EXAMPLE

It is well known (see, e.g. [2,6]) that nonlinear problems, especially
fluid dynamical problems, require extremely careful numerical analy-
sis. Typically there is a trade-off between convergence, accuracy and
numerical oscillation. This is the case in particular when the initial
data is large relative to the viscosity coefficient € in Burgers’ equation.
Higher order methods are preferred to lower order methods only when
the time and/or spatial step sizes are sufficiently small, where the small-
ness is a delicate question. It is not the purpose of our paper to find the
best approximation scheme for our problem, simply to demonstrate
our theoretical results. Our numerical simulation is based on an uncon-
ditionally stable, fully implicit scheme of second order accuracy, using
three time level quadratic approximation in time and central difference
scheme in space. The simulations were carried out on various plat-
forms using several different numerical packages (OCTAVE, SCILAB,
MATLAB), and they show grid independence for sufficiently small
time and spatial grid.

We consider first Burgers’ equation (2.1) with zero Neumann bound-
ary condition (uncontrolled system) and then the regulation error
system (2.4)—(2.7) with e = 0.1 and with initial data wo(x) = Wy(x) — Wy,
where W,;=3 and Wy(x)=20(0.5— x)>. The uncontrolled system is
shown in Fig. 1(a). The solution seems to converge to a nonzero
“equilibrium” profile, although it eventually approaches zero, which
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\-axis x-axis t-axis *-ais

(a) Uncontrolled (b) Controlled, ¢ = ¢; = 0.01

FIGURE 1 Simulations of Burgers’ equation with e=0.1.

could be seen only for £>> 1 (in fact, for some initial data, the numer-
ical solution gets trapped into this profile and never converges to zero
[2]). This unsatisfactory behavior is remedied by applying boundary
feedback, as shown in Fig. 1(b).
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