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ABSTRACT. The concept of pairwise S-closedness in bitopological spaces has been
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1.  INTRODUCTION.

Travis Thompson [1] in 1976 initiated the notion of S-closed topological spaces,
which was followed by its further study by Thompson [2], T. Noiri [3,4] and others.
It is now the purpose of this paper to introduce and investigate the corresponding
concept, i.e., pairwise S-closedness in bitopological spaces. To make the exposition
of this paper self-contained as far as possible, we shall quote some definitions and
erunciate some theorems from [5,6,7].

DEFINITION 1.1. [7] Let (X, 2 rz) be a bitopological space.

(i) A subset A of X is called T semi-open with respect to T (abbreviated as

Ts
¥ s.o.w.r.t. Ti) in X if there exists a T; open set B such that BCACB Y

(where ETj denotes the 1j-c1osure of B in X), where i, j =1,2 and i # j.
A is called pairwise semi-open (written as p.s.o) in X if A s 2

s.0.w.r.t. T 8% well as 1 s.o.w.r.t. 2 in X.
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(ii) A subset A of X is called semi-closed with respect to Ty (denoted as

T
1

1, s.cliw.r.t. «,) if X - A dis ¢, s.o.w.r.t. 1,. Definitions for 1,
1 2 1 2 Z

s.cl.w.r.t. 2 and p. s.cl. sets can be given similarly as in (i).

(i1i) A subset N of X 1is called a T semi-neighborhood of x w.r.t. e

where x ¢ X, if there is a T; S-0. set w.r.t. T containing x and contained in

N. A point x of X 1is said to be a T semi-accumulation point of a subset A
of X w.r.t. Ty if every T semi-neighborhood of x w.r.t. T intersects A
in at least one point other than x, where i,j =1,2 and i # j.

(iv) The intersection of all 3 s.cl. sets w.r.t. T4 each containing a subset A
of X, is called the T semi-closure of A w.r.t. T and will be denoted by

AT (.)’ where i,j = 1,2 and i # j.
it

It has been proved in [7] that a subset A of a bitopological space

(X’ 11, 12) is T

i s.cl. w.r.t. 15 if and only if A = ATi(Tj)and moreover,

X e A if and only if x is either a point of A or a r; semi-accumulation
"[1(‘[3) 1

point of A w.r.t. T4 where i #j and i, j = 1,2.

T
In [7], it was deduced that AT (X, 1, 1)) 5 1, S.ow.r.t t, iff & 2.

1

11 1 i
(A 1) 2 where A 1 denotes the Tl-interior of A in X. Similerly we shall

i
use A 2 to mean the rz-interior of A in X.

It is very easy to see that every ; open set in (X, T '2) is T s.o.w.r.t.
T and the union of any collection of sets that are Ty s.0.W.r.t. 14 is also so,

where i, j =1,2; 1 # j. It was shown in [5] that the intersection of two 1y S.0.

sets w.r.t. T is not necessarily 7 S.0.W.r.t. Tpe But we have,
THECREM 1.2. [51 If A is ‘[1- S.0.W.r.t. Tj in (X, '[1, '[2) and B ¢ tlr\ 1:2,
then AN B s T s.o.w.r.t. T4 where i, j = 1,2 and i # j.

The first part of the following thecrem was proved in [7] and the converse part

in [5].

THEOREM 1.3. Llet AC YC (X, T 12). If A s T, S.0.W.r.t. 5 then A s
(Ti)Y s.0.w.r.t. (rj)Y. Conversely, if A is (Ti)Y s.0.w.r.t. (Tj)Y and Y ¢
Ty then A is T s.o.w.r.t. rj, where i, j = 1,2 and i # j.

DEFINITION 1.4. [6] (a) A bitopological space (X, T 12) is said to be T
almost compact w.r.t. rj (i, 3 = 1,25 1 #3) if every T; open filterbase has a

T cluster point. (X, T 12) is called pairwise almost compact if it is L]
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almost compact w.r.t. s and T, almost compact w.r.t. -

(b) A bitopological space (X*, r;, r;) is called an extension of a bitopological
*

T

_ *
space (X, T 12) if x<x*, X = X* and (11.)X =T for i = 1,2.
A pairwice Hausdorff bitopolegical space (X, T 12) is called pairwise
H-closed if the space cannot have any pairwise Hausdorff extension.
THEOREM 1.5. [6] (a) (X, T 12) is pairwise almost compact if and cnly if for
each cover {Ga: ael} of X by T; open sets, there exists a finite
n T
subcoilection {G , ..... ,G }such that X=\J G 9, where i, j = 1,2 and
“ %n k=1 %k
ifj.

(b) 1f (X, s 12) is 1. vregular w.r.t. t. and 1, almost compact w.r.t. =<

i i
then (X, Ii) 1s compact, for i, j = 1,2 and i # j.

i A
(c)} A pairwise Hausdorff anc pairwise almost compact bitopological space is pairwise
H-closed.

In what follows, by (X, T 12) we shall always mean a bitopological space,
i.e., a set X endowed with two topologies 2] and T,

2. PAIRWISE S-CLOSED SPACES.

DEFINITION 2.1. Let F = (Fa} be a filterbase in (X, T 12) and x ¢ X. F
is said to
(i) T; S-accumulate to x w.r.t. T :f for every 1, s.o. set V w.r.t. T
containing x and each F ¢ F, Fo NV #,.

(i1) 5 S-converge w.r.t. T to x, if corresponding to each T s.o.set V
w.r.t. o, containing x, there exists F e F such that Fu<:l v'j.

In (i) and (ii) above, i # j and i,j = 1,2. F is said to pairwise
S-converge to x if F is .2 S-convergent to x w.r.t. T, as well as T,
S-convergent to x w.r.t. Ty The definition of pairwise S-accumulation point of
F 1is similar.

DEFINITION 2.2. (X, D rz) is called T S-closed w.r.t. Ty if for each cover
{Va: o e I} of X with T, s.0. setz w;r.t. Tys there is @ finite subfamily
{Vai: i=1,2, ..... , N} such that ::ﬁvuf = X (where 1 1is some index set). X
is called pairwise S-closed if it is 1] S-closed w.r.t. T, and T, S-closed

w.r.t, T

THEOREM 2.3. Let F be an ultrafilter in X. Then F 1 S-accumulates to a point
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X € X w.r.t. ) if and only if F is '1 S-convergent to X0 w.r.t. Tp-

PROOF: Let F be S-convergent w.r.t. T, to Xo and let it not

T
1
S-accumulate w.r.t. T, to Xo Then there exist a T, S.0. set V w.r.t. T,
_T _T
(containing xo) and some Fa e F such that Fa(\ v 2 ¢. Then Fuc:. X -V
and hence X -V
Since F s T S-convergent w.r.t. T, to L corresponding to V there exists

2

T T
Fy ¢ F such that F,C ¥ 2 Then V2 e¢F ..... (2.2). Clearly (2.1) and (2.2) are

incompatible. Note that for this part we do not need maximality of F.
Conversely, if F does not I S-converge w.r.t. 1, to L there exists a T
T
s.o. set V w.r.t. T, containing x_, such that F gt v 2, for each F ¢ F. But F
(o] a T a
has X, @ a 1y S-accumulation point w.r.t. Tg- Hence Fa(\ v 2 # P, for each
T T
F, e F. Thus Fa(\ v 2 #9 and Fa(\(X- v 2) # @, for each F ¢ F. Since F is
. . T2 =12
maximal, this shows that V“ and X -V both belong to F, which is a
contradiction.
NOTE 2.4. In the above theorem, the indices 1 and 2 could be interchanged.
THEOREM 2.5. 1In a bitcpological space (X, T 12) the following are equivalent:

(a) X is 7 S-closed w.r.t. Tpe
(b) Every ultrafilterbase F is 2 S-convergent w.r.t. T,
(c) Every filterbase T, S-accumulates w.r.t. t, to some point of X.
(d) For every family {Fa} of T s.c1. sets w.r.t. 9 with (\Fa = @, there
n -
- . n 2
exists a finite subcollection {Fa.} of {Fa} such that (n\ (Fa Yy S =0,
Yi=1 i=1
PROOF: (a) => (b) Let F = {Fa} be an ultrafilterbase in X, which does not T
S-converge w.r.t. T, to any point of X. Then by Thecrem 2.3, F has no 3

S-accumulation point w.r.t. Ty Thus for every x e X, there is a Ty S.0. set

T
- 2 _
V(x) w.r.t. T, containing x and an Fu(x) e F such that Fa(x)‘ | V(x) © = 9.

Evidently, {V(x): x ¢ X} is a cover of X with sets that are Ty s.o.w.r.t. T,

and by (a), there exists a finite subcollection {V (xi): i=1,2,...,n} of
n
To
{(V(x): x e X} such that Sh% Vx;) © = X
i=

Now, F being a filterbase, there exists F0 ¢ F such that

n
o (\ Fa(xi) .
i=1
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T
Then F O\ VTx) 2=9 fori=1,2..... . n.
n T
2 - . s .
> FO (VG ) =F M X=9p = F =@ which is a contradiction.
i=1

(b) => (c) Every filterbase F is contained in an ultrafilter base F* and F* is

T S-convergent w.r.t. Ty to some point Xo by (b), and hence X0 is a I

S-accumulation point of F* w.r.t. Ty Since FC F*, Xo is also a 2]

S-accumulation point of F w.r.t. Ty )

(c) => (d) Let F = {Fa} be a family of 1, s.cl. sets w.r.t. 1, with N FOl =P
n n

i
and be such that for every finite subfamily (FOl } (say), (“} (Fa ) 2 # 0. Thus
ii=1 i= i

n .
i
F = { f\ (Fa ) 2: n = positive integer, Fa e F} forms a filterbase in X and
. i i
i=1

hence by hypothesis has a 2] S-accumulation point X, W.r.t. ). Then for any

i T
1, s.o. set V(xo) W.r.t. 1, containing x, (Fu) 2 N leoi 2 # @, for each

Fa e F. Since () Fa = @, there is some Fuo e F such that Xo ¢ Fao. Hence

i T
Xo e X - F which is 1) s.ow.r.t. t,. Hence (F ) 2 N - F ) 249 or,
0 0

i i
(F ) 2N\(X - (F ) %) # P which is impossible.
% %o

(d) => (a) Let {Va} be a covering of X with sets that are T s.o.w.r.t. ).
Then N (X - Vu) =X - U Vu = @. By (d), there exists finite number of indices

n n
i T
@15 Gpseees ap such that (ﬂ\ (x - Vu ) 2. P, i.e., (\ (x - X 2) = @, or
k=1 k k=1 k

n n

T T

X - \.} V 2-p,or|) V" 2=X and hence X is 1, S-closed w.r.t. ,.
¢} a

- k - k

k=1 k=1

NOTE 2.6. Obviously, in the above theorem, the indices 1 and 2 could have been

interchanged and hence the statement (a) can be replaced by "X is pairwise

S-closed" with corresponding alterations in (b), (c) and (d).

DEFINITION 2.7. A subset Y of (X, T 12) will be called T S-closed w.r.t.

t. in X if and 6n1y if for every cover {Va: ael} of Y by Ty S.0. sets

J

w.r.t. 15 of X, there exists a finite set of indices G1s Gpy -ees @ € I such

that

n T.
YC U {V~; J}, where i, j=1,2and i # j.
k=1 ¢
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THEOREM 2.8. A subset Y of (X, T 12) will be (Ti)Y S-closed w.r.t. (rJ.)Y

if Y s T S-closed w.r.t. T in X and Y ¢ Tys where i, i = 1,2 and i # j.
PROOF: We prove the theorem by taking i =1 and § = 2. Similar will be the proof
when i =2 and j =1. By virtue of Theorem 1.3, every cover {Va: ae I} of Y
by sets that are (11)Y s.0.w.r.t. (12)Y can be regarded as a cover of Y by sets
that are T s.o.w.r.t. Ty. Then by hypothesis, there is a finite number of

indices @ys Gps eees Op such that

n n
_ T N T
yC U V“k 2 ooy U v“k( 2)Y and the theorem follows.
k=1 k=1

THEOREM 2.9. If Y (C(X, e rz)) is (Ti)Y S-closed w.r.t. (rj)Y and Y ¢
rl(W Tos then Y is T S-closed w.r.t. Tj in X, for i, j =1,2 and i # j.

PROOF: We prove only the case when i =1and j = 2. Let (Ga} be a cover of Y,

where each Ga is L s.0.W.r.t. T, Then by Theorem 1.2, Ga Oy s T
s.ow.r.t. T, for each o and hence by Theorem 1.3, Ga Ny is (rl)Y
s.o.w.r.t. (12)Y for each a. By hypothesis, there exists a finite number of

indices Gps Gps wues O such that

n n
T T
v= ) &n iy v & 2 > ¥ is 1, S-closed w.r.t. T, in X.
N ) i o 1 2

k=1 -

DEFINITION 2.10. [7] A subset A in (X, 0 12) is called t; regularly open

T, i
(closed) w.r.t. t, if and only if A= (A 2) 1 (respectively if and only if

T T
i 1
A= (A 2) ). Similarly we define sets that are Ty regularly open (closed) w.r.t.

‘l.'lo
It has been shown in [7] that a subset B of (X, T 12) is T regularly
closed w.r.t. T iff (X - B) is T regularly open w.r.t. Ty for i, j = 1,2 and

i#3.
LEMMA 2.11. If a subset A of a bitopological space (X, Ty Tz) is T regularly
closed w.r.t. Tis then A s T s.0.w.r.t. 5 where i, j = 1,2 and i # j.

PROOF: Proof is done only in the case when i =1 and j = 2.

A is T, regularly closed w.r.t. T = (X - A) is 1 regularly open w.r.t. 2

> x-h s [ (2.3)
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T
let 0=Xx-(X-A) 1 Then 0 is T, open and

"2 iz
72- ‘x )] 1| =X - [x - (X—-ﬂtl] = A (by (2.3)).

T
Thus 0C AC T % and O ¢ 1;- Hence A is 1, s.cw.r.t. )

T.
LEWMA 2.12. 1f a subset A of (X, 1, 1,) s 1 s.oW.r.t. t; then Bd s

T regularly closed w.r.t. T where i # j and i, j = 1,2.

PROOF: As before we consider the case i =1 and j = 2. Since A is .3
i e 1o e
S.0.M.T.t. 1, we have A "C ACA Then A © = (A2 ) BN (2.4)

It has been shown in [7] that a set A in (X, T 12) is L regularly closed

w.r.t T (i, 3 =1,25 i #J) if it is t; closure of some T; open set. Since

i
A 1 is T, open, by virtue of (2.4) the result follows.

THEOREM 2.13. A bitopological space (X, T 12) is T S-closed w.r.t. T if
and only if every proper T3 regularly open set w.r.t. T of X is T S-closed
w.r.t. Tj, for i, 5 =1,2 and 1 # j.

PROOF: We only take up the case i =1 and j = 2.

Let X be 21 S-closed w.r.t. T, and F be a proper T, regularly open set

of X w.r.t - Let {Va: a e I} be a cover of F by sets that are I
s.o.w.r.t. Ty Since X - F s T, regularly closed w.r.t. T by Lemma 2.11,
(X - F) is T, s.0.W.r.t. 1, and hence (X - F) \){Va: a e I} 1is a cover of X

by 1, s.o. sets w.r.t. - Since X is T S-closed w.r.t. Tos there exists a

n
T o1
finite-number of indices o}, ay, ...y a, such that X = X -F 2 Ul k) (Vak 2)].
k=1

n
i i r\-:-—TZ = C v 2 i
Since F is «t, open, FIX -F ® and hence F )(V ), proving that
2 oy
k=1

F s 7 S-closed w.r.t. - Conversely, let {Va : ae I} beacover of X by

T
sets that are ] s.o.w.r.t. Tp- If X = Vuz, for each o ¢ I, then the theorem is
- Tz v 2
proved. So, suppose X # VB , for some g ¢ I and V8 # 9. Then VB is a proper
T
subset of X. Since VB is 1, s.o.w.r.t. 95 by Lemma 2.12, VB 2 is )

T
regularly closed w.r.t. Ty SO that X - VB 2 is proper T, regularly open w.r.t.
i and by hypothesis, it is 3 S-closed w.r.t. T, Then there exists a finite
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m
T T
. . _ 2 — 2
set of indices a1s s eees Op such that X - VB C { ’ v“k . Hence
k=1

m
T T
.72 7 2 . )
X =V~ U (1) Vuk ) and X is 1, S-closed w.r.t. T,.
k=1

THEOREM 2.14. A subset A in (X, T 12) is T S-closed w.r.t. T in X if

and only if every cover of A by sets that are T regularly closed w.r.t. Y in
X, has a finite subcover, where i, j = 1,2 and i # j.

PROOF: We consider only the case i =1 and j =2. Let A be L S-closed
w.r.t. T, in X and {Vcl } be a collection of T, regularly closed sets in X
w.r.t. Ty which is a cover of A. Then each Va is T s.o.w.r.t. Tos by

Lemma 2.11 and hence there exists a finite set of indices Bps Boy eees O such that
AC Y 2 uv 2 v.oU UV (since each V_  is «
MRS a o a o, 2
closed). Conversely, let the given condition hold and {Vu} be a T, s.0. cover of

TO
A w.r.t. T, Then V_ < s T, regularly closed w.r.t. 2 for each o, by

_T
Lemma 2.12, and {Va 2} is a cover of A. Then by hypothesis, there exist a finite
n
-Ts
number of indices Bps Gy wees O such that A< U v , showing that A is 1
n oy 1
k=1

S-closed w.r.t. ).

THEOREM 2.15. If A and B are T, S-closed w.r.t. T in (X, 0 rz), then

AU B is also so, where i, j =1,2 and i # j].

PROOF: Let {Va} be a cover of AU B by sets that are T S.0.wW.r.t. T3 in X.

Then it is a cover of A as well as of B. By hypothesis, there will exist a finite

number of indices Gips Bpos eees Opp and Br1s Bpps wevs Gpn such that

k r k r
T, T T, T
acl) ) e BCUVazi . Then AV B (U vali)u(u Vo)) and
k=1 k=1 k=1 k=1
hence AUB is 1, S-closed w.r.t. Ty

T
THEOREM 2.16. If A is 1, S-closed w.r.t. ) in (X, T 12) then A 2 is also

1
SO.

_T
PROOF: Let {V“} be a cover of A 2 by sets that are I s.0.w.r.t. Tos then it

is also a cover of A. Thus there exists a finite number of indices Ggs eees Op

n ___'[2 _’[2 n _ '[2
such that A C L.) v“i > A°C k,)vai and the result follows. From
i=1 i=1
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Theorem 2.9 eana Theorem 2.16 we get:
COROLLARY 2.17. If A (X, 2 12) is pairwise open and (A, (tl)A, (TZ)A) is

T.
pairwise S-closed, then A Vs pairwise S-closed in X, for i =1,2.

COROLLARY 2.18. A space (X, T 12) is i S-closed w.r.t. Tj if there exists a

T S-closed subset A w.r.t. Tj in X, which is Tj dense in X, where i, j =

1,2 and i #J.

THEOREM 2.19. Let AC (X, s 12) be T S-closed w.r.t. T, and B s T,
regularly open w.r.t. 12 in X. Then A(B is 12 S-closed w.r.t. Ty

PROOF: Let {Va: ael}l bea Ty S.0. cover of AOVB w.r.t. Tos where 1 s
some index set. Since X-B is T, regularly closed w.r.t. T by Lemma 2.11, (X-B)

is 1, st 1, . Thus AC Yy U (08) and A is 1) S-closed

4

w.r.t. Toe

Then there exist indices Gps Gps eens Qo finite in number, such that

n n
A UV, PUTEB 2= T, Y-,
i=1 =1

and ANB 1is 1, S-closed w.r.t. Tt,.
[ 1 2

no_T,
Thus ANBC \J V
=1 %

COROLLARY 2.20. Let AC (X, T 12) be T S-closed w.r.t. T, and B is i
regularly open w.r.t. T then

(a) B s S-closed w.r.t. T if BC A.

!
i2 ]

(b) A is Tl S-closed w.r.t. T, if A is 2 closed in X.

PROOF: (a) Follows immediately from Theorem 2.19.

T i . .
) TP T, i i

(b)i Since (A *) is 1, regularly open w.r.t. 1, and (A 1) 2 N A=A ZI\A

= A 2, the result follows by virtue of Theorem 2.19.

THEOREM 2.21. If (X, T 12) is i

T then (X, Ti) is compact, where i, j = 1,2; i # j.

regular w.r.t. T and L S-closed w.r.t.

Proof By virtue of Theorem 1.5(a), we see that every ¥ S-closed space w.r.t. T
is T almost compact w.r.t. Ty Hence by Theorem 1.5(b) the result follows.

In Theorem 3.7 we shall prove a partial converse of the above theorem.
3. PAIRWISE EXTREMALLY DISCCNNECTECNESS AND S-CLOSED SPACE.

DEFINITION 3.1. A bitopological space (X, T 12) is said to be L

extremally disconnected w.r.t. iy if and only if for every T; open set A of X,
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KTj is T, open, where i, j = 1,2 and i # j. X 1is called pairwise extremally
disconnected if and only if it is L] extremally disconnected w.r.t. T, and T,
extremally disconnected w.r.t. -

Datta in [8] has defined pairwise extremally disconnected bitopological space
identically as above, we shall show (see Corollary 3.4) that the concept can be
defined by a weaker condition.

The conclusion of the following theorem was also derived in [8] under the
hypothesis that the space is pairwise Hausdorff and pairwise extremally disconnected.
We prove a much stronger result here.

THEOREM 3.2. Let (X, Ty 12) be 3 extremally disconnected w.r.t. T O T,

extremally disconnected w.r.t. Then for every pair of disjoint sets A, B in

Tl.
) ='1
X, where A ¢ 2 and B e T, One has A<M\ B = 0.
PROOF: Suppose (X, T 12) is .2 extremally disconnected w.r.t. T, and A ¢
‘l’l,
_ _Ts _T
Bert, with ANB=9. Then A° ) B =9 ... (1). Now, if R° Blysp,

_T _T _T
then there exists x ¢ B 1 and x ¢ A 2 e 1q. Hence A 2 NBz#p contradicting

(1). Similarly the other case can be handled.
We prove a stronger converse of the above theorem.

THEOREM 3.3. (X, D 12) is pairwise extremally disconnected if for every pair of

T T
disjoint sets A and B, where A ¢ L] and B e Tys A 2 N s L # holds.

PROOF: Suppose (X, T 12) is not 1, extremally disconnected w.r.t. T,. Then

_T _T
there is a T, open set A such that A 2 - Then X - A 25 T, and A e T such

T T T, T
that A N\ (X - A %) = p. Hence by hypothesis, A 2N (x-K4 1-p. Then

T, T T T T
(x - A 2) Loy &2 and x-A2 s 1, closed. Thus A 2 s T, -open. A

contradiction.

Similarly, (X, T rz) is T, extremally disconnected w.r.t. rt,.

From Theorems 3.2 and 3.3 we have,
COROLLARY 3.4. (X, 0 12) is pairwise extremally disconnected if and only if it is
either 7 extremally disconnected w.r.t. T, or 1, extremally disconnected
w.r.t. -

LEMMA 3.5, If (X, Ty 12) is pairwise extremally disconnected, then for every 1



PAIRWISE S~CLOSED BITOPOLOGICAL SPACES 739

Th
= v <
s.o. set V w.r.t. 1, !TZ(Tl) v and for every T, s.0. set U w.r.t T
T
v -7t
—Tl('[n)
© 1,

PROOF: Obviously, !TZ(TI) [GERTEL

Now, if x ¢V , then there exists a 1, s.o. set W w.r.t 1,, containing
1, (‘[1) 2 1

LB 12

x such that VAW = 0. Then V and W are nonempty disjoint sets, respectively

T, open and T, open. Since (X, s 12) is pairwise extremally disconnected, we

have

— 2 —

1 i _T _T _1, _1
v i (\ Wwe = g, i.e., V 2(\ Wl . Thus x ¢ V °. Hence v, (x.) v 2
Similarly the other part can be proved. 21

T Tl

LEMMA 3.6. In a pairwise extremally disconnected space (X, T 12), every T,

regularly open set w.r.t. Tj is T; open and Tj closed, where i, j = 1,2 and

173 T, 1
PROOF: Let A be a T reqularly open set in X w.r.t. Tos SO that (A 2) 1. A.

_Ta
Now, (X - A “) and A are disjoint sets, respectively T, open and Ty open.

Since (X, T 12) is pairwise extremally disconnected, we have
T
1 _T 1
=X-%2 and X -R2Z is
i

T ————
1, 1 1 T
(x-%% NAZ2=p, by Theoren 3.2. Then (X - & 2)
T

2 . 2 _ 51,
™ -closed. Hence A is t,-open, so that A“=(A°) "~ =A is T, open and

T -closed.

Similarly, we can show that every T, regularly open set in X w.r.t. I is
T, -open and 2 -closed.
THEOREM 3.7. If (X, T 12) is pairwise extremally disconnected and (X, 11) is
compact, then (X, T 12) is 12 S-closed w.r.t. o

PROOF: Let {Vu: a € 1} be a cover of X by sets that are L] s.o.w.r.t. T,
For each x € X, there is a Vu containing x, for some a € I. Then there
X

_T
exists a T, open set Oa such that Oa C VQ (- Ou2 . Since X is pairwise
X X X X
_T
extremally disconnected, 0 2 is T, open for each x e X. By compactness of

a
X

(X, tl) there exists a finite set of points X1s Xps wees X of X such that
2 =2 <'2
}. But 0 < V , for each x. Hence 0 °“( V
k=1 X “x “x “x Sx
k

noo1

Hence X = U {Vu2 } and X s T, S-closed w.r.t. t,.
X

k

>~
"
—
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We have earlier observed that every ¥ S-closed space (X, T 12) w.r.t. Tj
is always ¥ almost compact w.r.t. Tj for i, j = 1,2 and i # j. Now we have:
THEOREM 3.8. If (X, T 12) is 1) almost compact w.r.t. T and pairwise
extremally disconnected, then (X, T 12) is L) S-closed w.r.t. )
PROOF: Let us consider a cover {Vu: a e I) of X with sets that are T

Ty 1
s.o.w.r.t. T, For each o ¢ I, we consider the set Ua = (Vaz )1 which is 8

—_—
T T, 1 2 _ T
regularly open w.r.t T5. Then U C UaL) VQCI v.© o= [(Vu Yy 1 = u, °. Since

Ua is L regularly open w.r.t. Ty by Lemma 3.6, Uu is Ty -closed and hence,
T
_— 2 _ _ . .
v, C U,V v, <, "= 4. Thus U =U U V . Again, U  being t , -open,
for each o ¢ I, it follows that {Uq&j Vu: ae I} is a T, -open cover of
(X, 3 12). (X, 0 12) being T almost compact w.r.t. Tos there exists a
finite subfamily

T,

T,
- (4 . T3 4
I0 of I such that X = é—E)IO{Ua U v, }.. Now, since u, 9] v, C Va , for

each o € I, we have ﬁ;T:T_VGTE C Varz for each a and hence X = aLEJI (V;Z}.
Hence (X, s 12) is 7 S-closed w.r.t. T,. 0
4, SEMI CONTINUITY, IRRESOLUTE FUMCTIONS AND S-CLOSEDNESS.

GEFINITION 4.1. [7] A function f from a bitopological space (X, T rz)
into a bitopological space (Y, 91» 02) is called Ty 9 semi-continuous w.r.t. T,
if for each A e 9y f'1 (A)is 12 s.omW.r.t. T, Similar goes the definition of
T, 0y semi-continuity of f w.r.t. - f is called pairwise semi-continuous if

f s T 9 semi-continuous w.r.t. T, and Ty 0y semi-continuous w.r.t. -

LEMMA 4.2. If a function f: (X, T 12) > (Y, 91s 02) is 1 0 semi-continuous

(o}
w.r.t. t,, then for any subset A of X, f (A Yy C F(A) 1.
2 —11(12)

PROOF: Let y € f(ATl(TZ)) and y e Ve oy- Then there exists x € ATI(TZ) such

that f(x) =y and x e f'l(V) and f'1 (v) is 1] S.0W.TLt. T,

[of

=75y 1

Hence £ (V)NAZQ = f (X (MNA)£P = VOF(A) £P = ye T(A)
THEOREM 4.3. Pairwise semi-continuous surjection of a pairwise S-closed space onto a
pairwise Hausdorff space is pairwise H-closed.

PROOF: Let f: (X, T rz) > (Y, 9ys 02) be a pairwise semi-continuous surjection,
where X s pairwise S-closed. We first show that (Y, 91» 02) is 9y almost

compact w.r.t. o,. Let {Va: ae I} bea oy open cover of Y. Then
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{f'l (Va): o« e I} is a cover of X by sets that are 2 S.0.W.r .t T,. Since X

is 2 S-closed w.r.t. Ty there exists a finite subfamily Io of I, such that

\ T -

X = L~/ f 1(V 3 2. We show that \\_) f 1(V ) = X. In fact, let x e X
ae [ a ae I a

0 4] Tz(Tl)

and W be any T, S.0. set w.r.t. Tos containing x. Then there exists Ue T,

T
such that UC W< U Yand U #9. Since vy s t, dense in X,

ae |

U |

every nonempty T, open set must intersect = f'l(va) and hence
0

un [a\E)I £ (V)1 #@. Then W N ( UJ £t (V,)) # @ and hence
0 0

xe L gl

a € I a) 12(11)° Now,
= f(X) aL€JI f (va) 1
[¢] T2('[1)

ce (ot
0
T,
(using Lemma 4.2 and the fact that f is T, 0y semi-continuous w.r.t L) ). Thus
by Theorem 1.5(a), Y is 9 almost compact w.r.t. 9y Similarly, Y is 9,
almost compact w.r.t. 9y Since Y is pairwise Hausdorff, it finally follows by
virtue of Theorem 1.5(c) that (Y, oy 02) is pairwise H-closed.
DEFINITION 4.4. A function f: (X, T 12) > (Y, 91» 02) is called 9, -irreso-
Tute w.r.t. Ty if for every oy Ss-o. set V w.r.t. 95 1"1 (v) s L]
s.o.w.r.t. T, Functions that are T, 0, irresolute w.r.t. 1] and pairwise
irresolute can be defined in the usual manner.

Clearly, every T, 0, irresolute function w.r.t. Tj is T 0y semi-
continucus w.r.t. Tj’ where i, j = 1,2 but i # j, but it can be shown that the
converse is not true, in general. This converse is true if the function f is, in
addition, pairwise open [7].

LEMMA 4.5, A function f from a bitopological space (X, T 12) to a
bitopological space (Y, 91s 02) is Ty 0 irresolute w.r.t T, if and only if for
every subset A of X, f (A A (T ) Y £ (A) 1(02)'

PROOF: Let f: (X, T 12) + (Y, s 02) be 9 -irresolute w.r.t. Ty and

AC X. Then f'l(f(A vy is 1, s.cl.w.r.t. 1,. Since AC f'l(f(A)) (-
01(02; 1 2

(f(A (02)), we have 'A"tl(‘[

-1 R -1
f 2) C 7 (f(A) 1(02)) and hence
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-1, .
f(&Tl(Tz)) f £ (f(A) 1(02)), i.e. f(ATl(TZ))C: f(A) 1(02).
. : -1
Conversely, let B be op s.clw.r.t. o, inY. By hypotfesis, f(f_"(B) 1(12))C:

-1 _
LB (o)) € By (o) 7 B

Then f'l(B) 1(12)(:: f'l(B) and hence f'l(B) = f'l(B)Il(TZ). This shows that

£l (B) is 1y s.cluw.r.t. 1, and then f is 1, o, irresolute w.r.t. 5.

COROLLARY 4.6. If a function f: (X, 0 12) > (Y, 9 02} is T, 04 irresolute

w.r.t. Ty then for any subset A of X, f(ATi(Tj)) C ?TK701’ where i, j = 1,2
and i # J.

PROOF: For every subset B of a bitopological space (X, T rz) we always have
Eti(Tj)<:: ETi, for i, j=1,2 and i # j. Hence by Lemma 4.5, the corollary
follows.

MOTE 4.7. Following a similar line of proof as in Lemma 4.2, we could also prove the
above corollary 4.6.

THEOREM 4.8, Let (X, T 12) be pairwise extremally disconrected and

f: (x, Ty 12) + (Y, 9y 02) be pairwise irresolute, where (Y, 91» 02) is a
bitopological space. If a subset G of X 1is pairwise S-closed in X, then f(G)
is pairwise S-closed in Y.

PROOF: Let {Aa: a e 1} be a cover of f(G) by sets that are 9 s.o.w.r.t. 9y
in¥. Then f(A) is 7 s.ow.r.t. T, in X, for each a e I and

{f'l(Aa): a e I} is a cover of G. Since G 1is pairwise S-closed in X, there

n
1
exist a finite number of indices @1 %ps ..., O such that G C \_) (f’l(Aa ) 2).

n
k=1
1
By Lemma 3.5, we have f'l(A ) 2. f'l(A ) for k =1,2, ..., n. Since f
%k % 1,(1,)
_ 21
is T, 0y irresolute w.r.t. Tys We have by Lemma 4.5 f(f'l(Au ) )
SRACH)
g
£l ) CA c i 2
%k (o.) %k (0:) * , for k=1,2 ..., n.
—_— 02 01 02 01
n —1,
-1 g no 9 .
Hence f(G)C f \\J f (Aa - \V) Aa and then f(G) is 9y S-closed w.r.t. oo
k k
k=1 k=1

in Y. Similarly, f(G) is o, S-closed w.r.t. o, in Y. Hence f(G) is pair-

wise S-closed in Y. This completes the proof.
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NOTE 4.9. If the set G of Theorem 4.8 is the whole space X, then we do not
require the condition that (X, T 12) is pairwise extremally disconnected. In
fact, proceeding ir @ similar fashion as in Theorem 4.3 and using Corcllary 4.6, we
can have :

THEOREM 4.10. I1f f: (X, T Tz) - (Y, 91» 02) is pairwise irresolute and
surjective, where (X, 0 rz) is pairwise S-closed, then (Y, 91» 02) is also
pairwise S-closed.

THEOREM 4.11. Let f: (X, T rz) > (Y, oy 02) be T 9 semi-continuous w.r.t.
ys f: (X, 12) > (Y, °2) is continuous and open. If GC X ic T S-closed
worete 1, in X, then f(G) is 9y S-closed w.r.t. o in Y.

PRGOF: Let {Ua: a e I} be a cover of f(G) by sets that are 9y s.0.W.r.t. o,

g
For each «, there is V_ e o, such that V< U <V 2. Since f: (X, 1,) ~
[ 1 a o a 2

T,
__0, " C . . .
(Y, 02) is open, we have f 1(Vu Hc f 1(Va) . Since f s 1) 0p semi-
continuous w.r.t. 1,, f'l(Va) is Y s.ow.r.t. T, and hence there exists 0 €
L such that

T

-1 .y 1 2 5 -1 -1 -1,=92
oc i)t 2 0 flv) « 08 Thus ocf v )cf Hu ) FHT, )

Th

—_—2 1 _ 1.
< f“l(Va) C 0 2. That is, 0<f 1(Ua)<:.0 ¢ and 0« ;. Therefore,

f'l(Ua) is 2 $.0.W.r.t. T, for each o ¢ I, and {f'l(Uu): a e 1} is a cover
of G. Then there exists a finite number of indices Gps eees Op such that

T
n —— 2
6 C U f'l(Ua ) . Since f: (X, 12) > (Y, 02) is continuous,
i=1 i
o
T 2 and then
%

1, 2~ %2 .
flf (Uu.) (e Uu’ , fori=1,2...,n. Therefore, f(G)C
i i i

ics

f(G) is 9y S-closed w.r.t. 9, in Y.

COROLLARY 4.12. Pairwise S-closedness is a bitopological invariant.
PROOF: Since every pairwise continuous function is pairwise semi-continuous, the

corollary follows by virtue of Theorem 4.11.

COROLLARY 4.13. Let {(Xa, 11, 1;): a e I} be a family of bitopological spaces and

o
(X, 11, t“) be their product space. If (X, 11, 12) is pairwise S-closed, then
each (X , Tl, 12) is also pairwise S-closed.
a a a A .
PROOF: Since Pa:(X, 11) > (Xa, r;) is an open, continuous surjection, for i = 1,2

and for each o ¢ I,, the corollary becomes evident because of Theorem 4.11.
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THEOREM 4.14. The pairwise irresolute image of a pairwise S-closed and pairwise
extrema11& disconnected bitopological space in any pairwise Hausdorff bitopological
space is pairwise closed.

PROOF: Let f be 2 pairwise irresolute function from a pairwise S-closed and pair-

wise extremally disconnected space (X, T 12) into a pairwise Hausdorff space

ag
(Y, oy, 02). Let y e T(X) ? and Nl(y) denote the o1 ~-open neighborhood system
at 'y in (Y, 91» 02). Then F = {f'l(V): Ve Nl(y)} is a filter-base in X.

Since X s T, S-closed w.r.t. L F has a T, S-accumulation point x w.r.t.
Tl.

We show that f(F) has f(x) as a o, accumulation point. In fact, let
f(x) e Ve o,. Then f'l(V) is T, S.0.W.r.t. T, and contains x. Now, for each

T
S
We N (v), £75W) ¢ F and hence £ 1w) M F1(v) ~ #p. since (X, g5 1) s

i i
pairwise extremally disconnected, we then must have [f’l(w)] 1 (\ [f'l(V)] 2 0.
"—Tz Tl

tndeed, 1t 01 L0 1IN 2 = g, then [lw)1t O peln) 2 -,

i.e., f'l(w)TZ(\ ffl(V)Tl = @ which is not the case.

Now, 97 fL(F 1) 1A ) 21 et A IS W NV, Hence WAV
# @. This shows that f(x) is a 0, accumulation point of f(F) in Y. But f(F)
being finer than Nl (y), N1 (y) also 0, accumulates to f(x). Now, if y #f(x),
by pairwise Hausdorff property of (y, 91s 02), there exist 9, open set A and o,
open set B such that y e A, f(x) ¢ B and AN B =p. Since A« N (y), F(F7l(a)
e f(F) ard hence B N f(f'l(A) # P, because f(x) is a 0, accumulation point of
f(F). 1In other words B M A # @ which is a contradiction. Hence y = f(x) and
then y e f(X). Consequently f(X) is % closed in Y, Similarly f(X) is ¢

1
closed in Y. This completes the proof.
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