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ABSTRACT. The Mennicke group M(m,n,r) = <x,y,z|xy = xm, yz = yn, z¥ = z'>  is one of
the few known 3-generator groups of deficiency zero, Several cases of M(m,d,r) are

studied.
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Mennicke [1] has given a class of three generator three relation groups defined by

M(m,n,r) = <x,y,z[xy = xm, yz = yn, z¥ = z'> which he proves to be finite for m = n =
r 2 3 (see also Higman [2].) Macdonald [3] has shown that the above group is finite

provided that neither m? =1, n? =1, nor r?2=1. For general m,n,r the above

group is difficult to consider. Wamsley [3] discussed the group for some cases with
m=mn=r , The aim of this paper is to consider the group for several cases with

general m,n,r .

a) The group M = M(3,3,3) = <x,y,z|xy = %3, yz =y3, 2" = 235, Wamsley has shown that

M' is abelian and |M| divides 2!!. We use his result that M' is abelian and prove:
THEOREM 1. |M| = 211,

PROOF. We notice that = Zy x Zy x Zp. A straightforward application of the

M
M'
Reidemeister-Schreier rewriting process can be used to find the order of M' . We

suppress the details and merely notice that the relation matrix for M' is

0O 0 o0 o
0 1 0 0 O
0o 0 8 0 0
0O 0 0 8 0
0 0 O 0 4

Therefore M' = Zg x Zg x Z, and |M| = 23(23 x 23 x 22) = 211,
REMARK 1. Another group of deficiency zero is Johnson's group [4],

> s z > .

J(m,n,r) = <x,y,z|xy _ yn--2 X—l yn+2 yz _ Zr-2 y—l zr+2 X = xm-2 -1 xm+2

The order of J = J(2,2,2) is 7.211, [47. A question could be raised here if M and
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the 2-Sylow subgroup of J are isomorphic. To answer this question let H = <x Yy,

y.1 22, z_1 x2> <J . We find that H<J and % =27 Therefore H 1is the 2-Sylow

7.
. Using the Redemeister-Schreier process we write a presentation for H

J
H M
'H—.=Zz>< Zy % 22=‘M_y.

subgroup of
which gives A student K. F, Lee of David L. Johnson showed

that M and H are different.

b) The group M = M(m,n,0) = <x,y[xy = xm, yn-1 =e, m> 2, n> 2, The relations
¥ = x™ and yn“1 = e 1imply that the order of x is (mn_1 - 1). We consider H = <x|
(mn_1 - 1) n-1 M
X > = Z(m - 1), i Zn-l . Therefore M is metacyclic and it is the split
. n-1
extension of Zn—l by Z(m - 1).
mn_1 -1
THEOREM 2, M' = Z  where d = —— .
d m=-1
PROOF: We consider H = <a = xm-1> . The relations a* =a and a’ = a" imply that
Ha M. % is abelian implies that H > M' ., But a = x~! y_1 Xy e M' =>H ¢ M'
Therefore H = M',
n-1 n-1 2
- - - -3 4 ...+ +m+ 1.
The order of a is o . = p— 11 =" 2 + " 3 m m

(m-1, =L - 1)

REMARK 2. The above theorem could be proved using the Reidemeister-Schreier process.
REMARK 3. L—‘rl = (m-1) (n-1) implies that |M|= (a-1) (@"" ' - 1) .

REMARK 4. The above theorem implies that M is a finite metabilian group.
REMARK 5. It is easy to see that M(a, b, c) = M(b, c, a) = M(c, a, b) and
M(a,b,c) # M(a,c,b) 1in general.
REMARK 6, In working with Mennicke's group we find the commutator identity (known as
the Witt identity)

(x, v, 2"z, x, y°)y, z, X1 =e
quite helpful. This identity holds for any x, y and z 1in any group. We define

[x, y, 2] = [[x,y], 2] and [x,y] = KL y'1 Xy .

c) M= M(2,2,2) = ¢<x, vy, zlxy = x2, yz = y2. 2F = zz> . Using the Witt identity we
get [x, z21[z, y?1[y, x2] = e . We use the relations of M to get x2y2z2 = e, Thus
22 = y‘zx'2 which together with 2% = 22 gives z = xy=2x~3. We substitute in yz = y2
and use x’ = x2 to get y =x17 Finally y = x!7 and % = x2 imply that x = e.
The relations of M give 2z =y =e . Therefore, M = E,

d) M(-1, -1, -1) = <x, y, 2% = %=1, y% = yl, X o 1, M

MT S Z2 X zp Xz . A

straightforward application of the Reidemeister-Schreier process gives that M' =2 x 2

1,1 -
generated by z x z-lx and z vy z ly‘l. Therefore, we have proved:

THEOREM 3. M 1is an infinite metabilian group.

e) M(2, 2, -1) = Y= x2, 7 - X gm

2, 2, ) <X, ¥, zlx = x4, y = y2, 2" = 271, Using the Witt identity we get
-1,-1,-2 = . :
Z27°yT'z27°Yz = x , Ve use this relation together with the relations of M to get
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-4 X _ -1

z" =z we get 22 = e and so x = e . We notice that
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e . The relation yz =y becomes (yz)2 = e . Thus
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M= <y, z|y3 =22 = (y2)2 = e> = S3 .

f) M(-1, -1, 0) = <x, vy, z[xy =x71, y2 = e . %7 =729 %x 2y . Using the Reidemeister-
Schreier process we get that M' is infinite cyclic generated x2 -,

THEOREM 4, M is an infinite metabilian group.

REMARK 7. It is possible to find M' as follows. Let H = <x2l> . It is easy to see

that H M and % =z, x z; . Therefore, H>M' . But x% = y=lx"lyx ¢ M' HcM'.
Thus H = M' .
g) M(l, 0, -1) = <x, z[zx = z71> , It is easy to see that H = <z]> is normal in M

and % = <x|> . Therefore M is the split extension of <x|> by <z|> where the

action is given by 2% = 2=l see [5]. We also notice that (22)* = 22 and xz2x 1= 272
Therefore K = <z2> 4 M . %= Z X Zy =KoM . 22 = x‘lz’lxz%l( c M.
Thus K = M' .
THEOREM 5. M is an infinite metabilian group.
h) It is easy to show the following cases:

(i) M1, 1, 1) = ZxZ x 2 (i1) M(1, 1, 0) =2 x 2

(ii1) M(1, 0, 0) =Z = M(l, 2, 0) (iv) M3, 2, 0) =2,

(v) M(0, 0, 0) = M(2, 2, 0) = M(2, 0, 0) = E (vi) M(2, 3, 0) = S3 .

(vii) M(l, n, 0) =2 x Zn—l forn>1.

(viii) M(m, 2, 0) = M(m, 0, 0) = Zm—l form > 2 .

. s e s M(l, my n) . . _. .
—_—2 3 7
(ix) M(l, m, n) 1is infinite because M (Lm,n) is infinite.
(x) M(1, -1, 0) =Z x2, (xi) M(-m, 0, 0) =2 m>0

m+1’

(xii) M(-m, 2, 0) =2 m>0.

m+1’
Mennicke's group was a generalization of a group given by Higman [2].
Another generalization of Higman's group was considered by Fluch [6] as

8 r

_aaba = am, c-Bbc = bn, a-YcaY =c .

H = <a,b,c|b
We notice that when o = B8 =y =1 then H = M(m, n, r) .
Another generalization of Mennicke's group was given by Post [7] as follows:

G(m,n,r,s,t) = <a,b,c:!abma_1 =", bcrb“l = cs, cac_l =ab .
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