

# SET DIFFERENTIAL EQUATIONS WITH CAUSAL OPERATORS

Z. DRICI, F. A. MCRAE, AND J. VASUNDHARA DEVI

Received 21 October 2004

We obtain some basic results on existence, uniqueness, and continuous dependence of solutions with respect to initial values for set differential equations with causal operators.

## 1. Introduction

Differential equations involving causal operators have gained much attention of late and some results are assembled in a recent monograph [1]. The term causal is adopted from the engineering literature. Basically, a causal operator is a nonanticipative operator. The theory of these operators has the powerful quality of unifying ordinary differential equations, integrodifferential equations, differential equations with finite or infinite delay, Volterra integral equations, and neutral functional equations, to name a few.

The study of set differential equations (SDE) in a metric space is interesting due to its applicability to multivalued differential inclusions and fuzzy differential equations and its inclusion of ordinary differential systems as a special case [2, 4].

A combination of these two concepts leads to set differential equations with causal operators. In this paper, using this setup, we obtain some basic results on existence, uniqueness, and continuous dependence of solutions with respect to initial values.

## 2. Preliminaries

Let  $K_c(\mathbb{R}^n)$  denote the collection of all nonempty compact and convex subsets of  $\mathbb{R}^n$ . Define the Hausdorff metric

$$D[A, B] = \max \left[ \sup_{x \in B} d(x, A), \sup_{y \in A} d(y, B) \right], \quad (2.1)$$

where  $A, B$  are bounded sets in  $\mathbb{R}^n$  and  $d(x, A) = \inf[d(x, y) : y \in A]$ . We observe that  $K_c(\mathbb{R}^n)$  is a complete metric space.

Suppose that the space  $K_c(\mathbb{R}^n)$  is equipped with the natural algebraic operations of addition and nonnegative scalar multiplication. Then,  $K_c(\mathbb{R}^n)$  becomes a semilinear metric space, which can be embedded as a complete cone into a corresponding Banach space.

We note that the Hausdorff metric (2.1) satisfies the following properties:

$$D[A + C, B + C] = D[A, B], \quad D[A, B] = D[B, A], \quad (2.2)$$

$$D[\lambda A, \lambda B] = \lambda D[A, B], \quad (2.3)$$

$$D[A, B] \leq D[A, C] + D[C, B], \quad (2.4)$$

for all  $A, B, C \in K_c(\mathbb{R}^n)$  and  $\lambda \in \mathbb{R}_+$ .

Given any two sets  $A, B \in K_c(\mathbb{R}^n)$  if there exists a set  $C \in K_c(\mathbb{R}^n)$  satisfying  $A = B + C$ , then  $A - B$  is defined as the Hukuhara difference of the sets  $A$  and  $B$ .

The mapping  $F : I \rightarrow K_c(\mathbb{R}^n)$  has a Hukuhara derivative  $D_H F(t_0)$  at a point  $t_0 \in I$ , if

$$\lim_{h \rightarrow 0^+} \frac{F(t_0 + h) - F(t_0)}{h}, \quad \lim_{h \rightarrow 0^+} \frac{F(t_0) - F(t_0 - h)}{h} \quad (2.5)$$

exist in the topology of  $K_c(\mathbb{R}^n)$  and are equal to  $D_H F(t_0)$ . Here  $I$  is any interval in  $\mathbb{R}$ .

Now we can consider the set differential equation

$$D_H U = F(t, U), \quad U(t_0) = U_0 \in K_c(\mathbb{R}^n), \quad t_0 \geq 0, \quad (2.6)$$

where  $F \in C[\mathbb{R}_+ \times K_c(\mathbb{R}^n), K_c(\mathbb{R}^n)]$ .

*Definition 2.1.* The mapping  $U \in C^1[J, K_c(\mathbb{R}^n)]$ ,  $J = [t_0, t_0 + a]$ , is said to be a solution of (2.6) on  $J$  if it satisfies (2.6) on  $J$ .

Since  $U(t)$  is continuously differentiable, we have

$$U(t) = U_0 + \int_{t_0}^t D_H U(s) ds, \quad t \in J. \quad (2.7)$$

Hence, we can associate with the IVP (2.6) the Hukuhara integral

$$U(t) = U_0 + \int_{t_0}^t F(s, U(s)) ds, \quad t \in J. \quad (2.8)$$

The following properties are useful tools in proving theorems in the SDE setup. If  $F : [t_0, T] \rightarrow K_c(\mathbb{R}^n)$  is integrable, we have

$$\begin{aligned} \int_{t_0}^{t_2} F(t) dt &= \int_{t_0}^{t_1} F(t) dt + \int_{t_1}^{t_2} F(t) dt, \quad t_0 \leq t_1 \leq t_2 \leq T, \\ \int_{t_0}^T \lambda F(t) dt &= \lambda \int_{t_0}^T F(t) dt, \quad \lambda \in \mathbb{R}_+. \end{aligned} \quad (2.9)$$

Also, if  $F, G : [t_0, T] \rightarrow K_c(\mathbb{R}^n)$  are integrable, then  $D[F(\cdot), G(\cdot)] : [t_0, T] \rightarrow \mathbb{R}$  is integrable and

$$D \left[ \int_{t_0}^t F(s) ds, \int_{t_0}^t G(s) ds \right] \leq \int_{t_0}^t D[F(s), G(s)] ds. \quad (2.10)$$

We observe that

$$D[A, \theta] = \|A\| = \sup_{a \in A} \|a\| \quad (2.11)$$

for  $A \in K_c(\mathbb{R}^n)$ , where  $\theta$  is the zero element of  $\mathbb{R}^n$ , which is regarded as a one-point set.

### 3. Main results

We will devote this section to extend certain basic results to SDEs with causal or nonanticipative maps of Volterra type, since such equations provide a unified treatment of the basic theory of SDEs, SDEs with delay and set integrodifferential equations which in turn include ordinary dynamic systems of the corresponding types.

Let  $E = C[[t_0, T], K_c(\mathbb{R}^n)]$  with norm

$$D_0[U, \theta] = \sup_{t_0 \leq t \leq T} D[U(t), \theta]. \quad (3.1)$$

*Definition 3.1.* Suppose that  $Q \in C[E, E]$ , then  $Q$  is said to be a causal map or a nonanticipative map if  $U(s) = V(s)$ ,  $t_0 \leq s \leq t \leq T$ , where  $U, V \in E$ , then  $(QU)(s) = (QV)(s)$ ,  $t_0 \leq s \leq t$ .

We define the IVP for an SDE with causal map, using the Hukuhara derivative as follows:

$$D_H U(t) = (QU)(t), \quad U(t_0) = U_0 \in K_c(\mathbb{R}^n). \quad (3.2)$$

Before we proceed to prove an existence and uniqueness result for (3.2), we need the following comparison results.

**THEOREM 3.2.** Assume that  $m \in C[J, \mathbb{R}_+]$ ,  $g \in C[J \times \mathbb{R}_+, \mathbb{R}_+]$  and, for  $t \in J = [t_0, T]$ ,

$$D_- m(t) \leq g(t, |m|_0(t)), \quad (3.3)$$

where  $|m|_0(t) = \sup_{t_0 \leq s \leq t} |m(s)|$ . Suppose that  $r(t) = r(t, t_0, w_0)$  is the maximal solution of the scalar differential equation

$$w' = g(t, w), \quad w(t_0) = w_0 \geq 0, \quad (3.4)$$

existing on  $J$ . Then,  $m(t_0) \leq w_0$  implies  $m(t) \leq r(t)$ ,  $t \in J$ .

*Proof.* To prove the stated inequality, it is enough to prove that

$$m(t) < w(t, t_0, w_0, \epsilon), \quad t \geq t_0, t \in J, \quad (3.5)$$

where  $w(t, t_0, w_0, \epsilon)$  is any solution of

$$w' = g(t, w) + \epsilon, \quad w(t_0) = w_0 + \epsilon, \quad \epsilon > 0, \quad (3.6)$$

since  $\lim_{\epsilon \rightarrow 0^+} w(t, t_0, w_0, \epsilon) = r(t, t_0, w_0)$ .

If (3.5) is not true, there exists a  $t_1 > t_0$  such that  $m(t_1) = w(t_1, t_0, w_0, \epsilon)$  and  $m(t) < w(t, t_0, w_0, \epsilon)$ ,  $t_0 \leq t < t_1$ , in view of the fact  $m(t_0) < w_0 + \epsilon$ .

Hence,

$$D_- m(t_1) \geq w'(t_1, t_0, w_0, \epsilon) = g(t_1, w(t_1, t_0, w_0, \epsilon)) + \epsilon. \quad (3.7)$$

Now  $g(t, w) \geq 0$  implies that  $w(t, t_0, w_0, \epsilon)$  is nondecreasing in  $t$ , and this gives

$$|m|_0(t_1) = w(t_1, t_0, w_0, \epsilon) = m(t_1), \quad (3.8)$$

which in turn yields

$$D_- m(t_1) \leq g(t_1, |m|_0(t_1)) = g(t_1, w(t_1, t_0, w_0, \epsilon)) \quad (3.9)$$

which is a contradiction to (3.7). Hence the theorem follows.  $\square$

Next we obtain an estimate of the distance between any two solutions of (3.2) in terms of the maximal solution of (3.4) utilizing Theorem 3.2.

We define  $D_0[U, V](t) = \max_{t_0 \leq s \leq t} D[U(s), V(s)]$ .

**THEOREM 3.3.** *Let  $Q \in C[E, E]$  be a causal map such that for  $t \in J$ ,*

$$D[(QU)(t), (QV)(t)] \leq g(t, D_0[U, V](t)), \quad (3.10)$$

where  $g \in C[J \times \mathbb{R}_+, \mathbb{R}_+]$ . Suppose further that the maximal solution  $r(t, t_0, w_0)$  of the differential equation (3.4) exists on  $J$ . Then, if  $U(t), V(t)$  are any two solutions of (3.2) through  $U(t_0) = U_0, V(t_0) = V_0, U_0, V_0 \in K_c(\mathbb{R}^n)$  on  $J$ , respectively,

$$D[U(t), V(t)] \leq r(t, t_0, w_0), \quad t \in J, \quad (3.11)$$

provided that  $D[U_0, V_0] \leq w_0$ .

*Proof.* Set  $m(t) = D[U(t), V(t)]$ . Then  $m(t_0) = D[U_0, V_0] \leq w_0$ . Now for small  $h > 0, t \in J$ , consider  $m(t+h) = D[U(t+h), V(t+h)]$ . Using the property (2.4) of the Hausdorff metric  $D$ , we successively get the following relations:

$$\begin{aligned} m(t+h) &\leq D[U(t+h), U(t) + h(QU)(t)] \\ &\quad + D[U(t) + h(QU)(t), V(t+h)] \leq D[U(t+h), U(t) + h(QU)(t)] \\ &\quad + D[U(t) + h(QU)(t), V(t) + h(QV)(t)] + D[V(t) + h(QV)(t), V(t+h)] \\ &\leq D[U(t+h), U(t) + h(QU)(t)] + D[U(t) + h(QU)(t), U(t) + h(QV)(t)] \\ &\quad + D[U(t) + h(QV)(t), V(t) + h(QV)(t)] + D[V(t) + h(QV)(t), V(t+h)]. \end{aligned} \quad (3.12)$$

Next, using the property (2.2) of the Hausdorff metric  $D$  and the fact that the Hukuhara differences  $U(t+h) - U(t)$  and  $V(t+h) - V(t)$  exist for small  $h > 0$ , we arrive at

$$\begin{aligned} m(t+h) &\leq D[U(t) + Z(t, h), U(t) + h(QU)(t)] + D[h(QU)(t), h(QV)(t)] \\ &\quad + D[U(t), V(t)] + D[V(t) + h(QV)(t), V(t) + Y(t, h)], \end{aligned} \quad (3.13)$$

where  $U(t+h) = U(t) + Z(t, h)$  and  $V(t+h) = V(t) + Y(t, h)$ . Again the property (2.2) gives

$$\begin{aligned} m(t+h) &\leq D[Z(t, h), h(QU)(t)] + D[h(QU)(t), h(QV)(t)] \\ &\quad + D[U(t), V(t)] + D[h(QV)(t), Y(t, h)]. \end{aligned} \quad (3.14)$$

Since the Hukuhara differences exist, we can replace  $Z(t, h)$  and  $Y(t, h)$  with  $U(t+h) - U(t)$  and  $V(t+h) - V(t)$ , respectively. This gives, on subtracting  $m(t)$  and dividing both sides with  $h > 0$ ,

$$\begin{aligned} \frac{m(t+h) - m(t)}{h} &\leq D\left[\frac{U(t+h) - U(t)}{h}, (QU)(t)\right] + D[(QU)(t), (QV)(t)] \\ &\quad + D\left[(QV)(t), \frac{V(t+h) - V(t)}{h}\right]. \end{aligned} \quad (3.15)$$

Now, taking limit supremum as  $h \rightarrow 0^+$  and using the fact that  $U(t)$  and  $V(t)$  are solutions of (3.2), along with the assumption (3.10) we obtain

$$D^+ m(t) \leq D[(QU)(t), (QV)(t)] \leq g(t, D_0[U, V](t)) = g(t, |m|_0(t)), \quad t \in J. \quad (3.16)$$

Theorem 3.2 now guarantees the stated conclusion and the proof is complete.  $\square$

**COROLLARY 3.4.** *Let  $Q \in C[E, E]$  be a causal map such that*

$$D[(QU)(t), \theta] \leq g(t, D_0[U, \theta](t)), \quad (3.17)$$

where  $g \in C[J \times \mathbb{R}_+, \mathbb{R}_+]$ . Also, suppose that  $r(t, t_0, w_0)$  is the maximal solution of the scalar differential equation (3.4). Then, if  $U(t, t_0, U_0)$  is any solution of (3.2) through  $(t_0, U_0)$  with  $U_0 \in K_c(\mathbb{R}^n)$ ,  $D[U_0, \theta] \leq w_0$  implies  $D[U(t), \theta] \leq r(t, t_0, w_0)$ ,  $t \in J$ .

We begin by proving a local existence result using successive approximations.

**THEOREM 3.5.** *Assume that*

- (a)  $Q \in C[B, E]$  is a causal map, where  $B = B(U_0, b) = \{U \in E : D_0[U, U_0] \leq b\}$  and  $D_0[(QU), \theta](t) \leq M_1$ , on  $B$ ;
- (b)  $g \in C[J \times [0, 2b], \mathbb{R}_+]$ ,  $g(t, w) \leq M_2$  on  $J \times [0, 2b]$ ,  $g(t, 0) \equiv 0$ ,  $g(t, w)$  is nondecreasing in  $w$  for each  $t \in J$  and  $w(t) = 0$  is the only solution of

$$w' = g(t, w), \quad w(t_0) = 0 \quad \text{on } J; \quad (3.18)$$

- (c)  $D[(QU)(t), (QV)(t)] \leq g(t, D_0[U, V](t))$  on  $B$ .

Then, the successive approximations defined by

$$U_{n+1}(t) = U_0 + \int_{t_0}^t (QU_n)(s) ds, \quad n = 0, 1, 2, \dots, \quad (3.19)$$

exist on  $J_0 = [t_0, t_0 + \eta]$ , where  $\eta = \min[T - t_0, b/M]$  and  $M = \max(M_1, M_2)$ , and converge uniformly to the unique solution  $U(t)$  of (3.2).

*Proof.* For  $t \in J_0$ , we have, by induction, using property (2.2) and (2.10) of the Hausdorff metric  $D$ ,

$$\begin{aligned} D[U_{n+1}(t), U_0] &= D\left[U_0 + \int_{t_0}^t (QU_n)(s)ds, U_0\right] = D\left[\int_{t_0}^t (QU_n)(s)ds, \theta\right] \\ &\leq \int_{t_0}^t D[(QU_n)(s), \theta]ds \\ &\leq \int_{t_0}^t D_0[QU_n, \theta](s)ds \leq M_1(t - t_0) \leq M(t - t_0) \leq b, \end{aligned} \quad (3.20)$$

which shows the successive approximations are well defined on  $J_0$ .

Next, we define successive approximations for the problem (3.18) as follows:

$$\begin{aligned} w_0(t) &= M(t - t_0), \\ w_{n+1}(t) &= \int_{t_0}^t g(s, w_n(s))ds, \quad t \in J_0, n = 0, 1, 2, \dots \end{aligned} \quad (3.21)$$

Then,

$$w_1(t) = \int_{t_0}^t g(s, w_0(s))ds \leq M_2(t - t_0) \leq M(t - t_0) = w_0(t). \quad (3.22)$$

Assume, for some  $k > 1$ ,  $t \in J_0$ , that

$$w_k(t) \leq w_{k-1}(t). \quad (3.23)$$

Then, using the monotonicity of  $g$ , we get

$$w_{k+1}(t) = \int_{t_0}^t g(s, w_k(s))ds \leq \int_{t_0}^t g(s, w_{k-1}(s))ds = w_k(t). \quad (3.24)$$

Hence, the sequence  $\{w_k(t)\}$  is monotone decreasing.

Since  $w'_k(t) = g(t, w_{k-1}(t)) \leq M_2$ ,  $t \in J_0$ , we conclude by Ascoli-Arzela theorem and the monotonicity of the sequence  $\{w_k(t)\}$  that

$$\lim_{t \rightarrow \infty} w_n(t) = w(t) \quad (3.25)$$

uniformly on  $J_0$ . Since  $w(t)$  satisfies (3.18), we get from condition (b) that  $w(t) \equiv 0$  on  $J_0$ . Observing that for each  $t \in J_0$ ,  $t_0 \leq s \leq t$ ,

$$\begin{aligned} D[U_1(s), U_0] &= D\left[U_0 + \int_{t_0}^s (QU_0)(\xi)d\xi, U_0\right] = D\left[\int_{t_0}^s (QU_0)(\xi)d\xi, \theta\right] \\ &\leq \int_{t_0}^s D[(QU_0)(\xi), \theta]d\xi \leq D_0[(QU_0), \theta](s - t_0) \\ &\leq D_0[(QU_0), \theta](t - t_0) \leq M_1(t - t_0) \leq M(t - t_0) = w_0(t), \end{aligned} \quad (3.26)$$

which implies that  $D_0[U_1, U_0](t) \leq w_0(t)$ . We assume, for some  $k > 1$ ,

$$D_0[U_k, U_{k-1}](t) \leq w_{k-1}(t), \quad t \in J_0. \quad (3.27)$$

Consider, for any  $t \in J_0$ ,  $t_0 \leq s \leq t$ ,

$$\begin{aligned} D[U_{k+1}(s), U_k(s)] &\leq \int_{t_0}^s D[(QU_k)(\xi), (QU_{k-1})(\xi)] d\xi \leq \int_{t_0}^s g(\xi, D_0[U_k, U_{k-1}](\xi)) d\xi \\ &\leq \int_{t_0}^s g(\xi, w_{k-1}(\xi)) d\xi \leq \int_{t_0}^t g(\xi, w_{k-1}(\xi)) d\xi = w_k(t), \end{aligned} \quad (3.28)$$

which further gives

$$D_0[U_{k+1}, U_k](t) \leq w_k(t), \quad t \in J_0. \quad (3.29)$$

Thus, we conclude that

$$D_0[U_{n+1}, U_n](t) \leq w_n(t), \quad (3.30)$$

for  $t \in J_0$  and for all  $n = 0, 1, 2, \dots$ .

We claim that  $\{U_n(t)\}$  is a Cauchy sequence. To show this, let  $n \leq m$ . Setting  $v(t) = D[U_n(t), U_m(t)]$  and using (3.19), we get

$$\begin{aligned} D^+ v(t) &\leq D[D_H U_n(t), D_H U_m(t)](t) = D[(QU_{n-1})(t), (QU_{m-1})(t)] \\ &\leq D[(QU_{n-1})(t), (QU_n)(t)] + D[(QU_n)(t), (QU_m)(t)] \\ &\quad + D[(QU_m)(t), (QU_{m-1})(t)] \leq g(t, D_0[U_{n-1}, U_n](t)) + g(t, D_0[U_n, U_m](t)) \\ &\quad + g(t, D_0[U_{m-1}, U_m](t)) \leq g(t, w_{n-1}(t)) + g(t, |v|_0(t)) + g(t, w_{n-1}(t)) \\ &= g(t, |v|_0(t)) + 2g(t, w_{n-1}(t)). \end{aligned} \quad (3.31)$$

The above inequalities yield, on using Theorem 3.2, the estimate

$$v(t) \leq r_n(t), \quad t \in J_0, \quad (3.32)$$

where  $r_n(t)$  is the maximal solution of

$$r'_n = g(t, r_n) + 2g(t, w_{n-1}(t)), \quad r_n(t_0) = 0, \quad (3.33)$$

for each  $n$ . Since as  $n \rightarrow \infty$ ,  $2g(t, w_{n-1}(t)) \rightarrow 0$  uniformly on  $J_0$ , it follows by [3, Lemma 1.3.1] that  $r_n(t) \rightarrow 0$ , as  $n \rightarrow \infty$  uniformly on  $J_0$ . This implies from (3.30) that  $U_n(t)$  converges uniformly to  $U(t)$  on  $J_0$  and clearly  $U(t)$  is a solution of (3.2).

To prove uniqueness, let  $V(t)$  be another solution of (3.2) on  $J_0$ . Set  $m(t) = D[U(t), V(t)]$ . Then,  $m(t_0) = 0$  and

$$D^+ m(t) \leq g(t, |m|_0(t)), \quad t \in J_0. \quad (3.34)$$

Since  $m(t_0) = 0$ , it follows from Theorem 3.2 that

$$m(t) \leq r(t, t_0, 0), \quad t \in J_0, \quad (3.35)$$

where  $r(t, t_0, 0)$  is the maximal solution of (3.18). The assumption (b) now shows that  $U(t) = V(t)$ ,  $t \in J_0$ , proving uniqueness.  $\square$

Assuming local existence, we next discuss a global existence result.

**THEOREM 3.6.** *Let  $Q \in C[E, E]$  be a causal map such that*

$$D[(QU)(t), \theta] \leq g(t, D_0[U, \theta](t)), \quad (3.36)$$

where  $g \in C[\mathbb{R}_+^2, \mathbb{R}_+]$ ,  $g(t, w)$  is nondecreasing in  $w$  for each  $t \in \mathbb{R}_+$  and the maximal solution  $r(t) = r(t, t_0, w_0)$  of (3.4) exists on  $[t_0, \infty)$ . Suppose further that  $Q$  is smooth enough to guarantee the local existence of solutions of (3.2) for any  $(t_0, U_0) \in \mathbb{R}_+ \times K_c(\mathbb{R}^n)$ . Then, the largest interval of existence of any solution  $U(t, t_0, U_0)$  of (3.2) is  $[t_0, \infty)$ , whenever  $D[U_0, \theta] \leq w_0$ .

*Proof.* Suppose that  $U(t) = U(t, t_0, U_0)$  is any solution of (3.2) existing on  $[t_0, \beta)$ ,  $t_0 < \beta < \infty$  with  $D[U_0, \theta] \leq w_0$ , and the value of  $\beta$  cannot be increased. Define  $m(t) = D[U(t), \theta]$  and note that  $m(t_0) \leq w_0$ . Then, it follows that

$$D^+ m(t) \leq D[D_H U(t), \theta] \leq D[(QU)(t), \theta] \leq g(t, D_0[U, \theta](t)). \quad (3.37)$$

Using Theorem 3.2, we obtain

$$m(t) \leq r(t), \quad t_0 \leq t < \beta. \quad (3.38)$$

For any  $t_1, t_2$  such that  $t_0 < t_1 < t_2 < \beta$ , using (3.36) and the properties of Hausdorff metric  $D$ ,

$$\begin{aligned} D[U(t_1), U(t_2)] &= D\left[\int_{t_0}^{t_1} (QU)(s) ds, \int_{t_0}^{t_2} (QU)(s) ds\right] \\ &\leq \int_{t_1}^{t_2} D[(QU)(s), \theta] ds \leq \int_{t_1}^{t_2} g(s, D_0[U, \theta](s)) ds. \end{aligned} \quad (3.39)$$

Employing the estimate (3.38) and the monotonicity of  $g(t, w)$ , we find

$$D[U(t_1), U(t_2)] \leq \int_{t_1}^{t_2} g(s, r(s)) ds = r(t_2) - r(t_1). \quad (3.40)$$

Since  $\lim_{t \rightarrow \beta^-} r(t, t_0, w_0)$  exists, taking the limit as  $t_1, t_2 \rightarrow \beta^-$ , we get that  $\{U(t_n)\}$  is a Cauchy sequence and therefore  $\lim_{t \rightarrow \beta^-} U(t, t_0, U_0) = U_\beta$  exists. We then consider the IVP

$$D_H U(t) = (QU)(t), \quad U(\beta) = U_\beta. \quad (3.41)$$

As we have assumed the local existence, we note that  $U(t, t_0, U_0)$  can be continued beyond  $\beta$ , contradicting our assumption that  $\beta$  cannot be increased. Thus, every solution  $U(t, t_0, U_0)$  of (3.2) such that  $D[U_0, \theta] \leq w_0$  exists globally on  $[t_0, \infty)$  and hence the proof follows.  $\square$

Next, we will discuss the continuous dependence of solutions with respect to initial values.  $\square$

LEMMA 3.7. Let  $Q \in C[E, E]$  be a causal map and let

$$G(t, k(t)) = \sup [D[(QU)(t), \theta] : D[U(t), U_0] \leq k(t)]. \quad (3.42)$$

Assume that  $r^*(t, t_0, 0)$  is the maximal solution of

$$w' = G(t, w), \quad w(t_0) = 0, \quad \text{on } J. \quad (3.43)$$

Let  $U(t) = U(t, t_0, 0)$  be the solution of (3.2). Then,

$$D[U(t), U_0] \leq r^*(t, t_0, 0), \quad t \in J. \quad (3.44)$$

*Proof.* Set  $m(t) = D[U(t), U_0]$ ,  $t \in J$ . Then,

$$\begin{aligned} m(t+h) - m(t) &= D[U(t+h), U_0] - D[U(t), U_0] \\ &= D[U(t+h), U(t) + h(QU)(t)] + D[U(t) + h(QU)(t), U(t)]. \end{aligned} \quad (3.45)$$

Hence,

$$\begin{aligned} \frac{m(t+h) - m(t)}{h} &\leq D\left[\frac{U(t+h) - U(t)}{h}, (QU)(t)\right] + D[(QU)(t), \theta], \\ D^+ m(t) &\leq D[(QU)(t), \theta] \leq \sup [D[(QU)(t), \theta] : D[U(t), U_0] \leq m(t)] \leq G(t, m(t)). \end{aligned} \quad (3.46)$$

This implies by [3, Theorem 1.4.1] that

$$D[U(t), U_0] \leq r^*(t, t_0, 0), \quad t \in J. \quad (3.47)$$

□

THEOREM 3.8. Assume that

- (a) assumptions (a), (b), and (c) of Theorem 3.5 hold;
- (b) the solutions  $w(t, t_0, w_0)$  of (3.4) through every point  $(t_0, w_0)$  are continuous with respect to  $(t_0, w_0)$ .

Then, the solution  $U(t) = U(t, t_0, U_0)$  of (3.2) is continuous with respect to  $(t_0, U_0)$ .

*Proof.* Let  $U(t) = U(t, t_0, U_0)$ ,  $V(t) = V(t, t_0, V_0)$ ,  $U_0, V_0 \in K_c(\mathbb{R}^n)$  be two solutions of (3.2). Then, defining  $m(t) = D[U(t), V(t)]$ , we get from Theorem 3.3 the estimate

$$D[U(t), V(t)] \leq r(t, t_0, D[U_0, V_0]), \quad t \in J. \quad (3.48)$$

Since  $\lim_{U_0 \rightarrow V_0} r(t, t_0, D[U_0, V_0]) = r(t, t_0, 0)$  uniformly on  $J$  and by hypothesis  $r(t, t_0, 0) \equiv 0$ , consequently  $\lim_{U_0 \rightarrow V_0} U(t, t_0, U_0) = V(t, t_0, V_0)$  uniformly and hence  $U(t, t_0, U_0)$  is continuous with respect to  $U_0$ .

To prove continuity with respect to  $t_0$ , we let  $U(t) = U(t, t_0, U_0)$ ,  $V = V(t, \tau_0, U_0)$  be two solutions of (3.2) with  $\tau_0 > t_0$ . Again, setting  $m(t) = D[U(t), V(t)]$  and noting that  $m(\tau_0) = D[U(\tau_0), U_0]$ , using Lemma 3.7, we get

$$m(\tau_0) \leq r^*(\tau_0, t_0, U_0). \quad (3.49)$$

Hence, using Theorem 3.3, we obtain

$$m(t) = \tilde{r}(t), \quad t \geq \tau_0, \quad (3.50)$$

where  $\tilde{r}(t, \tau_0, r^*(\tau_0, t_0, 0))$  is the maximal solution of (3.2) through  $(\tau_0, r^*(\tau_0, t_0, 0))$ . Since  $r^*(t, t_0, 0) = 0$ , we have

$$\lim_{\tau_0 \rightarrow t_0} \tilde{r}(t, \tau_0, r^*(\tau_0, t_0, 0)) = \tilde{r}(t, t_0, 0), \quad (3.51)$$

uniformly on  $J$ . By hypothesis,  $\tilde{r}(t, t_0, 0) \equiv 0$  which proves the continuity of  $U(t, t_0, U_0)$  relative to  $t_0$ .  $\square$

## References

- [1] C. Corduneanu, *Functional Equations with Causal Operators*, Stability and Control: Theory, Methods and Applications, vol. 16, Taylor & Francis, London, 2002.
- [2] V. Lakshmikantham, T. Gnana Bhaskar, and J. Vasundhara Devi, *Theory of Set Differential Equations in a Metric Space*, to appear.
- [3] V. Lakshmikantham and S. Leela, *Differential and Integral Inequalities: Theory and Applications. Vol. I. Ordinary Differential Equations*, Academic Press, New York, 1969.
- [4] A. Tolstonogov, *Differential Inclusions in a Banach Space*, Mathematics and Its Applications, vol. 524, Kluwer Academic Publishers, Dordrecht, 2000.

Z. Drici: Department of Mathematics and Computer Science, Illinois Wesleyan University, Bloomington, IL 61702-2900, USA

*E-mail address:* zdrici@iwu.edu

F. A. Mcrae: Department of Mathematics, Catholic University of America, Washington, DC 20064, USA

*E-mail address:* mcrae@cua.edu

J. Vasundhara Devi: Department of Mathematics, GVP College for PG Courses, Andhra University, Visakhapatnam, India

*Current address:* Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

*E-mail address:* jdevi@fit.edu

## Special Issue on Intelligent Computational Methods for Financial Engineering

### Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

|                        |                  |
|------------------------|------------------|
| Manuscript Due         | December 1, 2008 |
| First Round of Reviews | March 1, 2009    |
| Publication Date       | June 1, 2009     |

### Guest Editors

**Lean Yu**, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; [yulean@amss.ac.cn](mailto:yulean@amss.ac.cn)

**Shouyang Wang**, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; [sywang@amss.ac.cn](mailto:sywang@amss.ac.cn)

**K. K. Lai**, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; [mskklai@cityu.edu.hk](mailto:mskklai@cityu.edu.hk)