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ABSTRACT. Under uniform integrability condition, some Weak Laws of large numbers are
established for weighted sums of random variables generalizing results of Rohatgi,
Pruitt and Khintchine. Some StrongLlaws of Large Numbers are proved for weighted sums
of pairwise independent random variables generalizing results of Jamison, Orey and
Pruitt and Etemadi.
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1. INTRODUCTION.

Let X, n > 1 be a sequence of real random variables defined on a probability
space (R, B, P) and as n>1, k >1 adouble array of real numbers. Limit theorems

have been studied in the literature for the sequence I a . X, n > 1 of weighted sums
k>1
of the sequence X, , n i/l under some conditions on the double array of numbers and on

the distribution of the sequence Xy 0> 1. Jamison, Orey and Pruitt [4] studied
almost sure convergence of weighted sums under the assumption that the sequence Xps 02 1
is independently identically distributed with Elel < ®, One of the objects of this
paper is to extend the result of Jamison, Orey and Pruitt [4] on almost sure convergence
to cover the case of pairwise independent identically distrubuted sequences Xppn 21
with E|X1| < «©, Recently, Etemadi [3] has shown that Strong Law of Large Numbers is
valid for sequences X , n > 1 which are pairwise independent identically distributed
with EIXll < @, The main result of Section 3 covers Etemadi's result.

Our second objective in this paper is to study convergence in probability of the
sequence of weighted sums described above. Convergence in probability has been studied

under the following condition.
(B) There is a random variable X on § such that EIX\S < » for some s > 0 and

p{[x | > x} < P{[X] > x}



806 X.C. WANG AND M.B. RAO

for every x > 0 and n > 1. See Rohatgi [7]. Wei and Taylor [9, Lemma 3, p.284] have
shown that if

(A) ggg E|Xn|r < @ for some r > 0
holds, then™(B) holds for every 0 <s <r. In this paper, we study convergence in
probability for sequences of weighted sums under the condition that

C) Xy» n > 1 is uniformly integrable.

One can show that if (B) holds, then an|s, n > 1 is uniformly integrable. See
Chung [2, Exercise 7, 4.5]. One can also give examples of sequences Xy» n > 1 satisfy-
ing (C) but not (B)with s = 1.

2. CONVERGENCE IN PROBABILITY.

In this section, we present some results on convergence of weighted sums from which
Weak Law of Large Numbers is derivable. Theorem 1 generalizes some results in the
literature in this area. See the remarks following Theorem 1.

THEOREM 1. Let X , n > | be a sequence of pairwise independent random variables
such that X, n > 1 is uniformly integrable. Let a 4, n > 1, k > 1 be a double array of
real numbers satisfying

(i) z a <C for every n > | for some constant C > 0 and
o1 T -

(ii) max Iankl’ n > 1 converges to 0.
k>1

Then kfl ank(xk - EXk), n > 1 converges to 0 in the mean.

PROOF. It is clear that the series I a_, (X, - EX;) converges absolutely a.e.
o] mkUk k g
[P] for every n > 1 since sup E|X,| < ®and I |a is convergent. Let t>0. We show
B k>1 K 1 K

that lim P{| I a (X, - EX)| > t} = 0. Let ¢ > 0. Since X,, k > 1 is uniformly in-
n>e k>1
tegrable, there exists § > 0 such that

sup [ lel dP < et/8C (2.1)
k>l A

whenever A € B and P(A) < 6. Further, by Chebychev's inequality, for any m > 0 and
k > 1,
P{lxkl >m} < (1/m)E|Xkl < (1/m) sup EIXk|.
k>1

Consequently, there exists a > 0 such that

sup P{IXkl > a} < 6. (2.2)
Kk>1

Define for every k > 1,
Y, =X if [X | <a,
=0 otherwise, and
Zk = Xk - Yk’
Note that Yy k > 1 is a sequence of pairwise independent random '‘variables satisfying
lYk - EYkl < 2a for every k > 1. By (2.1) and (2.2), we have for every k > I,

Elzy | = /x| dP < er/8C.
“Ux, | >al
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Consequently, for every n > 1,
El T ap(zp- B2 | < T Jankl Elz - B2 ] <2 & lankl Elzg | < et/a.
k>1 k>1 k>1

Therefore, by Chebychev's inequality, for every n > 1,

PU T ag(z, - EZ| > €/2) < /2. (2.3)
k>1

Next, we choose N > 1 such that for every n > N, we have

maxlankl < et?/32a%c.
k>1

We observe that for every n > N,

P T ag (Y - EY)| > t/2) < (4/t) Var( T ag, (¥ - EY))
k>1 k>1

4/e?) 2 al, E (v, - EY?

(4/:2)(:3T lag, D kfl lag [EC(Y, - EYk)2

A

< /2 (2.4)
Finally, (2.3) and (2.4) yield
PO I oap (X - Ex)| > e} < pU] T ag (Y - EY,) | >t/2}
k>1 k>1

+P(] I a (2, - EZ)| > €/2}
k>1

< e for every n > N.

Thus kEI ank(xk - EXk), n > 1 converges to O in probability.

To establish mean convergence, it suffices to show that I ank(xk - EXk), n> 1 is
k>1
uniformly integrable. See Chung [2, Theorem 4.5.4, p.97]. Since X}, k > 1 is uniformly

integrable and L lank' < C for every n > 1, it is obvious that I a (X, - EX) ), n > |
k>1 k>1

is uniformly integrable.

REMARKS. (1). Rohatgi [7, Theorem 1, p. 305] showed that L ank(xk - EXk), n>1
k>1

converges to 0 in probability under the following conditions.
(i) Xn’ n > | is independent.

(ii) (B) holds with s = 1.

(iii) The double array a ;, n > 1, k > 1 of real numbers satisfies (i) and (ii) of
Theorem 1.
In view of the remarks made in the introduction, Theorem 1 generalizes this result of
Rohatgi. (Also, this result of Rohatgi was a generalization of a result of Pruitt
[6, Theorem 1, p. 770] who started with the assumption that the sequence X , n > 1 is
independently identically distributed with EIXII < @), Moreover, our proof is simpler
than the one presented by Rohatgi. The essential difference in the proofs lies in the

fact that we truncate each X at afixed point a, where as Rohatgi truncated X, at a,

with a, varying with n. To illustrate the power of Theorem 1 over Theorem 1 of Rohatgi,
consider the following example. Let X, n > 1 be a sequence of pairwise independent .

random variable with X, having the following probability law.
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P{X, = n} = P{X, = -n} = 1/2nlog(ntl),

P{X, = 0} = 1 - (1/nlog(n+l)).
X,» n > 1 is uniformly integrable. But (B) does not hold for the sequence X n 21

with s 1. Rohatgi's theorem is not applicable to determine the convergence of
Xk,

n
(1/n) I Xes 0 > 1 to 0 in probability. But by Theorem 1, the sequence (1/n)
= 1

k=1 k

N~

n > 1 does indeed converge to O in probability.

(2). Chung [2, Theorem 5.2.2, p. 109] proved (attributed to Khintchine) the result
that (l/n)(X1 + Xy + o 4 Xn), n > 1 converges to EX; in probability if X,»n 2> 1 is
a sequence of pairwise independent identically distributed random variables with
EIX1| < ®, Theorem |l generalizes this result, Moreover, the proof presented here is
much simpler than the one presented by Chung.

If we impose a stronger condition on the double array, we can establish a Weak Law
of Large Numbers for weighted sums without the assumption of independence of the random
variables but in the presence of uniform integrability.

THEOREM 2. Let X , n > | be a sequence of real random variables defined on a
|r

probability space (2,8,P) such that |Xn » n > 1 is uniformly integrable for some

0 <r <l. Let ag,,n>1,k

v

1 be a double array of real numbers satisfying

(1) & |a|" < C for every n > 1 for some constant C > 0,
k>1
(ii) max Iank], n > 1 converges to 0.

k>1

Then I a 1 Xg» n > 1 converges to 0 in r-th mean.
k>1
PROOF. This can be proved by a simple modification of the proof of Theorem 1.

The series I aXgs 0 2 1 converges absolutely a.e. {P] for every n > 1 since
k>1

L Iank|r|Xklr converges a.e. [P] and 0 < r < 1. The inequality (2.1) takes the form
k>1

sup / |x, [T dP < et/8cC,

k>l A

and the inequality (2.2) remains intact as it is. The sequences Y k> 1and 7, k > 1
are defined in exactly the same way as it was done in the above proof. The probability

P{| z ankzkl > t/2} is estimated by I Ianklr Ele|r. Now comes the point of departure.
k>1 k>1

In the proof of Theorem 1, we showed that I ank(Yk - EYk), k > 1 converges to zero
k>1

in probability. Under the conditions of Theorem 2, we can do better than this. The

sequence I ane Yk’ n > 1 does indeed converge to 0 a.e. [P]. This follows from the
k>1
following chain of inequalities. For every n > 1,

- 1-r r
| £ a_,Y | <a = la_. | < a(max la_, |) T la.|T.
ko1 nk k! = o1 nk ko1 nk ko1 nk

It now follows that I a X, n > 1 converges to O in probability. To establish con-
k>1
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vergence in r-th mean, it suffices to show that I I ankxklr’ n > 1 is uniformly in-

tegrable. This is not hard to prove.

REMARKS. Rohatgi [7, Theorem 1, p.305] established a weaker conslusion than the
one given above under stronger conditions that the sequence X,» n > 1 is independently
distributed and that (B) holds for the sequence X,> n > 1 with s = r. The major im-
provement achieved by Theorem 2 over Rohatgi's theorem is dropping the assumption of
independence.

Now, we enquire about the validity of Theorems 1 and 2 in the context of separable
Banach spaces. Theorem 2 is valid for sequences of random variables taking values in
separable Banach spaces. For the sake of clarity, we give the statement below.

THEOREM 3. Let X , n > 1 be a sequence of random eiements taking values in a
separable Banach space B equipped with a norm ||.l| such that I|Xn||r, n>1 is uni-
formly integrable for some 0 <r <l. Let ans n>1, k> 1 be adouble array of real

numbers satisfying (i) and (ii) of Theorem 2. Then I a,Xg» n > 1 converges to 0 in
k>1

the r-th mean, i.e.,E|| T ankxkllr’ n > 1 converges to zero.
k>1

REMARKS. (1). The proof of Theorem 3 is analogous to the one given for Theorem
2. This result is a generalization of Theorem 2.1 of [l1]. The major improvement
achieved in the above result is in disposing of the assumption of independence in
Theorem 2.1 of [l]. Moreover, the proof suggested above is much simpler than the one
presented in [1] for Theorem 2.1.

(2). Theorem 1 is not valid for Banach space-valued random variables under con-
ditions similar to those imposed in Theorem 1. (See the comments following Theorem 1.1

of [1]). For the validity of Theorem 3, almost sure convergence of I an Y, n 21
k>1

to 0 certainly helped. The proof given for Theorem 1 fails to work in Banach spaces

because we are unable to establish convergence of I aYg> n > 1 to O either in
>

probability or a.e. [P]. However, if X,» n > 1 is uniformly tight, i.e., given € > O,
there exists a compact subset C of B such that P{Xn € C} >1 - ¢ for every n > 1, then
Theorem 1 is valid under the conditions stipulated therein. For further details on this
result, see Wang and Bhaskara Rao [10, Theorem 2.4].

3. ON STRONG CONVERGENCE.

Extensions of Kolmogorov's Strong Law of Large Numbers are generally sought so that
they become more applicable under circumstances less stringent than those imposed by
Kolmogorov's Strong Law of Large Numbers. Jamison, Orey and Pruitt [4, Theorem 3, p. 42]
worked with independent identically distributed sequences of random variables but im-
posed conditions on the weights to establish Strong Law of Large Numbers. Etemadi
[3, Theorem 1, p. 119] relaxed the assumption of independence in Kolmogorov's Strong
Law of Large Numbers to pairwise independence and arrived at the same conclusion. The
following result encompasses both these extensionms.

THEOREM 4. Let X , n > l be a sequence of pairwise independent identically dis-
tributed random variables definéﬁ on a probability space (R,8,P) satisfying E|X1| < ®,

Let a_, n > 1 be a sequence of positive numbers satisfying lim max (ai/An) = 0, where
" - n*® 1<i<n
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aj, n > 1. Let N(n) be the number of positive integers k > 1 such that
1

A, =

i

[ ac}=]

(Ak/ak) <n, n > 0. If N(n)/n < r for every n > 1 for some constant r > 0, then

g (ak/An)Xk, n > 1 converges to EX; a.e.[P].
k=1
PROOF. The proof is carried out in the following three major steps. 1°. since
each of the sequences X:, n > 1 and X, n > | satisfies the hypothesis of the theorem,
we can assume, without loss of generality, that each X, >0. For each k > I, let
Y = X if X < Ak/ak’
=0 otherwise.
Note that Y., k > 1 is a sequence of pairwise independent random variables. It can be

n
shown that I (aﬁ/Ag)EYg is convergent. Further, I (ak/An)Xk, n > 1 converges to
n>1 k=1

n
EX, a.e.[P] if and only if kEI (ak/An)(Yk - EYk), n > 1 converges to 0 a.e. [P]. The
details are worked out in Stout [8, p. 221].

2°. We now show that almost sure convergence takes place along some well chosen

n

special subsequences of I (ak/An)(Yk - EYk), n > 1. In the final step 39, we will
k=1

show that convergence takes place along the entire sequence almost surely. Let a > I.

Define a sequence m;, my, ... of positive integers by letting my = 1 and my = min

{3 >1; A, > a}, i = 2,3,... . Obviously, my <m, <m3 < ... . We show that
- J= Wi
et
I (g /A, ) (Y - EY}), i > 1 converges to O a.e.[P]. It suffices to show that for
k=1 1

any € > 0,

m.
i
By,e = L P{| 2 (/A ) (Y - EY )| > e} < =,

i>1 kel
By Chebychev's inequality, o
i
B, . < (1/¢?) T Var( I

(ay/ (Y, - EY.))
a,€ 151 K k Amg k k

1
m.

(1/e2) T T (al/A2) var (%)
i>1 k=1 - KWy k

m,
1
(/ed) & & (al/al) Ev
21 k=1 1

A

=ased 1oaled roual,
k2l s23.
- k
where j, = min{j > 1j my >k}, j = 1,2,3,...
6
It is clear that A, > A  and I 1/A2 < (1/A2 )(1 + 1/a2 + 1/6% + 1/a® + ...
Jk JiJk J Jk

k

Consequently,

B

a.e = (1/€2) (@2/a? -1) & (ai/Aﬁ) EY‘Z( < =, by 1°.

k>1
- n
3°, Finally we show that the entire sequence I (ak/An)(Yk - EYk) n > 1 converges
: k=1

to 0 a.e.[P]. Since lim max (ak/An) =0, lim (an/An—l) = 0 and lim (An/An—l) = 1.
n>o 1§k_<_n n>o n>re
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Observe also that An/An-l > 1 for every n > 2. We can find an integer Ny > 1 such that
1 < (An/An-l) < a for all n>N,. Equivalently, if n>N,, A ;| < A < oA _,. For each

n > 1, there exists a unique integer i > 2 such that my_; < n < my. If my_; > Ny, then

2 2
< < a < o < 0%A_. 3.1
Ap < Ap, < ohg oy <0y n (3.1)
m
n
Consequently, 1/An < a2/Ami and kE1 (ak/An)Yk < o? kE1 (ak/Ami)Yk for every n > N,.
Therefore,
n my 2
lim sup I (ak/An)Yk < lim I (ak/Am.)Yk = o“EX; a.e. [P].
n»>e k=1 ire k=1 1

n

(One can check that lim EY = EX, and, by Toeplitz lemma, lim I (ak/An)EYk = EX;.)
n>« n*e k=1

n

From (3.1), we also observe that l/An > l/aZAmi 1 and I
- k=

m
(ap/Ay) Yy > (1/a?) %
1 k=1

(ak/Ami-l) Yy, if m;y_; > Ny. Consequently,
;o B sl 2
lim inf I (ak/An) Yy > (1/a2) lim I (ak/Am ) Y, = (l/a )EXl a.e. [P].
nre k=l i»e k=1 i-1
Thus we observe that for every a > 1,
(1/a2)EX1 < lim inf g (ak/An)Yk < lim sup g (ak/An)Yk < aZEX1 a.e. [P]. This proves
n>e k=1 n>® k=1
the almost sure convergence of the desired sequence.

REMARKS. (1). This theorem extends to separable Banach spaces-valued random
variables verbatim. A proof can easily be obtained with appropriate modifications of
the proof of Strong Law of Large Numbers given in Padgett and Taylor [5, p.42-44]. Or,
one can adopt the argument given in Bozorgnia and Bhaskara Rao [1] in the proof of
their Theorem 2.1.

(2). Kolmogorov's inequality plays a crucial role in the standard proof offered

in many text books for Kolmogorov's Strong Law of Large Numbers. This inequality, as
it stands, cannot be commandeered for pairwise independent sequences of random variables.

The idea of establishing convergence along some special subsequences is taken from
Etemadi [3] but his technique has been modified extensively in the above proof to suit
our needs. Also, Theorem 4 strengthens the conclusion of Theorem 5.2.2 of Chung [2,
p. 109] from convergence in probability to convergence almost everywhere [P].

There are sequences a,, n > 1 of positive numbers such that lim max ak/An =0
n*e 1<k<n

but N(n)/n, n > 1 is unbounded. See Jamison, Orey and Pruitt [4, p.43]. In such a case,
Theorem 4 becomes inapplicable. However, if we impose a stronger condition that
E|X1|103+|X1| < ©, one can establish a Strong Law of Large Numbers generalizing Theorem
4 of Jamison, Orey and Pruitt [4, p.43] as follows.

THEOREM 5. Let X, n > 1l be a sequence of pairwise independent identically dis-
tributed real random variables defined on a probability space (2,B8,P) with

E|Xlllog+|xl| < . Let ap, n > 1 be a sequence of positive numbers satisfying lim A= =,
nre

where An =

[ o=}

a;, n > 1. Then
i=1
n
z (ak/An) Xk’ n > 1 converges to EXl a.e. [P].
k=1
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PROOF. Using Lemma 2 of Jamison, Orey and Pruitt [4, p.43], one can prove the above
result by a suitable modification of the proof of Theorem 4.

REMARK. Theorem 5 is also valid for separable Banach space-valued random variables.
The relevant moment condition is that E||Xll|log+|lxl|‘ < o,
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