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i. INTRODUCTION.

Travis Thompson [1] in 1976 initiated the notion of S-closed topological spaces,

which was followed by its further study by Thompson [2], T. Noiri [3,4] and others.

It is now the purpose of this paper to introduce and investigate the corresponding

concept, i.e., pairwise S-closedness in bitopological spaces. To make the exposition

of this paper self-contained as far as possible, we shall quote some definitions and

epunciate some theorems from [5,6,7].

DEFINITION 1.1. [7] Let (X, I’ 2 be a bitopological space.

(i) A subset A of X is called T. semi-open with respect to . (abbreviated as

i s.o.w.r.t. j) in X if there exists a i open set B such that B C-A-B

(where Bj denotes the j-closure of B in X), where i, j 1,2 and # j.

A is called pairwise semi-open (written as p.s.o) in X if A is 1

s.o.w.r.t. 1 as well as 2 s.o.w.r.t. 1 in X.
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(ii) A subset A of X is called I semi-closed with respect to 2 (denoted as

I s.cl.w.r.t. 2 if X A is T1 s.o.w.r.t. T2" Definitions for 2
s.cl.w.r.t. I and p. s.cl. sets can be given similarly as in (i).

(iii) A subset N of X is called a i semi-neighborhood of x w.r.t. Tj,
where x e X, if there is a i s.o. set w.r.t. j containing x and contained in

N. A point x of X is said to be a i semi-accumulation point of a subset A

of X w.r.t, l-j, if every i semi-neighborhood of x w.r.t.

in at least one point other than x, where i,j 1,2 and j.

j intersects A

(iv) The intersection of all i s.cl. sets w.r.t.

of X, is called the i semi-closure of A w.r.t.

A where i,j 1 2 and # j
-i(j)’

j, each containing a subset

j and will be denoted by

It has been proved in [7] that a subset A of a bitopological space

(X, I’ 2 is i s.cl. w.r.t. j if and only if A __i(j)A and moreover,

x A () if and only if x is either a point of A or a i semi-accumulation
-i j

point of A w.r.t. j, where j and i, j 1,2.

2In [7] it was deduced that AC (X 1’ 2 is 1 s o.w r t 2 iff

2(A 1) 1where A denotes the l-interior of A in X. Similarly we shall

2use A to mean the 2-interior of A in X.

It is very easy to see that every i open set in (X, 1’ 2 is i s.o.w.r.t.

j and the union of any collection of sets that are i s.o.w.r.t. j, is also so,

where i, j 1,2; # j. It was shown in [5] that the intersection of two 1 s.o.

sets w.r.t. 2 is not necessarily 1 s.o.w.r.t. 2" But we have,

THEOREM 1.2. [5] If A is i s.o.w.r.t. j in (X, I’ 2 and B IC 2’
then AFt B is i s.o.w.r.t. j, where i, j 1,2 and # j.

The first part of the following theorem was proved in [7] and the converse part

in [52.

THEOREI4 1.3. Let AC-YC-- (X, ], 2). If A is i

(Ti) Y s.o.w.r.t. (j)y. Conversely, if A is (i)y

s.o.w.r.t. Tj, then A is

s.o.w.r.t. (j)y and Y

i’ then A is i s.o.w.r.t. j, where i, j 1,2 and j.

DEFINITION 1.4. [6] (a) A bitopological space (X, 1’ 2 is said to be Ii
almost compact w.r.t. j (i, j 1,2; j) if every i open filterbase has a

j cluster point. (X, TI’ 2 is called pairwise almost compact if it is T
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almost compact w.r.t. T2 and T almost compact w.r.t. TI"
(b) A bitopological space (X*, I’ 2 is called an extension of a bitopological- X* *space (X, I’ 2 if XC_ X* X and (i)X for 1,2.

A pairwise Hausdorff bitopological space (X, T I, 2 is called pairwise

H-closed if the space cannot have any pairwise Hausdorff extension.

THEOREM 1.5. [6] (a) (X, I’ 2 is pairwise almost compact if and only if for

each cover {G I} of X by i open sets there exists a finite

n
subcollection {G G such that X , .l where i, j 1,2 and

I n k=l
ij.

(b) If (X, I’ 2 is i regular w.r.t. Tj and i almost compact w.r.t. Tj,
then (X, i s compact, for i, j 1,2 and # j.

(c) A pairwise Hausdorff and pairwise almost compact bitopological space is pairwise

H-closed.

In what follows, by (X, 1’ 2 we shall always mean a bitopological space,

i.e., set X endowed with two opologies 1 and T 2.

2. PAIRWISE S-CLOSED SPACES.

DEFINIT.ON 2.1. Let F {F} be a filterbase in (X, 1’ 2 and x X. F

is said to

(i) i S-accumulate to x w.r.t. Tj if for every i s.o. set V w.r.t. j
Tjcontaining x and each F F, F ’ V # .

(ii) i S-converge w.r.t. j to x, if corresponding to each i s.o.set V

w.r.t. . containing x, there exists F F such that F -- VTj.

In (i) and (ii) above, # j and i,j 1,2. F is said to pairwise

S-converge to x if F is I S-convergent to x w.r.t. 2 as well as T2
S-convergent to x w.r.t. 1" lhe definition of pairwise S-accumulation point of

F is similar.

DEFINITION 2.2. (X, I’ 2 is called T1 S-closed w.r.t. 2 if for each cover

{V- I} o X with I s.o. sets w.r.t. T2’ there is a finite subfamily
n 2{V 1,2 n} such that k.V X (where is some index set). X

is called pairwise S-closed if it is T 1 S-closed w.r.t. 2 and 2 S-closed

w.r.t.

THEOREM 2.3. Let F be an ultrafilter in X. Then F 1 S-accumulates to a point
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x X w.r.t. 2 if and only if F is I S-convergent to xo w.r.t. 2"
PROOF" Let F be 1 S-convergent w.r.t. T2 to x and let it not 1
S-accumulate w.r.t. To to Xo. Then there exist a 1 s.o. set V w.r.t. 2
(containing xo) and some F F such that Fa(’2 . Then F C_. X -2V

2and hence X V F (2.1)

Since F is 1 S-convergent w.r.t. 2 to xo, corresponding to V there exists

F F such that FBC_
_

2. Then F (2.2). Clearly (2.1) and (2.2) are

incompatible. Note that for this part we do not need maximality of F.

Conversely, if F does not 1 S-converge w.r.t. 2 to xo, there exists a T 1

s.o. set V w.r.t. 3 2 containing xo, such that F T2, for each F e F. But F

has xo as a I S-accumulation point w.r.t. 32. Hence F f V2 , for each
3 2)F e F. Thus F g 2 and F I(X- g for each F e F Since F is

g2maximal, this shows that and X V both belong to F, which is a

contradiction.

NOTE 2.4. In the above theorem, the indices and 2 could be interchanged.

THEOREM 2.5. In a bitopological space (X, I’ 32) the following are equivalent"

(a) X is I S-closed w.r.t. 2"
(b) Every ultrafilterbase F is I S-convergent w.r.t. 2"
(c) Every filterbase I S-accumulates w.r.t. 32 to some point of X.

(d) For every family {F of s cl sets w r t. 2’ with(F B there1

n

exists a finite subcollection {F }n of {F} such that ( (Fi)
2 .

ii=l i=1

PROOF- (a) => (b) Let F {F be an ultrafilterbase in X, which does not 1
S-converge w.r.t. 32 to any point of X. Then by Theorem 2.3, F has no 31
S-accumulation point w.r.t. 32 Thus for every x e X, there is a 31 s.o. set

V(x) w.r.t. 32 containing x and an F(x) F such that F(x)( V-TT 2 %.

Evidently, {V(x)" x X} is a cover of X with sets that are 1 s.o.w.r.t.

and by (a), there exists a finite subcollection {V (xi)" 1,2 n} of
n

{V(x)" x X} such that V(x i) X.
i=1

Now, F being a filterbase, there exists Fo z F such that

n
Fo__ ’ F(xi)

i=1

2
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2Then F . V (xi) } for 1,2 n.

n

:2) which is a contradiction:> F r 1 V(xi Fo (- X :> Fo
i=1

(b) => (c) Every filterbase F is contained in an ultrafilter base F* and F* is

I S-convergent w.r.t. 2 to some point x by (b), and hence xo is a I
S-accumulation point of F* w.r.t. %2"
S-accumulation point of F w.r.t. %2"
(c) :> (d) Let F {F be a family of

Since F F* x is also a T1o

Zl s.cl. sets w.r.t. 2 with ( F

n n 2and be such that for every finite subfamily {F (say), (F IB. Thus
si i=1 i=1 i

n
i2F (F n positive integer, F F} forms a filterbase in X and

i=1

hep.ce by hypothesis has a 1 S-accumulation point xo w.r.t. 2" Then for any

T

1 s.o. set V(xo) w.r.t. 2 containing xo, (F) 2 i V(xo 2 # for each

F F. Since F , there is some F F such that x F Hencea s
O

O a
0

Hence (F 2 - (X F3 2 or,x X Fo which is I s.o.w.r.t. 2" o So
i2(F (X (F 2) which is impossible

a
0

4
O

(d) => (a) Let {V be a covering of X with sets that are 1 s.o w r t 2(

Then (X V X V . By (d), there exists finite number of indices

n n

I’ 2 an such that (X Vk) 2 iB, i.e., (X
k

0, or

k=l k=l
n n

X Vk , or V-- 2 X and hence X is 1 S-closed w.r.t. 2"
k=l k=1

NOTE 2.6. Obviously, in the above theorem, the indices and 2 could have been

interchanged and hence the statement (a) can be replaced by "X is pairwise

S-closed" with corresponding alterations in (b), (c) and (d).

DEFINITION 2.7. A subset Y of (X, 1’ 2 will be called

j in X if and only if for every cover {V I} of Y by

w.r.t. j of X, there exists a finite set of indices I’ 2
that

S-closed w.r.t.

s.o. sets

such

n jY } {V-- }, where i, j 1,2 and j.
k=l
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THEOREM 2.8. A subset Y of (X, TI’ 2 will be (i)y S-closed w.r.t. (j)y
if Y is Ti S-closed w.r.t. j in X and Y Ti’ where i, j 1,2 and # j.

PROOF- We prove the theorem by taking and j 2. Similar will be the proof

when 2 and j 1. By virtue of Theorem 1.3, every cover {V o I} of Y

by sets that are (l)y s.o.w.r.t. (2)y can be regarded as a cover of Y by sets

that are 1 s.o.w.r.t. 2" Then by hypothesis, there is a finite number of

indices I’ 2 on such that

n n

t T2 => Y "U V-( T2 )Y and the theorem follows.Y _. okk=l k=l

THEOREM 2.9. If Y (C(X, T I, 2)) is (i)y S-closed w.r.t. (Tj)y and Y

TI T2, then Y is i S-closed w.r.t. j in X, for i, j 1,2 and # j.

PROOF- We prove only the case when and j 2. Let {G} be a cover of Y,

where each G is s o w r.t 2 Then by Theorem 2 G ( Y is T
O O

S.O.w.r.t. 2 for each o and hence by Theorem 1.3, Go ( Y is (l)y
s.o.w.r.t. (2)y for each o. By hypothesis, there exists a finite number of

indices el’ 2 en such that

n n

y ...) (G.--;(T2)y => y _L.,)2 => y is 1 S-closed w.r.t. 2 in X.
-k Kk=l k=l

DEFINITION 2.10. [7] A subset A in (X, T 1, 2 is called I regularly open

if and only if A (A 2) (respectively if and only if(closed) w.r.t. T 2

A=(Ai2) ). Similarly we define sets that are 2 regularly open (closed) w.r.t.

1"
It has been shown in [7] that a subset B of (X, TI’ 2 is T regularly

closed w.r.t. j iff (X B) is i regularly open w.r.t. Tj, for i, j 1,2 and

ij.

LEMMA 2.11. If a subset A of a bitopological space (X, 1’ T2) is Tj regularly

closed w.r.t. i’ then A is i s.o.w.r.t. Tj, where i, j 1,2 and j.

PROOF" Proof is done only in the case when and j 2.

A is 2 regularly closed w.r.t. T1 (X A) is T 2 regularly open w.r.t. T

(2.3)
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Let 0 X (- Then 0 is I open and

2 (X -A x X (x -A A (by (2.3)).

Thus O---AC_L 2 and 0 1" Hence A is I s.e.w.r.t. 32

LEMMA 2.12. If a subset A of (X, 31 2 is 3 s.o.w.r.t. j

3j regularly closed w.r.t. 3 i, where # j and i, j 1,2.

PROOF: As before we consider the case 1 and j 2. Sinc A is

s.o.w.r.t. 2’

then J is

ATI2 2 i12we have A C A CZ Then X (A2 (2.4)

It has been shown in [7] that a set A in (X, 31 32 is i regularly closed

w.r.t 3j (i, j 1,2; j) if it is 3 closure of some 3j open set. Since

A is open, by virtue of (2.4) the result follows.

THEOREM 2.13. A bitopological space (X, 31 32 is 3 S-closed w.r.t. 3j if

and only if every proper j regularly open set w.r.t. 3 of X is 3 S-closed

w.r.t. j, for i, j 1,2 and j.

PROOF- We only take up the case and j 2.

Let X be

of X w.r.t 31
s.o.w.r.t. 32
(X F) is

by 1 s.o. sets w.r.t.

I S-closed w.r.t. 32 and F be a proper 32 regularly open set

Let {V- I} be a cover of F by sets that are 1
Since X F is 32 regularly closed w.r.t. 31 by Lemma 2.11,

s.o.w.r.t. 32 and hence (X F).}{V I} is a cover of X

2" Since X is 1 S-closed w.r.t. 32 there exists a

n
32 [ (’k 2)].

k=l

finite-number of indices 1’ 2 n such that X (X F)

Since F is 2 open, F FiX FT2
n

and hence F LI(Vk 32), proving that

k=l

F is 31 S-closed w.r.t. 32 Conversely, let {V I} be a cover of X by

sets that are 1 s.o.w.r.t. 32 If X g32, for each a e I, then the theorem is

-2 for some and V IB Then B is a properproved. So, suppose X V g

subset of X. Since V is 31 s.o.w.r.t. 32 by Lemma 2.12, V
B

is 32

regularly closed w.r.t. 1’ so that X 1 2 is proper 32 regularly open w.r.t.

I and by hypothesis, it is 31 S-closed w.r.t. 2" Then there exists a finite
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m

2___ LJ 2
set of indices a I, a2,

am such that X -g a
kk=l

m

X VB2 (U va 2) and x is I S-closed w.r.t. 2"
kk=l

Hence

THEOREM 2.14. A subset A in (X, I’ 2 is i S-closed w.r.t. j in X if

and only if every cover of A by sets that are j regularly closed w.r.t. i in

X, has a finite subcover, where i, j 1,2 and # j.

PROOF- We consider only the case 1 and j 2. Let A be 1 S-closed

w.r.t. 2 in X and {Va be a collection of 2 regularly closed sets in X

w.r.t. I’ which is a cover of A. Then each Va is I s.o.w.r.t. T 2, by

Lemma 2.11 and hence there exists a finite set of indices a 1, a
2

a
n such that

2 LJ .]V 2 V U V (since each Va. is 2A(.T_ Val an al an
closed). Conversely, let the given condition hold and {Va} be a 1 s.o. cover of

T
is 2 regularly closed w r t I for each a, byA w.r.t. 2" Then V=

2}Lemma 2.12, and {V is a cover of A. Then by hypothesis, there exist a finite

2 showing that A isnumber of indices a I, a2, ar such that A akk=l
S-closed w.r.t. :2"
THEOREM 2.15. If A and B are .I S-closed w.r.t. j in (X, I’ 2)’ then

ALDB is also so, where i, j 1,2 and j.

PROOF" Let {Va be a cover of AU B by sets that are i s.o.w.r.t. j in X.

Then it is a cover of A as well as of B. By hypothesis, there will exist a finite

number of indices all’ 12’ alk and a21, a22, a2r such that

k r k r
T. T. T.U J and BCg a Then d B (C’ al’lR)J(k,.-j 2"lk and

k=l lk k=l 2k k=l k=1

hence A L] B is . S-closed w.r.t. ..
THEOREM 2.16. If A is I S-closed w.r.t. 2 in (X, 1’ 2 then 2 is also

SO.

2PROOF- Let {V} be a cover of by sets that are 1 s.o.w.r.t. 2’ then it

is also a cover of A. Thus there exists a finite number of indices 1’ an
n n

such that A U .2 =>
2 C Va. 2 and the result follows. From

i=I i=I
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Theorem 2.9 anc Theorem 2.16 we get:

COROLLARY 2.]7. If A (X, I’ 2 is pairwise open and (A, (I)A (2)A) is

pairwise S-closed, then is pairwise S-closed in X, for 1,2

COROLLARY 2 18 A space (X, 1’ 2 is . S-closed w.r.t. . if there exists a
,l. S-closed subset A w.r.t. . in X, which is . dense in X, where i, j

J J

1,2 and j.

THEOREM 2.19. Let AC(X, I’ 2 be I S-closed w.r.t. 2 and B is 2
regularly open w.r.t. 1 in X. Then A(B is I S-closed w.r.t. 2"
PROOF" Let {V- I} be a T S.O. cover of ACt B w.r.t. 2’ where is

some index set. Since X-B is regularly closed w.r.t.

is I s.o.w.r.t. 2
w.r.t. %2"
Then there exist indices

2 I’ by Lemma 2.11, (X-B)

Thus A - eLEI {v} . (X-B) and A is I S-closed

I’ 2 an,, finite in number, such that

n n

AC L)
i=I i=I

V2 and AI-IB is T S-closed w r t.Thus A(I B --_
1"=

COROLLARY 2.20. Let A_ (X, 1’ 2 be T1 S-closed w.r.t.

regularly open w.r.t. I’ then

(a) B is 1 S-closed w.r.t. 2 if B_. A.

2(b) A is
1 S-closed w.r.t. 2 if A is 1

PROOF" (a) Follows immediately from Theorem 2.19.

closed in X.

2 and B is 2

(b) Since (% 1) 2 is 2 regularly open w.r.t. 1
2A the result follows by virtue of Theorem 2.19.

THEOREM 2.21. If (X, 1’ 2 is i regular w.r.t.

then (X, i is compact, where i, j 1,2; j.
J

and I) 2 r A A A

and S-closed w.r.t.j i

Proof By virtue of Theorem 1.5(a), we see that every . S-closed space w.r.t.

is i almost compact w.r.t. j. Hence by Theorem 1.5(b) the result follows.

In Theorem 3.7 we shall prove a partial converse of the above theorem.

3. PAIRWISE EXTP,EMALLY DISCONNECTEDNESS AND S-CLOSED SPACE.

DEFINITION 3.1. A bitopological space (X, 1’ 2 is said to be i
extremally disconnected w.r.t. -j if and only if for every i open set A of X,
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X J is t open, where i, j 1,2 and j. X is called pairwise extremally

disconnected if and only if it is tl extremally disconnected w.r.t. 2 and 2
extremally disconnected w.r.t. %1"

Datta in [8] has defined pairwise extremally disconnected bitopological space

identically as above, we shall show (see Corollary 3.4) that the concept can be

defined by a weaker condition.

The conclusion of the following theorem was also derived in [8] under the

hypothesis that the space is pairwise Hausdorff and pairwise extremally disconnected.

We prove a much stronger result here.

THEOREM 3.2. Let (X, I’ T2 be I extremally disconnected w.r.t. 2 or T2
extremally disconnected w.r.t. I" Then for every pair of disjoint sets A, B in

X, where A 1 and B 2’ one has 2 /- (B.

PROOF- Suppose (X, I’ 2 is I extremally disconnected w.r.t. 2 and A

T

B 2 with A B B. Then t2 B B (I). Now, if A # B,

2then there exists x and x I" Hence 2 - B contradicting

(I). Similarly the other case can be handled.

We prove a stronger converse of the above theorem.

THEOREM 3.3. (X, 1’ 2 is pairwise extremally disconnected if for every pair of

disjoint sets A and B, where A 1 and B t2’ X2 (r T1 holds.

PROOF" Suppose (X, 1’ 2 is not T extremally disconnected w.r.t. 2" Then

2there is a 1 open set A such that X 2
TI" Then X 2 and A T1 such

.T _T T

that A /’I (X 2) ). Hence by hypothesis, +2 /- (X A 2) }. Then

(X % 2) X and X % 2 is closed. Thus % 2
1 is 1 -open. A

contradiction.

Similarly, (X, I’ z2 is T 2 extremally disconnected w.r.t. T I.

From Theorems 3.2 and 3.3 we have,

COROLLARY 3.4. (X, 1’ 2 is pairwise extremally disconnected if and only if it is

either 1 extremally disconnected w.r.t. 2 or 2 extremally disconnected

w.r.t. I"
LEMMA 3.5. If (X, 1, 2 is pairwise extremally disconnected, then for every tl
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and for everys.o. set V w.r.t. 2’ -V2(l) 2 s.o. set U w.r.t I,

u :-I(O).
PROOF" Obviously, V 2

2(1)
Now if x V then there exists a s o set W w r t 1’ containing

-2 (1)’ 2

2x such that V(3W . Then V and W are nonempty disjoint sets, respectively

1 open and 2 open. Since (X, i, 2) is pairwise extremally disconnected, we

have

2 T 2V W }, i.e., ( ( Thus x V Hence V V2-2(i)
Similarly the other part can be proved.

LEMMA 3.6. In a pairwise extremally disconnected space (X, 1’ 2)’ every i
regularly open set w.r.t. j is i open and j closed, where i, j 1,2 and

i#j.

PROOF" Let A be a i regularly open set in X w.r.t. 2’ so that (% 2) 1 A.

Now, (X A ) and A are disjoint sets, respectively 2 open and 1 open.

Since (X, 1’ 2 is pairwise extremally disconnected, we have

TI 2)I(X 2) 2 I, y Theorem 3.2. Then (X X 2 and X 2

2I -closed. Hence 2 is i-open, so that 2) A is I open and

-closed.2
Similarly, we can show that every 2 regularly open set in X w.r.t. T1 is

-open and 1 -closed.

THEOREM 3.7. If (X, I’ T2) is pairwise extremally disconnected and (X, 1 is

compact, then (X, I’ 2 is 1 S-closed w.r.t. 2"
PROOF" Let {V I} be a cover of X by sets that are I s o.w.r t 2(

For each x X, there is a V containing x, for some I. Then therexx

exists a 1 open set 0
a

such that Oa Va ( a2 Since X is pairwise
X X X X

-2 is open for each x e X. By compactness ofextremal!y isconnected, 0
a
X

(X, 1 there exists a finite set of points x 1, x2 xn

2 2X {0 2 }. But 0 V for each x. Hence
k=l xk x x x x

Hence X { 2 and X is I S-closed w.r.t. 2"k=l xk

of X such that

is
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We have earlier observed that every . S-closed space (X, 1’ 2 w.r.t.

is always 3 almost compact w.r.t. 3j for i, j 1,2 and # j. Now we have"

THEOREM 3.8. If (X, i’ 32) is 31 almost compact w.r.t. 2 and pairwise

extremally disconnected, then (X, T 1, T2 is 31 S-closed w.r.t. 2"
PROOF" Let us consider a cover {V- I) of X with sets that are 1

s.o.w.r.t. 2" For each = I, we consider the set U (e2 1 which is I

regularly open w.r.t 2 Then U(ZI UL) VC3 2 [( =-0 2 Since

U= is i reoularly, open w.r.t. 2’ by Lemma 3.6, U is 2 -closed and hence,

U r___ u_) v
__

2 u Thus U U L) V Again U being -open" I

for each I, it follows that {U L) V I) is a I -open cover of

(X, I’ 2)" (X, Xl’ 2 being I almost compact w.r.t. 2’ there exists a

finite subfamily

L__J {U J V } Now since U U V__ V for
o of such that X

0

22 C for each and hence X L_J 2}each I, we have UL V
0

Hence (X, T I, %2 is 31 S-closed w.r.t. 32.
4. SEMI CONTINUITY, IRRESOLUTE FUNCTIONS AND S-CLOSEDNESS.

DEFINITION 4.1. [7] A function f from a bitopological space (X, 1’ 2
into a bitopological space (Y’ I’ 2 is called I I semi-continuous w.r.t. 2

f-1 (A)is s.o.w.r.t. Similar goes the definition ofif for each A Ol, 1 2"

T2 2 semi-continuity of f w.r.t. T
1. f is called pairwise semi-continuous if

f is 1 1 semi-continuous w.r.t. 2 and 2 2 semi-continuous w.r.t. TI"
LEMMA 4.2. If a function f- (X, I’ 2 (Y’ i’ 02) is T1 1 semi-continuous

O

w.r.t. 32, then for any subset A of X, f (A.I(2 -- f- I.
PROOF" Let y f(A_ and y V o I. _I(2I(2 Then there exists x A such

that f(x) y and x f-l(v) and f-I (V) is I s.o.w.r.t. 2"
Hence f-I (V)(A # ) :> f (f-I (V)(A) ) => V(’ f (a) } => y f(A) I.
THEOREM 4.3. Pairwise semi-continuous surjection of a pairwise S-closed space onto a

pairwise Hausdorff space is pairwise H-closed.

PROOF" Let f- (X, 31 32 (Y, 1’ 2) be a pairwise semi-continuous surjection,

where X is pairwise S-closed. We first show that (Y, o 02 is 01 almost

compact w.r.t. 2" Let {V I} be a 1 open cover of Y. Then
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{f-1 (V)" I} is a cover of X by sets that are I s.o.w.r.t. 2" Since X

is T1 S-closed w.r.t. T2 there exists a finite subfamily of I, such that

X f-l(ve) We show that f-l(v)
o o

X. In fact, let x X

and W be any 2 s.o. set w.r.t. T 2,

such that U_. W

_
and U . Since f-I (V) is 2o

every nonempty 2 open set must intersect I f-l(va) and hence
o

u [LE)

containing x. Then there exists U 2
dense in X,

f-1 (V)] }. Then W (]If-1 (V)) # ) and hence
o o

f-1 (V) 2(i). Now,

Y f(X) f [I f (V) ]
0 2(1)

"L_) ))o 2f ( f- (V
0

C E (

o

(using Lemma 4.2 and the fact that f is T 2
o
2 semi-continuous w.r.t 1 )" Thus

by Theorem 1.5(a), Y is o almost compact w.r.t, o
2. Similarly, Y is orL

almost compact w.r.t, o
1. Since Y is pairwise Hausdorff, it finally follows by

virtue of Theorem 1.5(c) that (Y, 1’ 2) is pairwise H-closed.

DEFINITION 4.4. A function f" (X, I’ 2 (Y’ I’ 2) is called iOl
lute w.r.t. ,. if for every o s.o. set V w.r.t. 02 f-1 (V) is 1

-irreso-

s.o.w.r.t. 2" Functions that are 2 2 irresolute w.r.t. 1 and pairwise

irresolute cap be defined in the usual manner.

Clearly, every T.o. irresolute function w.r.t. . is . o. semi-
D

continuous w.r.t. j, where i, j 1,2 but f j, but it can be shown that the

converse is not true, in general. This converse is true if the function f is, in

addition, pairwise open [7].

LEMMA 4.5. A function f from a bitopological space (X, I’ 2 to a

bitopological space (Y, o I, o 2) is I I irresolute w.r.t 2 if and only if for

every subset A of X, f (_Atl(2 )_ If(A) (o2)"
PROOF" Let f" (X, I’ 2 (Y’ I’ 2) be 1 1 -irresolute w.r.t. 2 and

AZX. Then f-1(f(A) oi(o2)) is I s.cl.w.r.t. 2" Since A C_T f-l(f(A)) (1

f-1 (f(A) (o))’ we have A (2) f-I (f(A)l(O2)) an hence
2 -



742 M.N. MIIKHERJEE

f(A ()) f f-I (f(A)o e f(A )C f(A)o (02).1 2 1(2 -I(2
Conversely, let B be 01 s.cl.w.r.t.

f f-1(Bl (o2)C B_ol (o2) B.

Then f-l(B). ()<_ f-l(B) and hence
2

o 2 in Y. By hypott,sis, f(f-l(B),I(2))C

f-l(B f-l(B)1(2)- This shows that

f-i (B) is I s.cl.w.r.t. 2 and then f is 1 1 irresolute w.r.t. 2"
COROLLARY 4.6. If a function f- (X, 1’ 2 (Y’ 1’ 2) is . o. irresolute

w.r.t. j, then for any subset A of X, f(A_ () )__. I, where i, j I,?

and j.

PROOF" For every subset B of a bitopological space (X, T 1, T2 we always have

C g 1, for i, j 1, 2 and j. Hence by Lemma 4.5, the corollary-()
fol lows.

,OTE 4.7. Following a similar line of proof as in Lemma 4.2, we could also prove the

above corollary 4.6.

THEOREM 4.8. Let (X, I’ 2 be pairwise extremally discon.ected and

f" (X, %1’ T2) (Y’ l’ 2) be pairwise irresolute, where (Y, o I, o 2) is a

bitopological space. If a subset G of X is pairwise S-closed in X, then f(G)

is pairwise S-closed in Y.

PROOF" Let {A I} be a cover of f(G) by sets that are o s.o.w r t

Y. Then

{f-1(A )- I} is a cover of G. Since G is pairwise S-closed in X there

o 2

exist a fi,ite number of indices I’ 2 n
n

such that G( U (f-l(Ak)2)"
k=l

By temma 3.5, we have f-l(Aek 2 f-l(A
k 2(1)

f-1is 2 2 irresolute w.r.t. 1’ we have by Lemna 4.5 f( (A
a

(f-i(Ak)
__
Ak A

o2(o o2(oi) k for k 1,2 n.

for k 1,2 n. Since f

2(i))

Hence f(G) f

ln 21 n 02L] ]ck=l k=1

and then f(G) is I S-closed w.r.t, o2

in Y. Similarly, f(G) is o
2 S-closed w.r.t, o in Y. Hence f(G) is pair-

wise S-closed in Y. This completes the proof.
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NOTE 4.9. If the set G of Theorem 4.8 is the whole space X, then we do not

require the condition that (X, I’ 2 is pairwise extremally disconnected. In

fact, proceeding iF: a similar fashion as in Theorem 4.3 and using Corollary 4.6, we

can have

THEOREM 4.10. If f" (X, 1’ L (Y’ i’ c2) is pairwise irresolute and

surjective, where (X, 1’ 2 is pairwise S-closed, then (Y, 01 02 is also

pairwise S-closed.

THEOREM 4.11. Let f" (X, 1’ T2 (Y’ 1’ 2) be 1 I semi-continuous w.r.t.

0 2 f- (X, T 2) (Y, 0 2 is continuous and open. If GC X I S-closed

w.r.t. 2 in X, then f(G) is 01 S-closed w.r.t. 02 in Y.

PROOF- Let {U I} be a cover of f(G) by sets that are o I s.o.w.r.t. 02

02
For each e, there is V o such that V LI -- Since f- (X, 2)

V-2 T2
(Y, o

2 is open, we have f-l( )w_f- (V
continuous w.r.t. T2’ f-l(v is 1 s.o.w.r.t.

1’ such that

2 2OCf-I(v)(ZI 2=> O_f-l(v)
2-- f-l(v) (ZZ

Since f is I Ol semi-

s2 and hence there exists

02
Thus O(Zf-I(v)(Zf-I(u)-- f-l(-

2 Therefore,That is, O C f-l(u)-- and 0 1

f-l(u) is 1 s.o.w.r.t. 2’ for each I, and {f-l(u)" I} is a cover

of G. Then there exists a finite number of indices 1 n such that

n 2
G U f-l(u Since f" (X, 2 (Y, 0 2 is continuous,

i=l i

f f’l(uai 2, for 1,2 n. Therefore, f(G) U

f(G) is 01 S-closed w.r.t. 02 in Y.

COROLLARY 4.12. Pairwise S-closedness is a bitopological invariant.

PROOF" Since every pairwise continuous function is pairwise semi-continuous, the

o 2 and then

corollary follows by virtue of Theorem 4.11.

2COROLLARY 4.13. Let {(X, , )" I} be a family of bitopological spaces and

1 2 2(X, be their product space. If (X, is pairwise S-closed, then

2each (X ) is also pairwise S-closed

iPROOF" Since P -(X, (X is an open, continuous suriection, for 1,2

and for each I,, the corollary becomes evident because of Theorem 4.11.
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THEOREM 4.14. The pairwise irresolute image of a pairwise S-closed and pairwise

extremally disconnected bitopological space in any pairwise Hausdorff bitopological
space is pairwise closed.

PROOF- Let f be a pairwise irresolute function from a pairwise S-closed and pair-

wise extremally disconnected space (X, T1, 2) into a pairwise liausdorff space

(Y, 0 o2). Let y 2 and Nl(Y denote the o I -open neighborhood system

at y in (Y, o c2). Then F {f-1(V)- V Nl(Y)} is a filter-base in X.
Since X is T2 S-closed w.r.t. 31, F has a 2 S-accumulation point x w.r.t.

%1"
We show that f(F) has f(x) as a o2 accumulation point. In fact, let

f(x) V o2 Then f-1(V) is 2 s.o.w.r.t. I and contains . Now, for each

W N (y), f-1(W) F and hence f-l(w)F f-l(v----- . Since (X, Zl’ 2 is

I(pairwise extremally disconnected, we then must have [f-l(w)] I- [f- V)] 2 # .
32 T

Indeed, if [f-l(w)] N [f-l(v)] 2 0, then [f-l(w)] ’ [f-l(v)] 2 ,
2

i.e., ’ I(v) which is not the case.

1(Now, B f[(f-1(w)ilF’f-1(V)) 2](Z f[f- w)r f- (v)] _. w v. Hence W CIV
# . This shows that f(x) is a o

2 accumulation point of f(F) in Y. But f(F)
being finer than N (y), N (y) also o

2 accumulates to f(x). Now, if y f(x),
by pairwise Hausdorff property of (Y, 01 02), there exist o open set A and
open set B such that y A, f(x) B and A F1 B . Since A Nl(Y), f(f-l(A

f(F) and hence B C f(f-l(A) # , because f(x) is a o
2 accumulation point of

f(F). In other words B I A which is a contradiction. Hence y f(x) and
then y f(X). Consequently f(X) is 02 closed in Y. Similarly f(X) is
closed in Y. This completes the proof.
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