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Nonlinear nonautonomous retarded systems with separated autonomous linear parts
and continuous nonlinear ones are considered. It is assumed that deviations of the
argument are sufficiently small. Absolute stability conditions are derived. They are
formulated in terms of eigenvalues of auxiliary matrices.
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1 INTRODUCTION AND STATEMENT OF THE RESULT

Stability of nonlinear differential-difference systems has been dis-
cussed by many authors (see [1-3], and references given therein). The
basic method for the stability analysis is the Lyapunov functionals
one. By this method many very strong results are obtained. But finding
Lyapunov’s functionals is usually difficult. In [4] (see also [2, p. 111])
an explicit absolute stability criterion for a class of retarded systems
was derived. It is formulated in the terms of the eigenvalues of the
characteristic matrix-valued functions. That result was further devel-
oped in [5].
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The present paper is devoted to a class of nonlinear nonautonomous
differential—difference systems having sufficiently small deviations of
the argument. We will obtain absolute exponential stability conditions
in terms of eigenvalues of auxiliary matrices. These conditions allow
us to avoid the analysis of quasipolynomials. There have been many
stability conditions for nonlinear systems with sufficiently small delays
in recent years usually in the category of “robust stability” for time-
delay systems (e.g. [6,7], and references therein). Besides, only systems
with constant discrete delays are considered. Below we will consider
systems with arbitrary (time-dependent and discrete, in general)
delays.

Let C" be a Euclidean space with the Euclidean norm ||.||c». More-
over, C([a, b], C") is the space of continuous functions defined on the
real segment [a, b] with values in C" and equipped with the norm

IVl cgap.cry = sup vl (v € C([a, 8], C).
a<t<b

In addition, let L*([a, b], C") be the space of n-vector-valued functions
defined on [a, b] with values in C" and equipped with the norm

b 1/2
Mlisguncr = | [ 1O dt] (v € L(a,B], C").
a

Let n<oo be a positive constant. As usually, for all + > 0 and
x € C([0, ), C"), x, is defined by the relation

x@=xO+1), -n<6<0,

cf. [1, p. 36), [2, p. 19]). That is, for any x € C([0, 00), C"), x, is some
function from C([—n, 00),C").
Consider in C” the equation

(1) = iAkx(t —h)+Ftx) (>0, x=dx/ds),  (L1)
k=0

where 4, (k=0,...,m) are constant matrices,
0="hy < hy <"-<hm=77

are numbers, and F continuously maps [0, co) x C([—n, 0],C") into C".
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It is assumed that for every u € L*([—n, 00), C") N C([—7, 00), C"), the
inequality

00 1/2
IEC, ua)ll 2 (0,00).0m = [/0 IF(e u( Dl de | < gl 2go0.cn

(1.2)

is fulfilled. For instance, let there exist constants b;>0 and ¢; > 0
(j=1,...,m<0), such that the relation

1R )l < S gt — hy(@)er for all w € L2((—7, 00), C)
k=1
(1.3)

holds, where h;(f) (j=1,...,m) are differentiable scalar-valued func-
tions with the properties

1—hi(t)>b;>0 and 0<HK()<n (t>0,j=1,...,m). (1.4)

Then by Proposition 8.1.2 of [8], condition (1.2) holds with
q:qubj_l/z. (1.5)
j=1

Take the initial condition
x(t)=®(t) for —n<t<0, (1.6)

where ®(¢) is a given continuous vector-valued function defined on
[=n,0]. 4 solution of (1.1) is an absolutely continuous vector-valued
function x:[—n,00)— C" which satisfies that equation over R, :=
[0,00) almost everywhere with a given initial condition (1.6). The
solution existence is assumed.

DEefFINITION 1.1 We will say that the zero solution of (1.1) is
absolutely exponentially stable in the class of nonlinearities (1.2) if
there exist positive constants N and € independent of the specific form
of the function F (but dependent on g) such that for any solution x()
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of (1.1) with an initial function ®, the inequality
IX(Dllcr < Nexp[—ef]|| @]l ¢-po,cry (£ 0)

is fulfilled.

Let A4 be an n x n-matrix, and let \(4) (k=1,...,n) denote the
eigenvalues of A including with their multiplicities. The following
quantity plays an essential role hereafter:

g(4) = (V*(4) - ZIA @P)'"2,

where N(A) is the Hilbert—Schmidt (Frobenius) norm of A4, i.e
N*(A) =Trace(4A4"). The following properties of g(4) are proved in
[8, Sections 1.1 and 1.3]: g%(4) < N*(A4) — | Trace 42|,

g(4) < \/1/2N(A* — 4) and g(A4e'” + zI)
= g(A4) for every T € R, z € C. (1.7)

Here and below, [ is the unit matrix. In [9, p. 185], g(A4) is called the
deviation from normality of A4, since g(4) =0 if 4 is a normal matrix,
i.e., if AA* = A*A. Further, set

m m
=Y A and Vy=) kAl
k=0 k=1

Everywhere below it is assumed that A is a Hurwitz matrix. Denote

a(d) = max ReMi(4), w(d) = max [ImX (4)],

and

AN g4

The aim of this paper is to prove the following.
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THEOREM 1.2 Let the condition
[(0?(A) + *(4)?V, + gIT(4) < 1 (1.8)

hold. Then the zero solution of Eq. (1.1) is absolutely exponentially
stable in the class of nonlinearities (1.2).

Remark 1.3 Since Vy=h||Ai|lci+ -+ hwllAmllcn if gT(4) < 1,
then sufficently small delays provide the stability.

If Aisa normal (in particular, Hermitian) matrix. Then g(4) =0,
I'(A) = |a(A)|™", and condition (1.8) takes the form

[(@2(A) + & (4))' 2V, + glla( )" < 1 (1.9)
Remark 1.4 Theorem 1.2 is exact, and condition (1.8) cannot be
improved without additional restrictions.
In fact, let us consider the system
x(t) = Ax(t) + F(t, x(1)), (1.10)

where A is a constant Hurwitz matrix, and F continuously maps
[0, 00) x C" into C" with the property

IF(t )l < gllhllen (he €5 12 0). (L11)

Under consideration ¥, =0, and (1.8) takes the form ¢gI'(4) < 1. If 4 is
normal, then the inequality

glo(a)| ™" < 1 (1.12)

gives the absolute stability conditions of the zero solution of Eq. (1.10)
in the class of nonlinearities (1.11). Take F(¢, h) = gh (h € C). Then for
the asymptotic stability of Eq. (1.10) it is necessary and sufficient that
a(A) + g < 0. But this condition coincides with (1.12).

2 PROOF OF THEOREM 1.2

For brevity put ||.|| 220, 0),cry = ||-|| , and

o9 1/2
bl =[5 [ blia] 0 e 2RO
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Denote

co(A) = sup ||(iwl — A) || and  ¢)(4) = sup [jw(iwl — A) 7" || o
weR weR
Let us consider the equation

(1) = Eﬂi‘Akx(t — ) +f(6) (1> 0). (2.1)
k=0

LEMMA 2.1 Under the condition c, (/I) V, < 1, let fe L}([0,00), C").
Then the bound

Ixll, < 1L = ei(AVal ™ col DA+ mll @l egpoen (2.2)

is valid with a constant m, independent of ® for any solution x(t) of (2.1)
with a continuous initial function ®.

Proof Rewrite (2.1) in the form

(1) = Ax(t) + Em: Ar(x(t = b)) — x(8) + A1) (¢>0).  (2.3)

k=1

The Laplace transform of x(¢ — k) is X(\)e™** + v (\) where X()) is
the Laplace transform of x(¢), and

hk hk
(N = / e Ax(t — hy)dt = / e AP (t — hy) dt.
0 0
Thus the application of the Laplace transformation to Eq. (2.3) gives
AZ(N) = x(0) = AX(N) + > AN (e — 1)
k=1
+ W]+ F()) (AeC),

where F()) is the Laplace transform of the function f{r). Hence,

FA) = (M- A)™! Xm: Ar(e™ = Dx(A) + FO) | +e(A) (A€ ),
k=1

(2.4)
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where
e(\) = (M — A4)™! (x(O) + YZ: Akvk(/\)> .
k=1

Since |1 —e™"*| <h|w| (weR,h>0), we have

m

(A4 = iwl)™" Y~ Ax(1 — ™) (iw)]

k=1

m
< Hlw(d = iwh) ™ Nl > hicll Al on 1% (i) I £
k=1

< a(A) V)X (w)ll; (weR). (2.5)
Due to (2.4) and (2.5), it can be written
%)z < Vaer (A%l + co(AIFz + lle(iw)llz-
Hence, taking into account that ¢;(4)V, < 1, we get
I%(w)llz < (1 = Vaer(4) ™ (co(A)IFN ; + lle(iw)ll ). (2.6)
The simple calculations show that
(W)l < Al @l oo (@ €R)

and

k=1

le(iw)llz < NGl — 4) 7"l (IIX(O)Ilcn + el Akl sup ||Vk(iw)“c")

= NGl = A (12Ollcr + Vll@ll ey, cn)-
Hence,
letllz < el = 4) ™ lIZ(1+ V)@l pocn

Relation (2.6) yields
%Gz < (1= Vaei(A) ™ co( DI Fl g + mil|@ll o

Now due to the Parseval equality, we arrive at the required result.
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LEMMA 2.2 Under condition (1.2), let the inequality
C[(/i) Va+ co(/i)q <1 2.7

be fulfilled. Then for any solution x(t) of (1.1) with a continuous initial
Sfunction ®(t), the bound

Ixll < molt = (1 (A) V2 + geo(A))] ™ 1@l cyoncn

is valid with a constant my.

Proof Rewrite (1.1) in the form (2.1) with f{t) = F(t, x(¢)), where x is
the solution of (1.1). Combining the previous lemma with condition
(1.2), we easily get

Ixll, < [1 = er(A) V)] co( DI+ mll®ll eporen
<[ = @) co(Dalllxll, + 12l 2 pocn)
+mi [l c-nocn-

Consequently,
Ixll, < [1 = ei(DP2)] ™ co(Dgllxll . + mall@ll ey apen
with a constant m,. Condition (2.7) implies
[1 = ci(A)V2)] ' eo(A)g < 1.
Thus,

lxll, < (1= co(A)gll = e1(A) V)] Ymall®ll gy orc
= (1= co(A)g — c1(A)V2) ™' mol|®| oy 01.c7)-
As claimed.

LEMMA 2.3 The relations ¢y (A) < T'\(A) and

c1(A) < T(A)[?(4) +w2(/f)]1/2

are true.
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Proof By Corollary 1.2.4 of [8], for any n x n-matrix A, we have the
inequality

(4 = IX)~ for all regular A, (2.8)

o < prwu 1y

where p(4, M) is the distance between the spectrum of 4 and a complex
point A. Since A4 is a Hurwitz matrix,

p(4,iw) 2 |a(d)] (weR), (2.9)

and therefore co(A4) < I'(A).
Further, we have

IMe(A) — iw]* > () + (wk — w)?

for any eigenvalue M\i(A4) of A with Im);(4) = wy. Hence simple
calculations show that

20 F 2
max w | () — ] < a—%z—})ﬂ
Thus
_ 27 20 7
W (A,w) < a—géo%(—fl—) (weR).
Therefore according to (2.8) and (2.9),
IWIg"(A)
o — i)™ <Z ety
SRR TR S
=(a2(A)+w2(A))'/2r(A) (we R).

As claimed.
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Lemmas 2.2 and 2.3 yield

COROLLARY 2.4 Let conditions (1.2) and (1.8) hold. Then for any
solution x(t) of (1.1) with an initial function ®(t), the bound

Ixll, < mo[l = T(A)(Va(e?(4) +w*(4))"* + @) |ll -0}, e
(mo = const.)

is valid.

Proof of Theorem 1.2 From (1.1) it follows the inequality

m
5l < > Ikl orllx(e = i)l + (1Al
k=0
< Vallixllz + 1%l 2 -noy.cny) + 11l s

where

m
i=> 4l
k=0

Due to (1.2) and (1.6) this gives

1%l < (g + VO UIxlL + 12l 2(-n0,c7))-
Now Corollary 2.4 implies the relation

%l < Nill®llcg-nocry (N1 = const.).

By the trivial Lemma 8.4.5 of [8], we get

NY)
11l e(o,00,cm) < @Il NIl < N2||®]|¢(=nojcny (N2 = const.).
(2.10)

Further, substitute in (1.1) the relation

x(1) = xc(t)e™ (2.11)
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with a small enough ¢>0. Applying our reasoning above, we can
assert according to (2.10) that

IXell (=m0, €y < Nell®@ll¢—nojcry  (Ne = const.).

Hence, (2.11) yields the absolute exponential stability.

3 EXAMPLE
Let us consider in C” the equation
x(1) = Aox(2) + A1x(t — n) + f(¢t, x(2), /071 T(¢t,8)x(t — s)ds), (3.1)
where the function £ [0, co) x C*" — C" has the property
I/t wller < qollAller + qilwllen (Aw e C220),  (3.2)

and the matrix-valued function 77(z,s) defined on [0, 00) x [0,7]
satisfies the inequality

n
mr = sup/ |T(2, )| cn ds < o0. (3.3)
>0 JO
In the considered case

F(t, x;) = f(t,x(2), /On T(t,s)x(t — s) ds).

Taking into account, that
2
dt

/
S/o (/ ”T(””“c"llx(t—s>nc"ds) d

n 2 00
<sup( [N ds) [T X1 dt = m iy

n

/” T(¢,5)x(t — s)ds
0
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we easily get the inequality

[/ooo St u(t), /On T(t, s)u(t — s) ds) ;dt] 1/2

< gollull 20,001 ¢y + grmrllul 12— 00,01

for any ue L*([—n, ), C")N C(—n, o), C"). Hence it follows that
(1.2) holds with

F(t,u,) :f(t, u(t), /0" T(¢, s)u(t — s) ds) and g = q9 + qimr. (3.4)

Clearly, under consideration
A= Ao+ 41, Va=n|4i|c (3.5)

Now Theorem 1.2 yields the following result. Let 4, ¢ and V, be
defined by (3.4) and (3.5). Let condition (1.8) hold. Then the zero
solution of Eq. (3.1) is absolutely exponentially stable in the class of
nonlinearities satisfying conditions (3.2) and (3.3).

4 CONCLUDING REMARKS

We have derived the sufficient absolute stability conditions for Eq. (1.1)
in the class of nonlinearities (1.2) in terms of the eigenvalues of the
matrix 4. These conditions are exact according to Remark 1.4. As it
was mentioned, the stability conditions suggested in [6,7] can be
applied to systems with constant discrete delays only, while Theorem
1.2 allows us to investigate systems containing time-variant and
distributed delays (see relations (1.3) and (3.4) above). Consider now
the equation

X = Aox(t) + F(x(t — h)), 4.1)
where Ay is a Hurwitz matrix, F: C" — C" satisfies the inequality

l1F(2)||cn < L|z||ev (L = const.,z € C").
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In the paper [10] among other very interesting results the following
stability condition for Eq. (4.1) is established:

A(4p) +L <0, (4.2)
where
A(do) = lim (I11+ hdol) — 1)/
with some norm || - || in C". But if A, is not dissipative with respect to

that norm, condition (4.2) cannot be applied. At that same time, as the
example shows, Theorem 1.2 gives the stability conditions for (4.1) if L
is sufficiently small.
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