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An approach to the optimum design of structures, in which uncertainties with a fuzzy nature
in the magnitude of the loads are considered, is proposed in this study. The optimization proc-
ess under fuzzy loads is transformed into a fuzzy optimization problem based on the notion of
Werners’ maximizing set by defining membership functions of the objective function and
constraints. In this paper, Werner’s maximizing set is defined using the results obtained by
first conducting an optimization through anti-optimization modeling of the uncertain loads.
An example of a ten-bar truss is used to illustrate the present optimization process. The
results are compared with those yielded by other optimization methods.
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1. INTRODUCTION

The optimization of structural behavior is usually performed for specified
loading conditions. However, in most practical situations loads are uncer-
tain, and the designer must contend with the effects of this uncertainty.
Most researchers favor the use of probabilistic models to account for this
uncertainty, and employ probabilistic structural optimization for the design
process. The structure is hereby optimally designed so that the probability
of failure is below any pre-specified threshold. Hilton and Feigin [1]
appear to have been the first to use probabilistic optimization, and their
work has been followed by numerous studies.
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It was recognized since then that uncertainty is not the same as random-
ness, and the notions of probability does not exhaust our notions of uncer-
tainty. One alternative to randomness for describing uncertainty is
fuzziness. Indeed, imprecision is a property of physical phenomena. It
arises from the intrinsic behavior of human reasoning and natural lan-
guage, which is less specific than a numerical characterization. A fuzzy set
membership function describes the degree to which an object belongs to a
set with imprecise boundaries, while randomness deals with the uncer-
tainty regarding the probabilistic occurrence or nonoccurrence of some
event.

It is well known that in the field of design designers are often forced in
practice to state their design problems in precise mathematical terms rather
than in terms of the real world which may often be imprecise in nature. In
many cases a complex real world design problem can be divided into a
sequence of simpler sub-problems, which can be best solved by experi-
enced designers using information expressed by statements such as words
or phrases which are said to be values of given linguistic variables. The
theory of fuzzy sets is a useful tool with which these statements can be
interpreted with the use of membership functions, which express numeri-
cally the meaning of the linguistic variables. The construction of a mem-
bership function can be accomplished with the cooperation and assistance
of a panel of experienced engineers in specific areas. The resulting design
process can then be performed in a logical manner following the theory of
fuzzy decision-making to obtain a meaningful answer to the originally
complex problem.

The general framework for fuzzy optimum design follows the fuzzy
decision-making proposed by Bellman and Zadeh [2], Zimmermann [3],
Verdagay [4], Rao [5], etc. Their approach was to compute the confluence
as a fuzzy set on decision space of the fuzzy goals and fuzzy constraints.
Then the optimum design is a design which maximizes the membership
function of the resultant fuzzy set.

The objective of the present paper is to formulate the problem of the
structural optimization for the case of fuzzy load uncertainty. By defining
the membership functions of the objective function and constraints, based
on the notion of maximizing set by Werners [6], the optimization process
is transformed into a fuzzy optimization problem, which, in turn, can be
solved following the framework of conventional fuzzy decision making
theory. The first step in the process is to perform the “crisp” optimization
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to obtain the results for the use of defining maximum set. A solution pro-
cedure based on sequential linear programming is utilized, and a
well-known ten bar truss example (Haftka and Giirdal, [7]) is used to dem-
onstrate the procedure. The results are compared with those obtained by
the convex optimization and anti-optimization in our previous paper
(Elishakoff, Haftka and Fang, [8]).

2. FORMULATION

Original Problem with Fuzzy Parameters

Consider the problem of designing a structure so as to minimize an objective
function @(X), where X is a vector of design variables. The problem is for-
mulated as follows

minimize @(X)
X

1
suchthatg;(X,p) >0 j=1,...,n, M

where g; are constraint functions, p is the uncertain parameter vector and n,
is the total number of constraints.

The objective function and constraints may depend on parameters, such as
external forces, material density and allowable stresses, that are best
described as fuzzy variables, with specified membership functions. That is,
we assume that the set of parameters p describing the problem is known to
belong to a fuzzy set Cp

PEC (2)

Transformed System

While solving the present optimization problem with fuzzy parameters
involved is usually difficult and numerically cumbersome, it is suitable to
seek a somewhat “equivalent” problem where only a fuzzy objective func-
tion and fuzzy constraints instead of several fuzzy parameters are involved.
From the notion of maximizing set by Werners [6], it is possible to define the
membership functions of the objective function and the constraints, and
hence transform the original problem into an ordinary fuzzy optimization
problem.
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The “equivalent” problem in fuzzy environment, can be stated as where
the fuzzy subset G; denotes the allowable region for the constraint function
8j the bold face symbols of ¢ and G; indicate that the operators or variables
contain fuzzy information. The

mini;nize o(X)

3
suchthatg;(X) €G; j=1,...,n, ®)

constraint g; € G; means that g; is a member of a fuzzy subset G; in the sense
of Ugj(g;) 20, where u() is the membership function. The fuzzy feasible

region concerning all the constraints is defined as
S= NG (4)
j=1
The membership degree of any design vector X to fuzzy feasible region
S is given by

uX) = min {ug,[s,(X)]} )

i.e. the minimum degree of satisfaction of the design vector X to all of the
constraints. A design vector X is considered feasible provided p(X) =0, and
the differences in the membership degrees of two design vectors X; and X,
imply nothing but variations in the minimum degrees of satisfaction of X,
and X, to the constraints.

The fuzzy feasible region concerning the objective function is denoted as
T, determined by p,(X) 20, after the membership function of the objective
function He(X) is defined (which will be discussed in the next section). Thus
the optimum solution should be found within a fuzzy domain D,

D=SNT (6)
Its membership function is
up(X) = min{ue(X), min ug,[g;(X)]} ()

If the membership function of D is unimodal and has a unique maxi-
mum, then the optimum solution X* is one for which the membership
function is maximum:

up(X) = maxup(X), X €D (8)
The fuzzy optimization problem can then be solved using ordinary non-

linear programming techniques as follows:
Find X which maximizes A

max%(mize A 9)
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subject to
A < po(X)
}\‘S#gj(x)a j:1a27'am (10)
gi(X,p%) >0, i =ni,n2,-, Ny “crisp” constraints

where p0 is the mid-point value of the fuzzy set Cj, in (2), i.e. with its mem-
bership function equals 0.5,

Definition of the membership functions

In the present case of fuzzy parameters p, the definition by Werners (1984)
is extended to construct the membership functions of ¢ and g;. Let ¢:
X—R! be the objective function, R is the fuzzy feasible region of p, S(R) is
the support of R, and R; is a-level cut of R for oo = 1. The membership
function of the goal (objective function) given solution space R is then
defined as

( 1 if oX) <infeo
Ry
iﬁ‘,@“"(")
X)={ —/—— ifinfo<oX)<su 11
woX) =\ SpTine @S eX) upe (11)
S(R) Ry
0 if supo < @X)
\ S(R)

where @(X) is the objective function, II?{ ¢ is the optimized objective func-
tion from the “crisp” optimization for the loading condition corresponding

too=1; Ss(u 1‘?) ¢ is the optimized objective function from the “crisp” optimi-
zation through convex modeling of loads whose multi-dimensional bounded
load space is produced by setting o = 0. For the details of the convex mode-
ling of uncertainty, the reader may consult with the monograph by
Ben-Haim and Elishakoff [9] and with review by Elishakoff [10].
The membership functions of the constraints is defined as

where infG; denotes minimum value of the fuzzy set G; and supG; denotes
maximum value of G; with p = po. In this way, the optimization problem
with fuzzy parameters can be transformed into an ordinary fuzzy optimiza-
tion problem, which contains only fuzzy objective function and fuzzy con-
straints, from the nominal values and bounded ranges of the fuzzy
parameters.



192 J.FANG et al.

3. TEN-BAR TRUSS EXAMPLE

3.1 Analysis

1 if gj(X) < inf G;

8;X)—infG; ..
sunGi—infG: <giX)< A
ug;(X) =< supG;—infG; if infG; < g;(X) <supG;
0 if gj(X) > supG;j

with p = p° and j=1,2,- ,m

(12)

Consider the simple ten-bar truss (Fig. 1), which has been investigated
in various optimization contexts (Haftka and Giirdal [7]; Elishakoff,
Haftka and Fang [8]; Vanderplaats and Salajeghah [11]; Zhou and Roz-
vany [12]). The minimum weight design obtained by varying the
cross-sectional areas of the truss members is sought subject to the vertical
displacement constraint at joint 2, stress constraints and minimum gage
constraints of 0.1 in. The maximum allowable stress in each member is
same in tension and compression. The allowable vertical displacement of
joint 2 is 5 inches and the allowable stress is 25 ksi for all bars except bar
9, whose allowable stress is 75 ksi. The truss is made of aluminum with
weight density of 0.1 Ib/in® and elasticity modulus of 10* ksi. The bar
length L is 360 in. Joint 4 is subjected to vertical load P;, joint 2 is sub-
jected to vertical load P, and horizontal load P;. Haftka and Giirdal [7],
Vanderplaats and Salajeghah [11], Zhou and Rozvany [12] treated the
problem of optimization of the truss for a specific combination of the
loads, namely for P; =P, = 100 kips, P3 = 0. For the purpose of illustration
we consider the optimization subject to stress and displacement constraints
with fuzzy parameters of loads. Without loss of generality, the displace-
ment constraints are treated as fuzzy constraints while stress constraints
will be taken as crisp constraints. The support of p, namely when o =0,
Py, (k=1, 2, 3) are varying in the following three-dimensional box

Pl <P <P
Cp={ B,<P<P (13)
PL<P;<P{

where P and P¥ are lower and upper bounds of the load Py, respec-
tively. Note that the structure is statically indeterminate, with the degree
of indeterminacy equal to two. To determine the stresses in the bars we
employ the standard flexibility method. The unknown axial forces in the
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members are denoted N;, where i is the sequence number of the bar, i = 1,
., 10. They satisfy the set of following equilibrium and compatibility
equations

Ni =Py — Y2N
N, = —?Nlo

N3 =—-P,—2P,+P; — \/TiNg
Ny=—-P,+P;— 3ézi\ho

Ns=—-P,— 3ést - léleo (14)
Ne = —lgNlo

N7 =2(Pi +P,) +Ng
No = V2P, + Nyg
a11Ng + a12Nyo = by
a21Ng + axnNio = by

where
1 1 2 22\ L
an = —+—-|——+ f—ki —
Ay As | As A7 | Ag | 2E
a =ap + L
12 =421 2A5E
11 V2 2V2
“ “("A;*A—m;*— Ay A10>2E (15)
b - |P2_Pt2P—Py P 2V2Pi+Py)| V2L
b Ay A3 As A7 2E
by — V2(Ps—Py) V2P, 4P\ L
2= A4 As Ao | 2E

where A; is the cross-sectional area of bar i, and E is the modulus of elas-
ticity. Once the axial loads N; in the members are calculated, the vertical
displacement &, of joint 2 can be found from expression

5= [zNOM\sz(’N']

i=1

= (16)

where Nio are found from equations, similar to Egs. (14) and (15) with a
substitution P; = P3=0and P, = 1.
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The minimum weight design formulation corresponding to (3) is

mm}‘mlze W= 2 (pLiA;) = pL <2A +\/_2A)
i=7
such that A; > Ao =0.1in?

Ni(p,A (17)
g =loa) = max A <o, w123
P{<P<PY j
max 82(17, ) < 82,allow =5in

Pk <P< <P"

where 0; and G; 4y, are the stress and maximum allowable stress, for bar j,
and §; and §; ,;,,, are the displacement and maximum allowable displace-
ment for bar i.

For some specific values of po, the problem can be solved through
sequential linear programming (SLP) (Haftka and Giirdal [7]). SLP starts
with a trial design Ai(o), and replaces the constraints with linear approxi-
mation obtained from a Taylor series expansion about A,»(o) . Thus the prob-
lem (17) is replaced by

mln}\mlzeW pL (ZA, +v2 ,=27A )
such that A; > 0.1
ORCIITCIE CN
gj (PO AGAY S LA )+Z(Ai—Ai ) A o Gj.aliow <0
= YA Pke(Pli’P[?)
(18)

For the fuzzy parameters, according to the formulation addressed in sec-
tion 2, the present optimization problem with fuzzy parameters can be
transformed into an ordinary fuzzy optimization process by seeking an

0 38
5(P0,A0 a0 49 +2 . A2 ~A% <5
1

“equivalent” problem. Ss(u ,1;) W, ’I?{ w, squj, inij will be needed in the
definition of membership functions of objective function and constraints.

Because NJ and 3, are linear functions of p, the extreme cases of the

loads can be found at the vertices of the box. Thus Ss(u If) W may be obtained
through the following optimization process:
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6 10
minimize W = pL (ZA,- + \/EZAi)

i=1 i=1
Su|011:7.tl|1atAi >0.1 (19)
—t < O allow [ pu
Aj P e (Pkapk)
82 < 82 allow

That is, the stress and displacement constraints are enforced at all 8 ver-
tices of the load-domain box.

On the other hand, Z’lf W can be obtained by choosing minimum weight

for all optimization processes at the vertices of the loads.

lan = min(Wvl ’Wv27 ‘e 7WV3) (20)
Ry

where W,; and g; ; can be obtained as follows:
Then the membership function of the objective function, i.e. weight W,
given solution space R is then defined as follows (Fig. 2) where W(X) is

the objective function, Ss(" }‘,’) W is the optimized objective function from the

“crisp” optimization under non-fuzzy uncertainties of loads, whose magni-
tude belongs to the bounded

6 10
mm‘kximze Wy, =pL (ZA,- +v2 2A,->

i=1 i=7

such that A; > 0.1 (21)
IN; | <,
P Jallow % pis at vertex v;
82382,allow
( 1 ifWX) <infw
Ry
supW —W(X)
S(R) s
X)={ ——-——— ifinfW<WX)<supW 22
Hw (X) \ supW —infw lef *) S(If)’ @2)
S(R) R
0 if supW <W(X)
( S(R)

set, and ’é’{ w is the optimized objective function from the “crisp” optimi-

zation for one specific point in the multi-dimensional load space under
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which the corresponding W(X) is the minimum among the W(X)’s of all
other points of loads in the bounded set.

According to Eq. (12), the membership functions of the constraint of dis-
placement 62 can be represented as follows (Fig. 3)

1 if (X) <inf &

% (X) —inf & if inf 8y <8 (X) < sup &, (23)

g, (X) = sup &, —inf &
0 if 82(X) > sup &,

where infd, and supd, are chosen according to the problem itself. Usually
supd; is chosen as & 4o and infd, is chosen in the neighborhood of

62,allow'

3.2 Numerical results

Minimum weight designs were obtained first with no uncertainty (that is
P} = P}, k=1,2,3). The results obtained for P; = P, = 100 kips, P3 =0
and no displacement constraint coincide with those reported ed by Haftka
and Giirdal [7], who utilized the finite element method in conjunction with
several optimization techniques. For the same loads but with the additional
displacement constraint, the results coincide with those derived by Zhou
and Rozvany [12]. The results of optimization for nominal values of the
loads P; = P,== 100 kips and P3 =400 kips are listed in Table I which
indicates a total weight of 1598.6 1b.

TABLE I The Cross-Sectional Areas of Optimal Truss under Nominal Loads

Bar’s Serial Cross-Sectional
Number Areas (in”)
1 4.0354
2 0.1000
3 4.0354
4 12.1000
5 3.8646
6 0.1000
7 11.2637
8 0.1000
9 2.7577
10 0.1414

Weight: 1598.62 Ib
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For the case of uncertain loads, the stress and displacement constraints
in (19) are enforced at the 8 vertices
vi = (P,P,P)
v = (P}, P}, P3)
v3 = (P{,PL,PY)
v4 = (P, P3,PY)
vs = (P, P3, P)
ve = (P}, P}, P;)
vy = (PL, P4, PY)
vs = (PP, PY)

(24)

We consider as an example a case with 10 percent load uncertainty, that
is P} = P} =90 kips, P} = P4 = 110 kips, P} =360 kips, P¥ = 440
kips. The results of optimization are included in Table II. The objective
function weight equals 1949.9 Ib, indicating a 22 percent increase over the

nominal case due to the uncertainty. This weight is taken as g(ug) W.

Table III shows the weight of optimal truss under the loads corresponding
to eight different vertices, and vertical displacement at joint 2. supd, and

infd, are 5 (in) and O (in), respectively.

TABLE II The Cross-Sectional Areas of Optimal Truss Under Uncertainty

Bar’s Serial Number Cross-Sectional Areas ( in’ )

4.4638
0.1000
6.8230
14.0414
4.3064
0.1000
12.3776
0.1000
4.6256
0.1000

SO AW~

8,:2.2038 in
Weight: 1949.89 Ib

3.3 Comparison with o-cut method

In this section the result from introducing the membership function of
the loads directly is obtained through the level-cut method, which is often
used in optimization studies associated with fuzzy-subsets modeling of
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TABLE III The Weight of Optimal Truss at Various Load Vertices

Load Vertices Number Weight (Ib)
100, 100, O, 400 1598.62
90, 90, 360 1440.22
90, 90, 440 1670.62
90, 110, 360 1497.82
90, 110, 440 1728.22
110, 90, 360 1469.02
110, 90, 440 1699.42
110, 110, 360 1526.62
110, 110, 440 1757.02

TABLE IV The Cross-Sectional Areas of Optimal Truss Under Fuzzy Environment

Bar’s Serial Number Cross-Sectional Areas ( in? )
1 4.2750
2 0.1000
3 4.0353
4 12.0381
5 4.1661
6 0.1000
7 11.2638
8 0.1000
9 5.9143

10 0.1000

Weight: 1774.47 1b

uncertainty. The reader is referred to several studies (Adali [13]; Dong
[14]; Mohandas, et al, [15]; Yeh and Hsu [16]; Wang and Wang [17]) for
examples of the application of the fuzzy set theory to optimal design prob-
lems. In this study two membership functions are used to compare the
results with those yielded by the method proposed. First the following tri-

angular membership function is utilized where P/ = P} = 90 Kips,
P# = P¥% =110 kips, P4 =360 kips, P% = 440 kips (Fig. 4). According

to Adali (1991), the optimization procedure proceeds as follows: first the
uncertainty level is chosen, i.e. is specified. Making o.-cuts yields the val-

ues of P/"g* and PJ"i" . Then loads are varied in the box Py < P;< Pl'g*

with attendant evaluation of optimal weight. For ten-bar truss problem, it
is found that when 0=0.4628, the corresponding minimized weight equals
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1774.48 1b. In the real-world design problems selecting a is subjective,
although use of

0 ifP<PorP>P!

P,— P!
o p fPSP<P

pp,(Pi) = i (25)
p,—P*

L ifPP<Pp <P
the o-cut method is computationally inextensive. The present method does
not require the above subjective choice of parameters, and therefore
appears to be superior to the o level-cut method.

4. CONCLUDING REMARKS

The idea of combining the fuzzy-sets-based and anti-optimization mode-
ling of uncertainty is proposed in this paper. An example of minimum
weight design of a ten-bar truss structures subjected to the set of uncertain
bounded loads is employed to illustrate the applications of the proposed
method. The uncertainty in variation of the loads is assumed to be con-
fined to a multi-dimensional box, with vertices corresponding to lower
and/or upper bounds of different loads. The previous results from the opti-
mization through convex modeling of the loads are utilized to define the
membership functions of both the objective function and constraints.
Comparison with the o-cut method is performed.

Acknowledgements

This research was supported in part by grant from the National Science
Foundation (Program Director: Dr. K. C. Chong). Opinions, findings, con-
clusions and recommendations expressed in this paper are those of the
writers and do not necessarily reflect the views of the sponsoring organiza-
tions.

References

[1] Hilton, H. H. and Feigin, M., “Minimum Weight Analysis Based on Structural Relia-
bility”, Journal of Aerospace Sciences, 27 (1960).

[2] Bellman, R. E. and Zadeh, L. A., “Decision-Making in a Fuzzy Environment”, Man-
agement Science, 17 (1970), 141-164.

[3] Zimmermann, H. J., “Fuzzy Programming and Linear Programming with Several
Objective Functions”, Fuzzy Sets and Systems, 1(1977), 45-55.



200

(4]

[51
[6]
[7
[8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

J.FANG et al.

Verdagay, J. L., “Fuzzy Mathematical Programming”, In Fuzzy Information and
Design Process (Gupta M. M. and Sanchez E., eds.), North-Holland, Amsterdam,
1982.

Rao, S. S., “Optimum Design of Structures in a Fuzzy Environment”, AIAA Journal,
25 (1987), 1633-1636.

Werners, B., “Interaktive Entscheidungsunterstiitzung durch ein flexibles mathema-
tisches Programmierungssystem”, Miinchen, 1984.

Haftka, R. T. and Giirdal, Z., Elements of Structural Optimization, 3rd edition, Kluwer
Academic Publishers, Dordrecht, 1992.

Elishakoff, I., Haftka, R. T. and Fang, J., “Structural Design Under Bounded Uncer-
tainty--Optimization With Anti-Optimization”, Int. Journal of Computers and Struc-
tures, 53 (1994), 1401-1405.

Ben-Haim, Y. and Elishakoff, I. , Convex Models of Uncertainty in Applied Mechanics,
Elsevier Science Publishers, Amsterdam, 1990.

Elishakoff, I., “Convex Versus Probabilistic Modelling of Uncertainty in Structural
Dynamics”, in Structural Dynamics: Recent Advances (Petyt, M., Wolfe H. F. and Mei
C., eds.), Elsevier Applied Science Publishers, London, 1991, pp. 3-21.

Vanderplaats, G. N. and Salajeghah, E., “A New Approximate Method for Stress Con-
straints in Structural Synthesis”, AIAA Journal, 27 (1989), 352-358.

Zhou, M. and Rozvany, G. I. N. , “A New Discretized Optimality Criteria Method in
Structural Optimization, Proceedings, AIAA/ASME/ASCE/AHS/ASC 33rd Structures,
Structural Dynamics and Materials Conference”, 1992, pp. 3106-3120.

Adali, S., “Convex and Fuzzy Modeling of Uncertainties in the Optimal Design of
Composite Structures”, Proceedings of IUTAM Symposium on Structural Optimiza-
tion, Lyngby, Denmark, 1993.

Dong, W. M. and Shah, H. C., “Vertex Method for Computing Functions of Fuzzy Var-
iables”, Fuzzy Sets and Systems, 4 (1987), 65-78.

Mohandas, S. U., Phelp, T. A. and Ragsdell, K. M., “Structural Optimization Using a
Fuzzy Goal Programming Approach”, Int. Journal of Computers and Structures, 37
(1990), 1-8.

Yeh, Y. C. and Hsu, D. S., “Structural Optimization with Fuzzy Parameters”, Int. Jour-
nal of Computers and Structures, 37 (1990), 917-924.

Wang, G. Y. and Wang, W. Q., “Fuzzy Optimum Design of Structures”, Engng Opt., 8
(1985), 291-300.



Journal of Applied Mathematics and Decision Sciences

Special Issue on

Intelligent Computational Methods for

Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

e Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

o Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

e Implementation aspects: decision support systems,

expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

December 1, 2008
March 1, 2009

Manuscript Due

First Round of Reviews

Publication Date June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
Department of Management Sciences, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/jamds/
http://mts.hindawi.com/

	1Call for Papers
	Guest Editors

