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1 INTRODUCTION

The purpose of this paper is to review and extend the previous
investigation (Bush [1]) of the structure of a one-dimensional steady
shock wave in the hypersonic limit (i.e., for the case of very large
values of upstream Mach number) by means of an analysis based upon
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the Navier-Stokes equations' for a perfect gas with constant specific
heats, Sutherland-law longitudinal viscosity, and unity longitudinal
Prandtl number.

The problem of determining the shock structure by means of the
Navier-Stokes equations has been studied extensively by various
authors (e.g., see the review articles of Illingworth [3] and Hayes [4]).
There exist analytical (or closed-form) solutions for the (physically
realistic) case of constant total enthalpy (which is relevant when the
longitudinal Prandtl number is unity) for the longitudinal viscosity,
u”, proportional to powers of the (absolute) temperature, 7", for
n=0, %, and 1. (Kinetic theory predicts that n:% for hard-sphere
molecules and »=1 for Maxwellian molecules.) Since Navier-Stokes
solutions for large Mach numbers depend strongly on the viscosity-
temperature relation, the Sutherland viscosity law, which, over a
wider range of temperatures, provides a better fit to the data than do
the power laws, is used in the present analysis, as it was in [1].

Work has been done to obtain approximate Navier-Stokes solu-
tions for the structure of shock waves when the (constant) upstream
Mach number, M;=u;/(yRT;)"?, approaches infinity, and the
Newtonian parameter € = (v — 1)/(y+ 1), is an order-unity constant.

Sychev [5] has investigated the shock structure of a perfect gas with
W' oc T for the case of M7! =0, e ~O(1). In the solution obtained by
Sychev, the velocity prescribed at upstream infinity is actually
reached at a finite value of the spatial coordinate. Upstream of this
point, a constant velocity, equal to the prescribed upstream value, is
assumed; this leads to a discontinuity in the derivative of the velocity.
Thus, Sychev’s solution is not uniformly valid over the entire range
of the shock.

In the previous study [1] of the “inverse” shock-structure problem
for a perfect gas obeying the Sutherland viscosity law, the difficulty
of the upstream nonuniformity is overcome through the introduction
of two distinct asymptotic expansions that characterize the flow as
M, — 00, e~0O(1) and/or § = (1 —g)/eM? — 0, uy=¢g(1 + )~ O(1).
The first of these, the principal expansion, is valid throughout the
portion of the shock where p”/uf, through its dependence on 77T},

" The validity of an analysis of the shock-wave structure based on the Navier-Stokes
equations, especially for the case of very high Mach numbers, is still open to question
(e.g., see Liepmann et al. [2]).
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tends to infinity as M, tends to infinity. The second one, the
boundary-layer expansion, is valid in an upstream portion of the
shock where T/T; and p”/u| are of order unity even as M, tends to
infinity. The first two terms of each expansion are found, and the
requirements for the matching of these expansions in an intermediate
region of common validity are determined. The solution of Sychev,
except for the difference in the viscosity law, corresponds to the
leading term of the principal expansion of Bush.

Here, the hypersonic shock-structure analysis of Bush [1] is reviewed,
employing the classical definition of the origin of the shock, namely,
x=0 when u=u0:%(u1+u2), rather than the definition employed
previously. Thus, the leading-order principal-expansion solutions,
obtained in Section 3.1 for (u; —u) and (u—up) of order unity as
8 oc M7? goes to zero, are those of the original analysis, with the
important exception that the constants of integration, under the
classical definition of the origin, are determined to be nonzero
quantities.

These principal-expansion solutions (for the coordinate as a
function of the velocity) are found to be not uniformly valid as the
upstream and downstream terminal states are approached, i.e., as
(uy —u) and (¥ —u,) go to zero, as § goes to zero. The upstream
nonuniformity of the principal expansion was recognized and
addressed through the introduction of the boundary-layer expansion
in the original analysis of Bush; the downstream nonuniformity was
recognized but was not addressed.

In Section 3.2, an upstream expansion, which corresponds closely
to the original boundary-layer expansion, is constructed to remove
the upstream nonuniformity of the principal expansion. However, it
is determined that the leading-order upstream-expansion solutions
are, themselves, not uniformly valid as the upstream terminal state is
approached. The upstream nonuniformity of the boundary-layer-
expansion solutions was not addressed in [l1]. A far-upstream
expansion is presented in Section 3.3. The leading-order solutions
for this far-upstream expansion match to those of the upstream
expansion and yield a uniformly valid approach to the upstream
terminal state.

The solutions of the downstream expansion, constructed in Section
3.4, both match to those of the principal expansion, removing the
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downstream nonuniformity of this principal expansion, and provide
a uniform approach to the downstream terminal state.

2 STATEMENT OF PROBLEM

In this determination of the structure of a hypersonic normal shock
wave, it is taken that (1) the flow is steady and one-dimensional, with
the spatial coordinate denoted by x and the corresponding velocity
component by u; (2) the flow quantities go from uniform state () at
upstream infinity (x — —oo) through the shock wave to uniform
state (2) at downstream infinity (x — +o00), with the terminal uniform
states related by the Rankine-Hugoniot conditions; (3) the Navier-
Stokes equations are valid, with the viscous stress and heat flux,
respectively, given by 7= p"(du/dx) and g = — k(dT/dx); (4) the fluid
under consideration is a thermally and calorically perfect gas, so that
p=pRT, and the internal energy and enthalpy, respectively, can be
expressed as e=c,T and h=c,T, where ¢, and ¢, are the constant
specific heats, with v=(c,/c,), the ratio of the specific heats; (5) the
(realistic) constant-total-enthalpy case is relevant, wherein the con-
stant longitudinal Prandtl number, Pr” = (u"c,/k), is equal to unity;
(6) the longitudinal-viscosity and thermal-conductivity coefficients
obey the Sutherland law, ie., (u'/u!), (k/ki) = (T/T)"*{(1+6)/
[146(T/T;)™"]}, 0 being the Sutherland parameter; and (7) the
upstream Mach number, M, =u;/(yRT;)"?, goes to infinity, and the
Newtonian parameter, ¢ = (v — 1)/(v+ 1), is of order unity, such that
§=(1—¢)/eM? goes to zero.

Under the preceding restrictions, if the following nondimensional
quantities are introduced:

_ p1iux
5_ I‘Llll > (21)
_u o (=1 _
uza, with i1} = 1, uz—(7+1){ +(7—1)M|2] =¢e(l +9),
T:T(a):%:[1+(—7;21)—M—‘2(1—a2)]:[1+6—’(1—a2)],
el (0T (4o 61—
A=) = =g re e -]

(2.2)
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then the “inverse” boundary-value problem of Bush [1] for the
hypersonic shock structure is

e (1+e)a (4o +st—a)? 23)
di  (-a)a-[1+6)]) [1+6)+61(1—-a2)] ° ’
E— —00 asu—a =1, (2.4a)
E— 400 asu— il =¢(l+0), (2.4b)
M= —" oo e=07D o).
S T R R (2.5)
2 (1—¢)

_ 0, @ =e(1+8) ~0(1).
(v— M2 eM? iy =e(l+6)~0(1)

3 HYPERSONIC ASYMPTOTIC EXPANSIONS
To find the shock structure for (non-Newtonian) hypersonic flow, it
is necessary to obtain the solution of (2.3), subject to the (farfield)

boundary conditions of (2.4), for the limits of (2.5). Expansions in
terms of § are constructed below.

31 The Principal Expansion®

For 6 — 0, i ~ O(1) and (1 — @), (1 — i1) ~ O(1), such that

P[5 [ ] o
=)0 m{l‘ -3 *0([(1—5 ) 2)}*“”

with the introduction of the coordinate

51/2

77=(—1“_;?)'(‘1—_|_—9—)§, (3.1)

2Here, i, =¢(1+6) appears as an order-unity parameter; its expansion in § is
irrelevant for the method of solution employed.
3 This principal expansion analysis follows that of Bush [1].
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(2.3) may be expanded as

% T _a(ul):/rzz);l/_z i) {1 B (6 - _12_) [(wl—ilﬂJ " 0<[ﬁ} 2>}

(3.2)
Inspection of (3.2)* shows that n has an asymptotic expansion,
denoted here as the principal expansion, of the form

0—1/2
n(#; i, 0, 6) = [no(ﬁ; i) + 6—((1—_%))171(17; )+ - ] (3.3)
Term-by-term integration of (3.2) shows that the leading terms of

this expansion are

1+ @\ /2 -V
_ B 1= ) 1/2__ 2 - _
no—[(1+uz)005 @+0- )" - (15 2) Tog (15 )| - o
1+a\'"? i -V
_ 1
" [(1 - 17) +(1 - 172)1/2 Og(l + V)

_ _N11/2
with V= 1+l_42 ! Lf , and
-/ \1+4+u
Ay, A1, ... = consts. (to be specified). (34)
In order that n— 0 as ﬁ—>%(1 + i1,), the classical fixing of the origin

of the spatial coordinate, the constants of integration® are determined
to be

Ay, ..,

1 1
Ao :[(1 +a2)cos_1{§(1 +az)} +5{(1-m)(3 + i)}/
1/2
+ iy 1- Va
1 >0,

2> Og(l ¥ V)]

3w\ it 11—V,
. _|:(1 - ﬂz) " (1 - a%)lﬂlog 1+ 7V,

1+ 1/2
3+ )

|
|
)
N
et P
|
IR

s ceey

with ¥, = ( (3.5)

4For air, 0~0.505; nevertheless, no advantage is taken of the smallness of the
parameter (6 —1).
5In Bush [1], the constants corresponding to Ay, 4, ... are set equal to zero.
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As the upstream state is approached, # — #; = 1, and the expansion
of (3.3)—(3.5) can be written as

1
n%—{A0+A<9—§>A1+“'}

2\/§ 1/2 1 = \1,3/2

+1A@0-Y [v“/z — 31+ 3@ + - ] +- ‘},

=% o A% _, (3.6)
(I —in) (1 —in)

From (3.6), it is seen that ny= — Ay <0 for v=0. Thus, to leading
order of approximation, the upstream boundary condition is not
satisfied in the hypersonic limit. Further, with 6 >1 7 — +oo
(algebraically) as v — 0. Clearly, the solution of (3.3)—(3.5) cannot be
expected to be valid in any upstream region where v is very close to
zero; the principal expansion holds only for A/v < 1. It is necessary
to identify expansions that are valid in the upstream part of the
shock. The upstream and far-upstream expansions that comple-
ment the principal expansion are presented in Sections 3.2 and 3.3,
respectively.

As the downstream state is approached, #— i, =¢e(1 4+ 6) ~ O(1),
and the principal expansion yields

~ - (1 +ﬁ2>1/2
n=-u

with v =

1 —up
(0-1/2)
x{[logw—l—PO-l— ] A(1+a2) logw+ Py +--]+ ,
. _(u——ﬂz) _ 6
w1thw—(1_a2)—>0, A_(l——ﬁz)_)()’ and
Py, Py, ... = consts. ~ O(1). (3.7)

Although 79— +oo (logarithmically) as w— 0, the behavior of 7,
is such that the principal expansion 1is not valid for
z=Alog(w ™ ")= — Alogw~ O(1) as w— 0 and A — 0. The uniformly
valid downstream expansion, necessary to complete the uniformly
valid picture of the shock structure, is presented in Section 3.4.
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3.2 The Upstream Expansion®

The foregoing principal expansion indicates that it is valid for
(1—@#)>46, but it is not valid in an upstream region where
(1 — @) ~0(6). To study the solution in such an upstream region, a
new independent variable, s, defined by

s:%:(lg‘_‘)wou) for (1 — @) — 0 and § — 0, (3.8)

is introduced. In turn, for s~O(1) and §—0, such that T =
[(1 + 25) — 85%] ~ O(1),..., and for n defined by (3.1), (2.3) may be
expanded as

gg _ 61/2 (1 + 2s)3/2

ds (1 =) s((1+6) + 2s)

s 3 s 52
x {1 +5{(1 “m) 20142 ((1+0) +2s)] + 0(52)}' (39)

Term-by-term integration of (3.9) yields the following upstream
representation for the solution:

(6-1/2)
(1 — ﬁz)

51/2
(1 —1)

{Go+ 8¢+ 0(8%)},
(3.10)

77=—{A0+(5 A1+0(62)}+

where

1/2
‘0 [ (1+29) M) Og{(1+2s)‘/2+1

263/ 1425\
+(1+6)cot“'{( ; S) +(1— )G,

s 4297 11+l 32 1/2
G = 2((1+0)+2S)+2 T 3)(1+2s) 0(1 + 2s)

g2 got! (”2“)1/2 S
0 (1——52)'/2

with Cy, Cy, ... = consts. (to be specified). (3.11)

¢ This upstream expansion corresponds to the boundary-layer expansion of Bush [1].
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Downstream, as s — 0o, (3.10) and (3.11) produce

ne—{do+ A0 DA+ } +AYV{Co+ AC + -}

B | eI

— AL = 5m)s 4+ 40 - D1+ 3m)s 2 4] 4+ } (3.12)

A comparison of (3.6) and (3.12) indicates that the principal and
upstream expansions match in an intermediate region, where v —0
and s=v/A— o0 as A—0, if Cy, Cy,...=0.

Upstream, as s — 0, from (3.10) and (3.11), it is found that, with
CO’ Cl»"':09

ne—{do+ A0 DA+ }+AYV{By+ AB + -}

Al 1+36
1/2{|:10gs+( + )S+]+A[ﬁ2s+]+},

+(1 +6)(1 — ) (1+06)
. _ 1 2632 cot™1(971/2) —log2
with By = (i _a2)1/2 [ 1+0) ],
- —if(li:%z))‘ﬁ (0= +6 et 02)], ... (313

This result indicates that the upstream boundary condition is not
satisfied uniformly in this upstream region, even though (;,— — o0
(logarithmically) as s — 0.

3.3 TheFar-Upstream Expansion

An examination of (3.13) suggests that the upstream boundary
condition can be satisfied uniformly in a far-upstream region,
characterized by the velocity variable

t=A"?log(s™") = —A?logs ~ O(1) fors— 0and A — 0.
(3.14)
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For ¢~ O(1) and A — 0, such that T = [1 + O(exp(—=A~/?))| = 1,...,
the shock-structure equation, (2.3), subject to (3.1), reduces to

3_7‘7:—(1%)(11 ->1/z{1+0(exp<‘A"”2>)}' (3.15)
—

Integration of (3.15), taking into account the results of (3.13), yields

+ AY2By — A6 -1)4,

t
n= {_ [(1 o)1 —1‘42)1/2 + Ao

_|_A3/2Bl_|_...}_ (3.16)

This representation of the solution uniformly satisfies the upstream
boundary condition, i.e., n— —oo as t— +oo and A —0 (and/or
#—u; =1 and § — 0). The upstream behavior of the “direct” solution
of the shock structure is

(u—in) . -2 _ 7
(1—122)_1 Aexp{ ATV K(n, A)}(1+ ) — 1
asm, =—-n—ooand A — 0,
with 4 =~ {A() — A1/280+A(9—%)A1 — A3/2Bl + ] ~ 0(1),
K=[1+6)(1—@)"*~o(1). (3.17)

3.4 TheDownstream Expansion

Directing attention to the downstream behavior of the shock, based
on the results of (3.7), here, it is taken that there is a downstream
region, characterized by the velocity variable

z=Alog(w™') = —Alogw ~ O(1)

(fl—ﬁz) )
as = —0 and A=
" (1 — ) (1 —1m)
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In the limit of z~O(1) and A —0, such that T= A'[(1 + i)+
A+ O(exp(—A71))] — oo, ..., (2.3), subject to (3.1), yields

d—Z’ﬁ’A"ﬁszZi)l/z{l_A[%] +} (3.19)

Integration of (3.19), taking into account the results of (3.7), produces
the downstream expansion

ne A—lﬁz(i ha az)l/z{z[l N G752 N ]

— i (1+1u)
(0-1/2)
freeat, ) om

It is seen that this representation of the solution uniformly satisfies the
downstream boundary condition, i.e., x =An — + oo as z — +oo and
A — 0 (and/or it — iy =€(1 +6)~O(1) and 6§ — 0). The downstream
behavior of the “direct” solution of the shock structure is determined
to be

(17—172)
(I—L_lz)
asng=mn— 400 and A — 0,

_\ 172 _
with P o~ 172<1—+'—12) [PO — Awpl + .- :l ~ 0(]),

= exp{—L(n— P)}(1 +--) = 0

1 —u (14 i)
11—\ 0—1/2)
L=a_2<1+a2) [1+A(1—+52)—+.-]~0(1). (3.21)

4 RESULTS AND DISCUSSION

The foregoing asymptotic analysis for the model boundary-value
problem of (2.3)—(2.5) reveals that a four-region structure is required
in order to obtain uniformly valid solutions from the upstream state
to the downstream state. The (near-downstream) principal and the
(near-)upstream regions, of Sections 3.1 and 3.2, respectively, must
be complemented by the far-upstream and the (far-)downstream
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FIGURE 1 Schematic diagram of the four-region shock structure.

regions, of Sections 3.3 and 3.4, respectively. The details of this
structure are shown schematically in Fig. 1.
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