Mathematical Problems in Engineering © 1999 OPA (Overseas Publishers Association) N.V.

Volume 4, pp. 539-560 Published by license under
Reprints available directly from the publisher the Gordon and Breach Science
Photocopying permitted by license only Publishers imprint.

Printed in Malaysia.

The Effect of Loss Functions on
Empirical Bayes Reliability Analysis

VINCENT A.R. CAMARA and CHRIS P. TSOKOS*

Department of Mathematics, University of South Florida,
Tampa, FL. 33620-5700, USA

(Received 23 February 1998; In final form 9 December 1998)

The aim of the present study is to investigate the sensitivity of empirical Bayes
estimates of the reliability function with respect to changing of the loss function. In
addition to applying some of the basic analytical results on empirical Bayes reliability
obtained with the use of the “popular” squared error loss function, we shall derive
some expressions corresponding to empirical Bayes reliability estimates obtained with
the Higgins—Tsokos, the Harris and our proposed logarithmic loss functions. The
concept of efficiency, along with the notion of integrated mean square error, will be
used as a criterion to numerically compare our results.

It is shown that empirical Bayes reliability functions are in general sensitive to the
choice of the loss function, and that the squared error loss does not always yield the
best empirical Bayes reliability estimate.

Keywords: Reliability; Weibull and gamma underlying failure models;
Empirical Bayes estimates; Integrated mean square error; Relative efficiency

1 INTRODUCTION

Empirical Bayes estimation was introduced by Robbins [8]. It parallels
the Bayesian estimation philosophy except that the prior probability
distribution is unknown and not assumed. Instead it assumes that
realizations of the underlying failure model parameter have been
estimated several times before. The obtained estimates that constitute
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some past information will help us construct the prior probability
distribution empirically. Thus, the basic advantage in utilizing the
empirical Bayes technique is the fact that we bypass having to assume
the prior probability distribution function. The obtained decision
function represents a good approximation to the Bayesian decision
function [1,4,6,7].

In the early 1950s Epstein and Sobel [3] began to explore the field of
parametric life testing. Under the assumptions of an exponential time-
to-failure, they produced a series of papers [3] which were to influence
future work in reliability and life parameter estimation.

Shortly thereafter, other failure distributions, more complex than the
exponential, were used as failure models. For example, Kao [S] brought
attention to the Weibull probability distribution, while Birnbaum and
Saunders [2] suggested the gamma probability distribution.

In the present study, we shall analyze these classical and useful
failure models in the Bayesian setting, that is, we shall consider the
parameters inherent in these probability failure models to behave as
random variables.

That is, we shall consider the three-parameter Weibull and the
gamma underlying failure models that are respectively defined as
follows:

f(x;a,b,c) =

(x—a)c'lexp(—(x;a)), x>a, byc>0, (1.1)

S e

where a, b and ¢ are respectively the location, the scale and the shape
parameters, and

g(x;a,ﬁ)=mr;m)x"_lexp(—%), x>0, >0, (1.2)

where « and [ are respectively the shape and scale parameters.

For each of the above underlying probability failure models, we
shall obtain empirical Bayes estimates of the reliability function by
using the squared error, the Higgins—Tsokos, the Harris and a new
proposed logarithmic loss functions that are respectively defined as
follows.
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Squared Error Loss
The squared error loss function is defined by:

Les(R(), R(t)) = (R(1) - R(1))’,

where R(f) and R(f) represent the true and estimated reliability
functions,

R(t)=l—F(t)=1—/0tf(x)dx

with f(x) being the failure probability distribution.

The aim of this loss function is that it places a small weight on
estimates near the true value and proportionately more weight on
extreme deviation from the true value of the R(¢). It is used extensively,
and its popularity is due to its analytical tractability in Bayesian
analysis.

Higgins-Tsokos Loss
The Higgins—Tsokos loss function is defined by

L fie BB | f (k=R
Lur(R,R) =
ur (R, R) 7

This loss function has been shown to be very useful because it places
a heavy penalty on extreme over- and underestimation. That is, it
places an exponential weight on the extreme error.

-1, fi,a>0.

Harris Loss
The Harris loss function is defined by

k

R ! L , k>0.

(R R) =12 —1%

To our knowledge the properties of the Harris loss function have
not been fully investigated. However, it is based on the premises that if
the system is 0.99 reliable then on the average it should fail one time in
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100, whereas if the reliability is 0.999, it should fail one time in 1000
and thus, it is ten times as good.

Logarithmic Loss
We propose the logarithmic loss function defined by

)

The merit of this loss function is that it places a small weight on
estimates whose ratios to the true value are close to one and pro-
portionately more weight on estimates whose ratios to the true value
are significantly different from one. In the present study we shall
consider the cases where /=k =2.

!

Lin(R,R) = , 1>0.

2 PRELIMINARY RESULTS

The reliability function corresponding to the three-parameter Weibull
is defined as follows:

p Y
:1_/ E(x_a)a_lexp(—(t a) )dx, b,c>0, t>a.
o b b
@.1)

The reliability function corresponding to the gamma probability distri-
bution is given by

R(t)=1- BT a)/ exp( )dx t>0; a,6>0, (22)

where 9(/}, 1) is the incomplete gamma function.
When « is an integer, Eq. (2.2) reduces to the following expression:

R(1) = (C:Z—(:% (é) i) e /b,



EMPIRICAL BAYES RELIABILITY 543
In particular when o =1 we obtain

R(t)=¢"P, t>0. (2.3)

Consider the situation where we have k independent random vari-
ables X,X,,...,X; with the same probability density function
dF(x|6), and each of them having n realizations:

X1t X11, %21, -+ Xnl,

X2t X12, %22, .+, X2,

Xkt X1k, Xoks o+ v Xk

The Minimum Variance Unbiased Estimate (MVUE), 0}, of the
parameter 6; is obtained with the » realizations xyj, x5, . .., x,; Where
j=1,... k.

Repeatmg independently the same estimation k tlmes we obtain the
following MVUE:s for the parameters 6;s: 91, 02, ...,0

Using the 6;s and the probability dens1ty functlon of the éjs, we
obtain a smooth empirical Bayes estimate for the parameter 6. A
continuously smooth empirical Bayes estimate is computed with the
use of the s, the probability density function of the éjs, and a weight-
ing function. In this study the exponential weighting function will be
used. It is defined as follows:

0—0
g(6) = exp (— lk—_l—/31> , 0>0. (2.4)

3 MAIN RESULTS

3.1 TheThree-Parameter Weibull Failure Model

For the three-parameter Weibull underlying failure model, we shall
consider the location and shape parameters, a and c, fixed. The scale
parameter b will be assumed to have a random variable and will
correspond to the behavior of the parameter 6 as we discussed above.
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The likelihood function corresponding to n independent random
variables following our three-parameter Weibull probability failure
model can be written in the following form:

4(x,a,c|b) =exp (—% —nln(b) + (c—1) iln(xl —a)+ nln(c))
i=1
(3.1)

where

n

S, = Z(xi —a).

i=1

Therefore, if we consider the scale parameter b, Eq. (3.1) satisfies
the factorization theorem and S, is a sufficient statistic for b with its
MVUE given by

Sn
>,

b= (3.2)

Furthermore, the expected value and conditional expectation of b
are

E(b) and E(b|S,)=0b. (3.3)

The probability density function of Y= (X — a), where X follows
the three-parameter Weibull probability density function, is given by

e ] L B
1

(3.4)
= Ee_(l/b)y’ y>0; b>0.
The moment generating function of Y is therefore given by
L Ry
E(e™) = - e(1/0=1 qy
bJo (3.5)

=(1—pb)™".
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Using Eq. (3.5) and the fact that the X;s are independent, the
moment generating function of the MVUE b is given by

E(C”l;) — HE(e(ﬂ/n)(xi—a)c) _ (l _ N%) . (3.6)
i=1

Equation (3.6) corresponds to the moment generating function of
the gamma probability distribution G(n, b/n). Therefore, the probability
density function of the MVUE b conditional on b is given by

g(b,a,c|b) = (BY"'e=@/D8 5> 0; b>0. (3.7)

( )b

To determine a smooth empirical Bayes estimator of 4 correspond-
ing to the squared error loss for the realization b, we use the prob-
ability density function of b given by Eq. (3.7) and obtain

5 Sk bi([ /T (n)b7) (bi)" e (/55
1kk = = 1
SO [ /T (n)b2) (i)™ e /i

(3.8)
Z,I';] ([;k/bj)"_le—("/bj)5k
— S (B bl

Replacing b; by its MVUE b}- in Eq. (3.8), we obtain the following
smooth empirical Bayes estimate of b corresponding to the realization
bk. That iS,

5 Sl ) ek

1 .
S [1/(By)"le /b

By the same process we obtain smooth empirical Bayes estimators

for b corresponding to the Higgins—Tsokos, the Harris, and the new
logarithmic loss functions. They are given by

(3.9)

by =

L (z:, 1/6)1e” n/bnmfxb%)’ a0

Sot S\ S 1/ (8 e/t
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o = UG = e /)
3k

T SLeyra-—gewn o P G
and
. S lInly) /e
b‘”‘zexp( S LBl ) o
respectively.

The empirical Bayes estimates of the reliability function correspond-
ing to the above smooth empirical Bayes estimates of b are expressed
under the following form:

R(t,a,c|by) = exp (— Q—Z_—“)—) t>a, (3.13)
k

where b, stands respectively for by, by, by and byy.

It can be shown that the use of the above exponential weighting
function yields the following continuously smooth empirical Bayes
estimator for b corresponding to the realization b, when the squared
error loss function is used

(b n— n _
D >4 Nl >1/b e (n/8)ix~1b=b /& '/S]db

e max(? (3.14)
Z'= f 0 l/bn]e_ (n/b)b g~ [1b—b;|/k=117] db

1 mm(bj)

By the same process we obtain continuously smooth empirical Bayes
estimates of » using the Higgins—Tsokos, the Harris and the new
logarithmic loss functions. They are given by

max . (1/8)be a6~/
~ S ;(b’) 1/ b)e ib=(/B)beg—lb=b1/k "] gy

b2k =In max( b P 2 " ) e I/S] (315)
J - n
> fmm (1/bm)e~/2b=(n/b)big= db
_ Sk e (1 — b)Jem bbbl g
by = ———mn®), ., (3.16)

Z— f;ll‘:lx [1/67(1 — b)]e _(n/b)gke_“b_l;jl/k_l/s]db
max(b;) # 1, min(b)) # 1,
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and
~ E_ fmax b) (In(b)/b")e~ (n/b)by—[|b—b;| /K /5] db
bax = exp mmmax 15 -
Z— fmmb)( /b")e —(n/b)bi—[1b=B;1/k="/5] 4p

respectively, where j=1,2,... k.

The empirical Bayes reliability estimates corresponding to the above
continuously smooth empirical Bayes estimates of b are expressed
under the following form:

R(t,a,c| gk) = exp (—— (¢ ~ a)c> , t>a, (3.18)

by

where Ek stands for Zlk, Z;k, Z3k and Z4k, respectively.

3.2 The Gamma Failure Model

The likelihood function corresponding to » independent random
variables following our two-parameter gamma underlying failure
model can be written as follows:

e(x alﬂ) = e~ (1/B)S,—naln( ﬂ)e a— I)E n(x;)— nln(l"(a)) (319)
where

= Z Xi. (3.20)

i=

Thus, Eq. (3.19) satisfies the factorization theorem and S, is a suffi-
cient statistic for the scale parameter 8 and its MVUE is given by

§ o izt X (3.21)

no

Furthermore, we have

E(®) =B and EQB|S)) =5 (3:22)
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The moment generating function of Bis given by

E(e"?) = HE (erilney = ( )_m. (3.23)

Equation (3.23) gives the moment generating function of the gamma
probability distribution G(rna, B/na). Therefore, the probability den-
sity function of the MVUE, 3, conditional on f3, is given by

(na)na

g\na—1,—(ne/B)B 3
Sy O 'e , B>o. (3.24)

h(B, | B) =

When we use the squared error loss, an empirical Bayes estimator
for the scale parameter (3 corresponding to the realization [ is
obtained using the following expression:

i1 Bl(na)" /T (na) 1] (B)" e (/0
S [(me)™ [T (na) 511 (Bi)"~ e/ A~
Replacing 3, by the corresponding MVUE Bj in Eq. (3.25), a smooth

empirical Bayes estimator for the scale parameter 3 corresponding to
the realization fy is given by

Bk = (3.25)

By = Sall/(8)™” 1]e”(""’/"’)ﬂ"
St/ (By)" e/ -

(3.26)

By the same process we derive smooth empirical Bayes estimates for
0B corresponding to the Higgins—Tsokos, the Harris and the new
logarithmic loss functions. They are defined by

1 Sk L [1/(B) e et BBechy
R (Zj;l[l/(ﬂ})"ﬂe T (6.27)
k BVl (] _ Gyleme/BB
53k221=1[1/(ﬁ.1) (1-B8)le b1 29

S 1/(B)™ (1 = By)letre A
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and

(T In(B) el
ﬁ4k—exp( Ejzl(l/ﬂ}'a)e i) B; >0, (3.29)

respectively.

Empirical Bayes estimates of the reliability function are therefore
obtained by replacing ( by its above smooth empirical Bayesian
estimates. Thus we can write:

(e 1/5e)

R(t9a’18|13k): 1 - F(Oé)

, t>0;, a>0, (3.30)

where §; stands for By, Bar, B3 and [y, respectively.

Considering the squared error loss, and the exponential weighting
function, we obtain the following continuously smooth empirical
Bayes estimator for the scale parameter 3 corresponding to the
realization (.

Elkk
ka lfnn:;x o Bl(na) na/F(”a)ﬁm](ﬂk)na 1e—(na/B)Beg[18-B1l /K17 d8
S fn‘:’;’zﬂ@)[ 10)"™ |T(ne) 372 (Be)"~ e~/ Pre-18-B1/k%) 4 g
Z* f'nn?n?g")( Jpra=tye=(na/Dhe—lI5-A1/k"] dﬁ (3.31)
S fn“l‘;’zg% (1/Br)e-(ne/BB-1-BI/E/) 4g

By the same process we obtain empirical Bayes estimators for the
parameter  corresponding respectively to the Higgins—Tsokos, the
Harris and the new logarithmic loss function. They are defined as
follows:

< 1 POl fm;’zﬂﬁf (1/312)e 5=/ BA—[1B-A1/k™) 4 g
ﬂzszl +/2 n Z max (%) (1 ﬂna) —f28—(nr/ B)Br—I18—BG| /k=1/5] g
fmm / 3

(3.32)
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~ Z~ fr:::z:; 1/ﬁna 1 ]e —na/B)Bi—(18-Bil/k/5) dﬂ
3k =
Z_ f:'?‘?(ﬂ@ l/lgna 1(1 — )]e (—na/B)Be~118- B /k=/5) d,@
max(f3) # 1, min(3) # 1, (3:33)
and
~ Z— fmaXﬁ, /Bna) —(na/B)Be—118-5| /K1) d,B
Bak = exp P mmmax(ﬁ (n) B) (18—l /k=115]
j —(\na, —[(8-6; —-
Z =1 min(, (l/ﬁna) k dﬁ
(3.34)
respectively.

Replacing B by the above continuously smooth empirical Bayes
estimates for the realization (3, in Eqgs. (2.4), we obtain empirical Bayes
reliability estimates given by:

e, 1/ i)

R(t,a, | B) =1— O

t>0; a>0 (3.35)
where ﬁk stands for 51 PR ﬁzk, 53;( and 54/(, respectively.

3.3 Relative Efficiency

In Bayesian estimation the popular loss function that is commonly
used is the square error loss function. The reason that scientists use
this loss function is because of its analytical tractability. In the present
study, we shall investigate the robustness of the square error loss
function in empirical Bayes reliability estimates when it is challenged
by the Higgins—Tsokos, Harris and the Logarithmic loss functions. To
accomplish this objective, we shall use the concept of relative
efficiency. Relative efficiency is defined as the ratio of the integrated
mean square error, IMSE, of the empirical Bayes reliability estimate
using one of the challenging loss functions to that of the mean square
error loss function, where

IMSE = / " (Relt) - R()* dt.
0
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Thus, the relative efficiencies corresponding respectively to the
Higgins—Tsokos, Harris and our proposed logarithmic loss function
are defined as follows:

IMSE (R (1))
IMSE (Rgsg) (1))

EFF(HT) =

_ Jo (Regm(1) — R(’))z de. (3.36)

57 (Rese) (1) — R(2))” dt

_ IMSE(Req) (1))
IMSE (Rgs) (1))

_ o (Regny (1) - R()) de
Jo° (Rese) () — R(t))zdt

EFF(H)

(3.37)

and

_ IMSE(Rgn) (1))

_ Jo (Reqn (1) — R(’))zzd’, (3.38)

ng(RE(SE)(t)—R(t)) dr

4 NUMERICAL SIMULATIONS

Monte Carlo simulation has been used to generate information from
the three-parameter Weibull W(a=1,b=1, c¢=2) and the two-param-
eter gamma G(6= 1, 8= 1) probability distributions.

From each of the above underlying failure models, three sets of
thirty failure times each have been randomly generated to obtain three
minimum variance unbiased estimates for the scale parameters b and
B. Empirical Bayes estimates for the reliability functions have been
obtained and compared using the concept of relative efficiency.
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41 The Three-Parameter Weibull W (a=1,b=1, c=2)

For the three random samples of size 30 that have been generated, the
corresponding MVUE of b are:

by = 1.1408084120, b, = 1.0091278197, b3 = 0.9991267092.

In Table I we present the various empirical Bayes reliability esti-
mates under study, along with the relative efficiencies as defined above.

Note that REbl(SE)A(z)’ IiEb2(SE)(I)A, REbl(HT)(I)’ REbZ(HT)(t),
Rev1(a) (1), Revagy (1), Revign)(f) and Rewoany(f) correspond to the
empirical Bayes reliability estimates obtained with smooth and con-
tinuously smooth empirical Bayes estimates of » when the squared
error, the Higgins—Tsokos with fi =f, =1 and f; =2, f, =1, the Harris
and the new logarithmic loss functions are used, respectively.

In Table II we present for certain units of time, ¢, the actual
empirical Bayes estimates of the reliability under different situations.

Note that the above empirical Bayes reliability estimates are good
estimates of the true reliability function. These results are illustrated
by the graphs in Fig. 1.

4.2 The Gamma Failure Model G(1, 1)

Similarly, three random samples of size 30 were generated for the
gamma probability distribution with =1 and =1 and the MVUE
of B were calculated. That is,

Bi = 1.009127916, 3, = 1.140808468, (33 = 0.9991268436.

In Table III we present the different empirical Bayes estimates of the
reliability functions under study, along with the relative efficiencies
with respect to the best empirical Bayes reliability estimate.

Note that  Rggi(sg)(?), kEﬁz(SE)(t); Regium) (1), Repaqur)(2)s
Regiu)(?), Repowy(f), Repin)(f) and Rggyn)(f) correspond to the
empirical Bayes reliability estimates obtained with smooth and con-
tinuously smooth empirical Bayes estimates of # when the squared
error, the Higgins—Tsokos, the Harris and the new logarithmic loss
functions are used, respectively.

In Table IV we present for various units of time, ¢, the numerical
estimates of the empirical Bayes estimates of the reliability function.
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FIGURE 1 True reliability and empirical Bayes reliability estimates for the Weibull dis-
tribution, with (a) smooth and (b) continuously smooth empirical Bayes estimates of b.
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FIGURE 2 True reliability and empirical Bayes reliability estimates for the gamma dis-
tribution, with (a) smooth and (b) continuously smooth empirical Bayes estimates of (.
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Note that these empirical Bayes estimates corresponding to the two-
parameter gamma underlying failure model are good estimates of the
true reliability function. This is well-illustrated by the graphs presented
in Fig. 2.

5 CONCLUSION

In the present study we have obtained smooth empirical Bayes
estimates and continuous smooth empirical Bayes estimates of the
reliability function of the three-parameter Weibull failure model and
the gamma probability distribution under four different loss functions.
The four loss functions that were used are: the mean square error, the
Higgins—Tsokos, the Harris, and a new logarithmic loss function that
we propose. The analytical expressions of these estimates are quite
complicated; however, one can easily computerize them for implemen-
tation. We employed the concept of relative efficiency to compare our
empirical Bayes estimates using the popular mean square error loss
function with the other three challenging loss functions.
Based on our numerical simulation, we can conclude the following:

(i) The obtained empirical Bayes reliability estimates are good
estimates of the true reliability function.

(i) Empirical Bayes reliability estimates are in general sensitive to the
choice of the loss function, for both the three-parameter Weibull
and the gamma underlying failure models.

(iii) Empirical Bayes reliability estimates are also sensitive to the
method used to approximate the prior empirically.

(iv) Empirical Bayes reliability estimates corresponding to the squared
error loss function do not always yield the best approximations to
the true reliability function. In fact, the empirical Bayes estimates
obtained with the Higgins—Tsokos, the Harris and our proposed
logarithmic loss functions are sometimes equally efficient if not
better.
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